Oxidative Stress, Pathophysiology, and Immunity in Brucellosis

  • Amit KumarEmail author
  • Anu Rahal
  • V. K. Gupta


The Brucella being obligate intracellular parasite, its survival in host requires the ability to overcome host immune system as well as host oxidative stress mechanism. In general, Brucellosis induces rise in host oxidative stress with weakening of the host’s antioxidant defense system. The survival of Brucella to host oxidative and antioxidant system depends on the presence of superoxide dismutase (SOD) and catalase in Brucella. Of these, SOD acts as a major antioxidant enzyme in Brucella pathophysiology. Brucella possesses two SODs, SodA and SodC, that directly detoxify superoxide radicals. SodA resides in the cytoplasmic compartment, while SodC in the periplasm of Brucella strains and exclusively detoxifies superoxide radical within the cellular compartments in which bacteria reside. The endogenously produced superoxide radicals of respiratory metabolism are detoxified by SodA, while exogenously generated during respiratory burst in host phagocytes are typically detoxified by SodC. The catalase neutralizes H2O2 produced during the process. The catalase is mainly constrained to the periplasm and provides protection against H2O2 produced during the immune response provoked against Brucella infection. Regulation of this enzyme along with detoxification of superoxide radicals with SOD is mainly responsible for the adaptation process of Brucella and allows its survival under hostile conditions.


Oxidative stress Pathophysiology Immunity Brucella Brucellosis 


  1. 1.
    Martins R, Da Costa IJM, Gamazo C (2012) Acellular vaccines for ovine brucellosis: a safer alternative against a worldwide disease. Expert Rev Vaccines 11(1):87–95CrossRefGoogle Scholar
  2. 2.
    Singh BB, Dhand NK, Gill JP (2015) Economic losses occurring due to brucellosis in Indian livestock populations. Prev Vet Med 119(3–4):211–215CrossRefPubMedGoogle Scholar
  3. 3.
    Doganay GD, Doganay M (2012) Brucella as a potential agent of bioterrorism. Recent Pat Antiinfect Drug Discov 8:27–33CrossRefGoogle Scholar
  4. 4.
    Osterman B, Moriyon I (2006) International committee on systematics of prokaryotes subcommittee on the taxonomy of Brucella. Int J Syst Evol Microbiol 56:1173–1175CrossRefGoogle Scholar
  5. 5.
    Foster G, Osterman BS, Godfroid J et al (2007) Brucella ceti sp. nov. and Brucella pinnipedialis sp. nov. for brucella strains with cetaceans and seals as their preferred hosts. Int J Syst Evol Microbiol 57:2688–2693CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Blasco JM (1997) A review of the use of B. melitensis Rev 1 vaccine in adult sheep and goats. Prev Vet Med 31:275–283CrossRefPubMedGoogle Scholar
  7. 7.
    England T, Kelly L, Jones R et al (2004) A simulation model of brucellosis spread in British cattle under several testing regimes. Prev Vet Med 63:63–73CrossRefPubMedGoogle Scholar
  8. 8.
    CFSPH (2009) Undulant fever, Malta fever, Mediterranean fever, enzootic abortion, epizootic abortion, contagious abortion, bang’s disease. The Centre for Food Security and Public Health, Brucellosis. Scholar
  9. 9.
    Godfroid J, Cloeckaert A, Liautard JP (2005) From the discovery of the Malta fever’s agent to the discovery of a marine reservoir, brucellosis has continuous been a reemerging zoonosis. Vet Res 36:313–326CrossRefPubMedGoogle Scholar
  10. 10.
    Cutler S, Whatmore A (2003) Progress in understanding brucellosis. Vet Rec 153:641–642PubMedGoogle Scholar
  11. 11.
    European Council Directive (ECD) (1991). On animal health conditions governing intra-community trade in ovine and caprine animals 91/68/EEC L 46: 19–30Google Scholar
  12. 12.
    Meador VP, Hagemoser WA, Deyoe BL (1988) Histopathologic findings in Brucella abortus-infected, pregnant goats. Am J Vet Res 49:274–280PubMedGoogle Scholar
  13. 13.
    Alvarez J, Sáez JL, García N et al (2011) Management of an outbreak of brucellosis due to B. melitensis in dairy cattle in Spain. Res Vet Sci 90(2):208–211CrossRefPubMedGoogle Scholar
  14. 14.
    Abbas B, Agab H (2002) A review of camel brucellosis. Prev Vet Med 55(1):47–56CrossRefPubMedGoogle Scholar
  15. 15.
    Garin-Bastuji B, Hars J (2000) La brucellose porcine. Bull GTV 5:301–302Google Scholar
  16. 16.
    Ferroglio E, Tolari F, Bollo E et al (1998) Isolation of Brucella melitensis from alpine ibex. J Wildl Dis 34(2):400–402CrossRefPubMedGoogle Scholar
  17. 17.
    Garin-Bastuji B, Oudar J, Richard Y et al (1990) Isolation of Brucella melitensis biovar 3 from a chamois (Rupicapra rupicapra) in the Southern French alps. J Wildl Dis 26:116–118CrossRefPubMedGoogle Scholar
  18. 18.
    Ridler AL, West DM, Stafford KJ et al (2006) Persistence, serodiagnosis and effects on semen characteristics of artificial Brucella ovis infection in red deer stags. N Z Vet J 54:85–90CrossRefPubMedGoogle Scholar
  19. 19.
    WHO (2006) Brucellosis in humans and animals. WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland 16Google Scholar
  20. 20.
    Bundle DR, Cherwonogrodzky JW, Gidney MAJ et al (1989) Definition of Brucella A and M epitopes by monoclonal typing reagents and synthetic oligosaccharides. Infect Immun 57:2829–2836PubMedPubMedCentralGoogle Scholar
  21. 21.
    Kumar A, Gupta VK, Verma AK et al (2016) Vaccines for caprine brucellosis: status and prospective. Int J Vaccines Vaccin 2(3):00030CrossRefGoogle Scholar
  22. 22.
    Lapaque N, Moriyon I, Moreno E (2005) Brucella lipopolysaccharide acts as a virulence factor. Curr Opin Microbiol 8:60–66CrossRefPubMedGoogle Scholar
  23. 23.
    Perry MB, Bundle DR (1990) Lipopolysaccharide antigens and carbohydrates of Brucella. In: Adams LG (ed) Advances in brucellosis research. Texas A & M University, Austin, pp 76–88Google Scholar
  24. 24.
    Birben E, Sahiner UM, Sackesen C et al (2012) Oxidative stress and antioxidant defense. World Allergy Organ J 5(1):9CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Mohammadian A, Moradkhani S, Ataie S et al (2016) Antioxidative and hepatoprotective effects of hydroalcoholic extract of Artemisia absinthium L. in rat. J HerbMed Pharmacol 5(1):29–32Google Scholar
  26. 26.
    Serefhanoglu K, Taskin A, Turan H et al (2009) Evaluation of oxidative status in patients with brucellosis. Braz J Infect Dis 13(4):249–251CrossRefGoogle Scholar
  27. 27.
    Sriranganathan N, Boyle SM, Schurig G et al (1991) Superoxide dismutases of virulent and avirulent strains of Brucella abortus. Vet Microbiol 26:359–366CrossRefPubMedGoogle Scholar
  28. 28.
    Bricker BJ, Tabatabai LB, Judge BA et al (1990) Cloning, expression, and occurrence of the Brucella Cu-Zn superoxide dismutase. Infect Immun 58:2935–2939PubMedPubMedCentralGoogle Scholar
  29. 29.
    Stabel TJ, Sha Z, Mayfield JE (1994) Periplasmic location of Brucella abortus Cu/Zn superoxide dismutase. Vet Microbiol 38:307–314CrossRefPubMedGoogle Scholar
  30. 30.
    Sadosky AB, Wilson JW, Steinman HM et al (1994) The iron superoxide dismutase of Legionella pneumophila is essential for viability. J Bacteriol 176:3790–3799CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    St John G, Steinman HM (1996) Periplasmic copper-zinc superoxide dismutase of Legionella pneumophila: role in stationary phase survival. J Bacteriol 178:1578–1584CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Imlay JA (2008) Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem 77:755–776CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Piddington DL, Fang FC, Laessig T et al (2001) Cu,Zn superoxide dismutase of Mycobacterium tuberculosis contributes to survival in activated macrophages that are generating an oxidative burst. Infect Immun 69:4980–4987CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Dunn KL, Farrant JL, Langford PR et al (2003) Bacterial [Cu,Zn]-cofactored superoxide dismutase protects opsonized, encapsulated Neisseria meningitidis from phagocytosis by human monocytes/ macrophages. Infect Immun 71:1604–1607CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Porte F, Liautard JP, Kohler S (1999) Early acidification of phagosomes containing Brucella suis is essential for intracellular survival in murine macrophages. Infect Immun 67:4041–4047PubMedPubMedCentralGoogle Scholar
  36. 36.
    Boschiroli ML, Ouahrani-Bettache S, Foulongne V et al (2002) The Brucella suis virB operon is induced intracellularly in macrophages. Proc Natl Acad Sci U S A 99:1544–1549CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Celli J, de Chastellier C, Franchini DM et al (2003) Brucella evades macrophage killing via VirB-dependent sustained interactions with the endoplasmic reticulum. J Exp Med 198:545–556CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Loisel-Meyer S, Jiménez de Bagüés MP, Bassères E et al (2006) Requirement of norD for Brucella suis virulence in a murine model of in vitro and in vivo infection. Infect Immun 74:1973–1976CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Jimenez de Bagues MP, Loisel-Meyer S, Liautard JP et al (2007) Different roles of the two high-oxygen-affinity terminal oxidases of Brucella suis: cytochrome c oxidase, but not ubiquinol oxidase, is required for persistence in mice. Infect Immun 75:531–535CrossRefGoogle Scholar
  40. 40.
    Roop RM, Gee JM, Robertson GT et al (2003) Brucella stationary-phase gene expression and virulence. Annu Rev Microbiol 57:57–76CrossRefPubMedGoogle Scholar
  41. 41.
    Sha Z, Stabel TJ, Mayfield JE (1994) Brucella abortus catalase is a periplasmic protein lacking a standard signal sequence. J Bacteriol 176:7375–7377CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Riley LK, Robertson DC (1984) Brucellacidal activity of human and bovine polymorphonuclear leukocyte granule extracts against smooth and rough strains of Brucella abortus. Infect Immun 46:231–236PubMedPubMedCentralGoogle Scholar
  43. 43.
    Jiang X, Leonard B, Benson R et al (1993) Macrophage control of Brucella abortus: role of reactive oxygen intermediates and nitric oxide. Cell Immunol 151:309–319CrossRefPubMedGoogle Scholar
  44. 44.
    Ma M, Eaton JW (1992) Multicellular oxidant defense in unicellular organisms. Proc Natl Acad Sci U S A 89:7924–7928CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Buchmeier NA, Libby SJ, Xu Y et al (1995) DNA repair is more important than catalase for Salmonella virulence in mice. J Clin Investig 95:1047–1053CrossRefPubMedGoogle Scholar
  46. 46.
    Kim JA, Sha Z, Mayfield JE (2000) Regulation of Brucella abortus catalase. Infect Immun 68(7):3861–3866CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Perin G, Avero JFF, Diego RT et al (2017) Occurrence of oxidative stress in dairy cows seropositives for Brucella abortus. Microb Pathog 110:196e201CrossRefGoogle Scholar
  48. 48.
    Fridovich I (1997) Superoxide anion radical (O2-), superoxide dismutases, and related matters. J Biol Chem 272:18515–18517CrossRefGoogle Scholar
  49. 49.
    Chen Y, Azad MB, Gibson SB (2009) Superoxide is the major reactive oxygen species regulating autophagy. Cell Death Differ 16:1040–1052CrossRefPubMedGoogle Scholar
  50. 50.
    Rhee S (2006) Cell signalling H2O2, a necessary evil for cell signalling. Science 312:1882–1883CrossRefPubMedGoogle Scholar
  51. 51.
    Finkel T (2012) From sulfenylation to sulfhydration: what a thiolate needs to tolerate. Sci Signal 5:pe10CrossRefPubMedGoogle Scholar
  52. 52.
    Al-Mehdi AB, Pastukh VM, Swiger BM et al (2012) Perinuclear mitochondrial clustering creates an oxidant-rich nuclear domain required for hypoxia-induced transcription. Sci Signal 2012(5):ra47Google Scholar
  53. 53.
    Sola-Landa A, Pizarro-Cerda J, Grilo MJ (1998) A two-componentregulatory system playing a critical role in plant pathogens and endosymbionts is present in Brucella abortus and controls cell invasion and virulence. Mol Microbiol 29:125–138CrossRefPubMedGoogle Scholar
  54. 54.
    Grillo MJ, Blasco JM, Gorvel JP et al (2012) What have we learned from brucellosis in the mouse model? Vet Res 43:29CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Delpino MV, Estein SM, Fossati CA et al (2007a) Partial protection against Brucella infection in mice by immunization with nonpathogenic alphaproteobacteria. Clin Vaccine Immunol 14(10):1296–1301CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Bandara AB, Contreras A, Contreras-Rodriguez A (2007) Brucella suis urease encoded by ure1 but not ure2 is necessary for intestinal infection of BALB/c mice. BMC Microbiol 7:57CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Collins CM, D’ Orazio SE (1993) Bacterial ureases: structure, regulation of 42 expression and role in pathogenesis. Mol Microbiol 9:907–913CrossRefPubMedGoogle Scholar
  58. 58.
    Sangari FJ, Seoane A, Rodríguez MC (2007) Characterization of the urease operon of Brucella abortus and assessment of its role in virulence of the bacterium. Infect Immun 75:774–7780CrossRefPubMedGoogle Scholar
  59. 59.
    Paixao TA, Roux CM, den Hartigh AB (2009) Establishment of systemic Brucella melitensis infection through the digestive tract requires urease, the type IV secretion system, and lipopolysaccharide O-antigen. Infect Immun 77:4197–4208CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Delpino MV, Marchesini MI, Estein SM (2007b) A bile salt hydrolase of Brucella abortus contributes to the establishment of a successful infection through the oral route in mice. Infect Immun 75:299–305CrossRefPubMedGoogle Scholar
  61. 61.
    Grillo MJ, Marín CM, Barberán M et al (2009) Efficacy of bp26 and bp26/omp31 B. melitensis Rev.1 deletion mutants against Brucella ovis in rams. Vaccine 27:187–191CrossRefPubMedGoogle Scholar
  62. 62.
    Elsbach P (1980) Degradation of microorganisms by phagocytic cells. Rev Infect Dis 2:106–128CrossRefPubMedGoogle Scholar
  63. 63.
    Pizarro-Cerda J, Meresse S, Parton RG et al (1998) Brucella abortus transits through the autophagic pathway and replicates in the endoplasmic reticulum of nonprofessional phagocytes. Infect Immun 66:5711–5724PubMedPubMedCentralGoogle Scholar
  64. 64.
    de Figueiredo P, Ficht TA, Rice-Ficht A et al (2015) Pathogenesis and immunobiology of brucellosis: review of Brucella-host interactions. Am J Pathol 185(6):1505–1517CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Lopez-Goñi I, Guzmán-Verri C, Manterola L (2002) Regulation of Brucella virulence by the two-component system BvrR/BvrS. Vet Microbiol 90:329–339CrossRefPubMedGoogle Scholar
  66. 66.
    Pei J, Turse JE, Wu Q et al (2006) Brucella abortus rough mutants induce macrophage oncosis that requires bacterial protein synthesis and direct interaction with the macrophage. Infect Immun 74:2667–2675CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Forestier C, Deleuil F, Lapaque N et al (2000) Brucella abortus lipopolysaccharide in murine peritoneal macrophages acts as a down-regulator of T cell activation. J Immunol 165:5202–5210CrossRefPubMedGoogle Scholar
  68. 68.
    Dornand J, Gross A, Lafont V et al (2002) The innate immune response against Brucella in humans. Vet Microbiol 90(1–4):383–394CrossRefPubMedGoogle Scholar
  69. 69.
    Jimenez de Bagues MP, Marin CM, Barberan M et al (1993) Evaluation of vaccines and of antigen therapy in a mouse model for Brucella ovis. Vaccine 11:61–66CrossRefPubMedGoogle Scholar
  70. 70.
    Caro-Hernandez P, Fernandez-Lago L, de Miguel MJ et al (2007) Role of the Omp25/Omp31 family in outer membrane properties and virulence of Brucella ovis. Infect Immun 75:4050–4061CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Gupta VK, Nayakwadi S, Kumar A et al (2014) Markers for the molecular diagnosis of brucellosis in animals. Adv Anim Vet Sci 2(3S):31–39CrossRefGoogle Scholar
  72. 72.
    Robertson M (1998) Innate immunity. Curr Biol 8:R595–R597CrossRefGoogle Scholar
  73. 73.
    González D, Grilló MJ, De Miguel MJ et al (2008) Brucellosis vaccines: assessment of Brucella melitensis lipopolysaccharide rough mutants defective in core and O-polysaccharide synthesis and export. PLoS One 3(7):e2760CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Rolán HG, Xavier MN, Santos RL et al (2009) Natural antibody contributes to host defense against an attenuated Brucella abortus virB mutant. Infect Immun 77:3004–3013CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Young EJ, Borchert M, Kretzer FL et al (1985) Phagocytosis and killing of Brucella by human polymorphonuclear leukocytes. J Infect Dis 151:682–690CrossRefGoogle Scholar
  76. 76.
    Kumar A, Gupta VK, Verma AK et al (2017) Assessment of hematological bio markers during vaccination and challenge of Brucella melitensis in goats. Int J Vaccines Vaccin 4(2):00078CrossRefGoogle Scholar
  77. 77.
    Nathan C, Shiloh MU (2000) Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci 97:8841–8848CrossRefGoogle Scholar
  78. 78.
    Gay B, Sanchez-Teff S, Caravano R (1984) Ultrastructural localization of NADPH oxidase activity in murine peritoneal macrophages during phagocytosis of Brucella correlation with the production of superoxide anions. Virchows Arch B Cell Pathol Incl Mol Pathol 45:147–155CrossRefGoogle Scholar
  79. 79.
    Araya LN, Elzer PH, Rowe GE et al (1989) Temporal development of protective cell-mediated and humoral immunity in BALB/c mice infected with Brucella abortus. J Immunol 143:3330–3337PubMedGoogle Scholar
  80. 80.
    Oliveira SC, Splitter A (1995) CD8+ type 1 CD44hi CD45 RBlo T lymphocytes control intracellular Brucella abortus infection as demonstrated in major histocompatibility complex class I- and class II – deficient mice. Eur J Immunol 25:2551–2557Google Scholar
  81. 81.
    Montaraz JA, Winter AJ (1986) Comparison of living and nonliving vaccines for Brucella abortus in BALB/c mice. Infect Immun 53(2):245–251PubMedPubMedCentralGoogle Scholar
  82. 82.
    Elzer PH, Jacobson RH, Nielsen KH et al (1994) BALB/c mice infected with Brucella abortus express protracted polyclonal responses of both IgG2a and IgG3 isotypes. Immunol Lett 42:145–150CrossRefPubMedGoogle Scholar
  83. 83.
    Schurig GG, Roop RM Jr, Bagchi T et al (1991) Biological properties of RB51; a stable rough strain of Brucella abortus. Vet Microbiol 28:171–188CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Immunology & Defence Mechanism, College of BiotechnologySardar Vallabhbhai Patel University of Agriculture & TechnologyMeerutIndia
  2. 2.Goat Health DivisionICAR-Central Institute for Research on Goats (CIRG)MathuraIndia
  3. 3.CADRADICAR-Indian Veterinary Research Institute (IVRI)BareillyIndia

Personalised recommendations