Oxidative Stress and Antioxidant Supplementation on Immunity in Hansen’s Disease (Leprosy)

  • Carlos Kusano Bucalen FerrariEmail author


Hanseniasis comprises one of the main causes of physical disabilities due to its potential to strike neural lesions, foot deformities, amputations, and mutilations. Since innate response is important in hanseniasis, this work reviewed and updated the role of reactive oxygen/nitrogen species in different clinical forms of hanseniasis, as well as their role in different phagocyte free radicals’ generator systems (NADPH-oxidase, mitochondrial pathways, myeloperoxidase, extracellular traps, iNOS). Since hanseniasis can induce antioxidant depletion, possible benefits of antioxidant nutritional supplementation are also discussed.


Leprosy Macrophages Neutrophils Nitric oxide Free radicals Multibacillary 


  1. 1.
    Slim FJ, Keukenkamp R, van Schie CH, Faber WR, Nollet F (2011) Foot Impairments and limitations in walking activities in people affected by leprosy. J Rehabil Med 43(1):32–38CrossRefPubMedGoogle Scholar
  2. 2.
    Nsagha DS, Bissek AZ, Nsagha SM et al (2011) Social stigma as an epidemiological determinant for leprosy elimination in Cameroon. J Public Health Afr 2(1):e10. Scholar
  3. 3.
    Faria L, Santos LAC (2015) A hanseníase e sua história no Brasil: a história de um “flagelo nacional”. Hist Cienc Saude-Manguinhos 22(4):1491–1495CrossRefGoogle Scholar
  4. 4.
    WHO (2016) Global leprosy update, 2016: accelerating reduction of disease burden. Weekly Epidemiol Rec 92(35):501–520Google Scholar
  5. 5.
    Worldometers (2018) India population. Available at: (06/03/2018)
  6. 6.
    da Saúde M (2018) Secretaria de Vigilância Sanitária. Caracterização da situação epidemiológica da hanseníase e diferenças por sexo, Brasil, 2012–2016. Bol Epidemiol 49(4):1–10Google Scholar
  7. 7.
    Santos MJS, Ferrari CKB, de Toledo OR, de Moraes EV, David FL (2012) Leprosy among children and adolescents under 15 years-old in a city of Legal Amazon, Brazil. Indian J Leprosy 84:265–269Google Scholar
  8. 8.
    Fonseca GAA, Silva TC, Ferrari GSL, Ferrari CKB (2013) Epidemiological aspects of leprosy in a city of Legal Amazon, Brazil. Int J Sci Nat 4(4):576–578Google Scholar
  9. 9.
    Wiedau-Pazos M, Goto JJ, Rabizadeh S et al (1996) Altered reactivity of superoxide dismutase in familial amyotrophic lateral sclerosis. Science 271(5248):515–518CrossRefPubMedGoogle Scholar
  10. 10.
    Sandoval M, Zhang X-J, Liu X, Mannick EE, Clark DA, Miller MJS (1997) Peroxynitrite-induced apoptosis in T84 and RAW 264 cells: attenuation by L-ascorbic acid. Free Rad Biol Med 22(3):489–495CrossRefPubMedGoogle Scholar
  11. 11.
    Ferrari CKB (2000) Free radicals, lipid peroxidation and antioxidants in apoptosis: implications in cancer, cardiovascular and neurological diseases. Biologia 55(6):581–590Google Scholar
  12. 12.
    da Silva WJM, Ferrari CKB (2011) Mitochondrial metabolism, free radicals and aging. Rev Bras Geriatr Gerontol 14(3):441–451CrossRefGoogle Scholar
  13. 13.
    Duthie GG (1993) Lipid peroxidation. Eur J Clin Nutr 47(11):759–764PubMedGoogle Scholar
  14. 14.
    Halliwell B (1994) Free radicals, antioxidants and human disease: curiosity, cause or consequence? Lancet 344(8924):721–724CrossRefGoogle Scholar
  15. 15.
    Ferrari CK, França EL, Honorio-França AC (2009) Nitric oxide, health and disease. J Appl Biomed 7:163–173CrossRefGoogle Scholar
  16. 16.
    Ferrari CKB (1998) Lipid oxidation in food and biological systems: general mechanisms and nutritional and pathological implications. Rev Nutr 11(1):3–14CrossRefGoogle Scholar
  17. 17.
    Ferrari CKB (2001) Oxidative stress pathophysiology: searching for an effective antioxidant protection. Int Med J 8(3):175–184Google Scholar
  18. 18.
    Suzuki YJ, Carini M, Butterfield DA (2010) Protein carbonylation. Antiox Redox Signal 12(3):323–325CrossRefGoogle Scholar
  19. 19.
    Rimoli LF, Godoy MF (2011) Efetividade da vitamina E sobre o estresse oxidativo, em hansenianos da forma multibacilar sob tratamento. Hansen Int 36(1):17–21Google Scholar
  20. 20.
    Schalcher TR, Borges RS, Coleman MD et al (2014) Clinical oxidative stress during leprosy multidrug therapy: impact of dapsone oxidation. PLoS One 9(1):e85712. Scholar
  21. 21.
    Babior BM, Cumutte JT, Kipnes RS (1975) Biological defense mechanisms. Evidence for the participation of superoxide in bacterial killing by xanthine oxidase. J Lab Clin Med 85(2):235–244PubMedGoogle Scholar
  22. 22.
    Babior BM (1984) The respiratory burst of phagocytes. J Clin Invest 73:599–601CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Halliwell B, Chirico S (1993) Lipid peroxidation: its mechanism, measurement, and significance. Am J Clin Nutr 57(5):S715–S725CrossRefGoogle Scholar
  24. 24.
    Kanner J (1994) Oxidative processes in meat and meat products: quality implications. Meat Sci 36(1/2):169–189CrossRefPubMedGoogle Scholar
  25. 25.
    Esterbauer H (1993) Cytotoxicity and genotoxicity of lipid-oxidation products. Am J Clin Nutr 57(5):S779–S786CrossRefGoogle Scholar
  26. 26.
    Beers RF Jr, Sizër IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–140PubMedGoogle Scholar
  27. 27.
    Lee JN, Dutta RK, Maharjan Y et al (2018) Catalase inhibition induces pexophagy through ROS accumulation. Biochem Biophys Res Commun 501(3):696–702CrossRefPubMedGoogle Scholar
  28. 28.
    Ferrari CKB, Souto PCS, França EL, Honorio-França AC (2011) Oxidative and nitrosative stress on phagocytes’ function: from effective defense to immunity evasion mechanisms. Arch Immunol Ther Exp 59(6):441–448CrossRefGoogle Scholar
  29. 29.
    von Köckritz-Blickwede M, Nizet V (2009) Innate immunity turned inside-out: antimicrobial defense by phagocyte extracellular traps. J Mol Med 87:775–783CrossRefGoogle Scholar
  30. 30.
    Ramos-Kichik V, Mondragón-Flores R, Mondragón-Castelán M (2009) Neutrophil extracellular traps are induced by Mycobacterium tuberculosis. Tuberculosis 89:29–37CrossRefGoogle Scholar
  31. 31.
    Palmer RMJ, Ashton DS, Moncada S (1988) Vascular endothelial cells synthesize nitric oxide from arginine. Nature 333:664–666CrossRefPubMedGoogle Scholar
  32. 32.
    Ahmad R, Rasheed Z, Ahsan H (2009) Biochemical and cellular toxicology of peroxynitrite: implications in cell death and autoimmune phenomenon. Immunopharmacol Immunotoxicol 31(3):388–396CrossRefPubMedGoogle Scholar
  33. 33.
    Khan MA, Alam K, Zafaryab M, Rizvi MA (2017) Peroxynitrite-modified histone as a pathophysiological biomarker in autoimmune diseases. Biochimie 140:1–9CrossRefPubMedGoogle Scholar
  34. 34.
    Visca P, Fabozzi G, Milani M, Bolognesi M, Ascenzi P (2002) Nitric oxide and Mycobacterium leprae pathogenicity. IUBMB Life 54(3):95–99CrossRefPubMedGoogle Scholar
  35. 35.
    Boga P, Shety VP, Khan Y (2001) Nitric oxide metabolites in sera of patients across the spectrum of leprosy. Indian J Lepr 82(3):123–129Google Scholar
  36. 36.
    Adams LB, Scollard DM, Ray NA et al (2002) The study of Mycobacterium leprae infection in interferon-gamma gene-disrupted mice as a model to explore the immunopathologic spectrum of leprosy. J Infect Dis 185(Suppl.1):S1–S8CrossRefPubMedGoogle Scholar
  37. 37.
    Adams LB, Job CK, Krahenbuhl JL (2000) Role of inducible nitric oxide synthase in resistance to Mycobacterium leprae in mice. Infect Immun 68(9):5462–5465CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Vladimirov YA, Proskurnina EV (2009) Free radicals and cell chemiluminescence. Biochemistry 74:1545–1566PubMedGoogle Scholar
  39. 39.
    Nauseef WM (2014) Myeloperoxidase in human neutrophil host defense. Cell Microbiol 16(8):1146–1155CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Nappi AJ, Vass E (2002) Interactions of iron with reactive intermediates of oxygen and nitrogen. Dev Neurosci 24:134–142CrossRefPubMedGoogle Scholar
  41. 41.
    Schürmann N, Forrer P, Casse O et al (2017) Myeloperoxidase targets oxidative host attacks to Salmonella and prevents collateral tissue damage. Nature Microbiol 2:16268CrossRefGoogle Scholar
  42. 42.
    Klebanoff SJ (2005) (2005) Myeloperoxidase: friend and foe. J Leukoc Biol 77:598–625CrossRefPubMedGoogle Scholar
  43. 43.
    Segal AW (2005) How neutrophils kill microbes. Annu Rev Immunol 23:197–223CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Brovkovych V, Gao X-P, Ong E et al (2008) Augmented inducible nitric oxide synthase expression and increased NO production reduce sepsis-induced lung injury and mortality in myeloperoxidase-null mice. Am J Physiol Lung Cell Mol Physiol 295:L96–L103CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Maslov AK (2000) Phagocytic myeloperoxidase in leprosy pathogenesis. Int J Lepr Other Mycobact Dis 68(1):71–73PubMedGoogle Scholar
  46. 46.
    Maslov AK, Luzhnova AS (2000) Effects of peroxidase therapy on functional state of the liver and phagocytes and blood cell counts in mice with experimental leprosy. Bull Exp Biol Med 130(1):682–686CrossRefPubMedGoogle Scholar
  47. 47.
    Escorza MAQ, Salinas JVC (2009) La capacidad antioxidante total. Bases y aplicaciones REB 28:89–101Google Scholar
  48. 48.
    França-Botelho AC, França EL, Honório-França AC et al (2006) (2006) Phagocytosis of Giardia lamblia trophozoites by human colostral leukocytes. Acta Paediatr 95:438–443CrossRefPubMedGoogle Scholar
  49. 49.
    Hii CS (2007) Ferrante A (2007) Regulation of the NADPH oxidase activity and anti-microbial function of neutrophils by arachidonic acid. Arch Immunol Ther Exp 55:99–110CrossRefGoogle Scholar
  50. 50.
    Gozalo AS, Hofmann VJ, Brinster LR et al (2010) Spontaneous Staphylococcus xylosus infection in mice deficient in NADPH oxidase and comparison with other laboratory mouse strains. J Am Assoc Lab Anim Sci 49:480–486PubMedPubMedCentralGoogle Scholar
  51. 51.
    Holland SM (2010) (2010) Chronic granulomatous disease. Clin Rev Allerg Immunol 38:3–10CrossRefGoogle Scholar
  52. 52.
    Rojas-Espinosa (2009) Chapter 4: Murine leprosy revisited. In: Tomioka H (ed) Current topics on the profiles of host immunological response to Mycobacterial infections. Kerala, India, Research SignPost, pp 97–140Google Scholar
  53. 53.
    Chieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24(10):R453–R462CrossRefGoogle Scholar
  54. 54.
    Yang Y, Bazhin AV, Werner J, Karakhanova S (2013) Reactive oxygen species in the immune system. Int Rev Immunol 32(3):249–270CrossRefPubMedGoogle Scholar
  55. 55.
    Dupnik KM, Bair TB, Maia AO et al (2015) Transcriptional changes that characterize the immune reactions of leprosy. J Infect Dis 211:1658–1676CrossRefPubMedGoogle Scholar
  56. 56.
    Guerreiro LT, Robottom-Ferreira AB, Ribeiro-Alves M et al (2013) Gene expression profiling specifies chemokine, mitochondrial and lipid metabolism signatures in leprosy. PLoS One 8(6):e64748. Scholar
  57. 57.
    Ramos GB, Salomão H, Francio AS, Fava VM, Werneck RI, Mira MT (2016) Association analysis suggests SOD2 as a newly Identified candidate gene associated with leprosy susceptibility. J Infect Dis 214(3):475–478CrossRefPubMedGoogle Scholar
  58. 58.
    Lastória JC, de Abreu MAMM (2014) Leprosy: review of the epidemiological, clinical and etiopathogenetic aspects- part 1. An Bras Dermatol 89(2):205–218CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Launois P, Blum L, Dieye A, Milan J, Sarthou JL, Bach MA (1989) Phenolic glycolipid-1 from M. leprae inhibits oxygen free radical production by human mononuclear cells. Res Immunol 140(9):847–855CrossRefPubMedGoogle Scholar
  60. 60.
    Vachula M, Holzer TJ, Andersen BR (1989) Suppression of monocyte oxidative response by phenolic glycolipid I of Mycobacterium leprae. J Immunol 142(5):1696–1701PubMedGoogle Scholar
  61. 61.
    Cambier CJ, O’Leary SM, O’Sullivan MP, Keane J, Ramakrishnan L (2017) Phenolic glycolipid facilitates mycobacterial escape from microbicidal tissue-resident macrophages. Immunity 47:552–565CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Madigan CA, Cambier CJ, Kelly-Scumpia KM, Sagasti A, Modin RL, Ramakrishnan L (2017) Phenolic glycolipid initiates nerve damage in leprosy. Cell 170:973–985CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Mattos KA, Sarno EN, Pessolani MCV, Bozza PT (2012) Deciphering the contribution of lipid droplets in leprosy: multifunctional organelles with roles in Mycobacterium leprae pathogenesis. Mem Inst Oswaldo Cruz 107(suppl.1):156–166CrossRefPubMedGoogle Scholar
  64. 64.
    WHO (1994) Chemotherapy of leprosy. Technical report series 847. World Health Organization, GenevaGoogle Scholar
  65. 65.
    Jyothi P, Riyaz N, Nandakumar G, Binitha MP (2008) A study of oxidative stress in paucibacillary and multibacillary leprosy. Indian J Dermatol Venereol Leprol 74(1):80CrossRefPubMedGoogle Scholar
  66. 66.
    Bhadwat VR, Borade VB (2000) Increased lipid peroxidation in lepromatous leprosy. Indian J Dermatol Venereol Leprol 66(3):121–125PubMedGoogle Scholar
  67. 67.
    Reddy YN, Murthy SV, Krishna DR, Prabhakar MC (2003) Oxidative stress and anti-oxidant status in leprosy patients. Indian J Lepr 75(4):307–316PubMedGoogle Scholar
  68. 68.
    Vijayaraghavan R, Suribabu CS, Sekar B et al (2005) Protective role of vitamin E on the oxidative stress in Hansen’s disease (leprosy) patients. Eur J Clin Nutr 59(10):1121–1128CrossRefPubMedGoogle Scholar
  69. 69.
    Chhabra N, Bhattacharya SN, Singal A, Ahmed RS, Verma P (2015) Profile of oxidative stress in response to treatment for type 1 reaction. Lepr Ver 86:80–88Google Scholar
  70. 70.
    Schalcher TR, Borges RS, Coleman MD et al (2014) Clinical oxidative stress during leprosy multidrug therapy: impact of dapsone oxidation. PLoS One 9(1):e85712. Scholar
  71. 71.
    Prasad CV, Kodiwadmath MV, Kodiwadmath GB (2007) Erythrocyte superoxide dismutase, catalase activities and hydrogen peroxide induced lipid peroxidation in leprosy. Lepr Rev 78(4):391–397PubMedGoogle Scholar
  72. 72.
    Prasad CV, Kodiwadmath MV, Kodiwadmath GB (2008) Erythrocyte glutathione peroxidase, glutathione reductase activities and blood glutathione content in leprosy. J Infect 56(6):469–473CrossRefPubMedGoogle Scholar
  73. 73.
    Abdel-Hafez HZ, Mohamed E-EM, Abd-Elghany AA (2010) Tissue and blood superoxide dismutase activity and malondialdehyde level in leprosy. J Eur Acad Dermatol Venereol 24(6):704–708CrossRefPubMedGoogle Scholar
  74. 74.
    Patni V, Baliga S, Sawal S (2015) Saliva as a diagnostic tool for measurement of total antioxidant capacity in children with leprosy and Born to leprosy parent. Indian J Lepr 87(1):17–21PubMedGoogle Scholar
  75. 75.
    Lima ES, Roland IA, Maroja MF, Marcon JL (2007) Vitamin A and lipid peroxidation in patients with different forms of leprosy. Rev Inst Med Trop S. Paulo 49(4):211–214Google Scholar
  76. 76.
    Osadolor HB, Ihongbe JC (2008) Effect of leprosy on non-enzymatic antioxidants (vitamin C, vitamin E and uric acid) in (Edo State) Nigerian leprosy patients. Cont J Biomed Sci 2:1–5Google Scholar
  77. 77.
    Asalkar A, Girish S, Naoley R (2011) Protein oxidation and antioxidant vitamins in leprosy. Int J Pharm Sci Res 2(11):2870–2873Google Scholar
  78. 78.
    Prabhakar MC, Santhikrupa D, Manasa N, Rao OU (2013) Status of free radicals and antioxidants in leprosy patients. Indian J Lepr 85(1):5–9PubMedGoogle Scholar
  79. 79.
    Swathi M, Tagore R (2015) Study of oxidative stress in different forms of leprosy. Indian J Dermatol 60(3):321CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Benzie IFF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “Antioxidant Power”: the FRAP assay. Anal Biochem 239:70–76CrossRefGoogle Scholar
  81. 81.
    Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Rad Biol Med 26(9/10):1231–1237CrossRefPubMedGoogle Scholar
  82. 82.
    Bowman GL, Shannon J, Frei B, Kaye JA, Quinn JF (2010) Uric acid as a CNS antioxidant. J Alzheim Dis 19(4):1331–1336CrossRefGoogle Scholar
  83. 83.
    El Ridi R, Tallima H (2017) Physiological functions and pathogenic potential of uric acid: a review. J Adv Res 8:487–493CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Waring WS, Webb DJ, Maxwell SRJ (2001) Systemic uric acid administration increases serum antioxidant capacity in healthy volunteers. J Cardiovasc Pharmacol 38:365–371CrossRefPubMedGoogle Scholar
  85. 85.
    Barsoum R, El-Khatib M (2017) Uric acid and life on earth. J Adv Res 8:471–474CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Sautin YY, Nakagawa T, Zharikov S, Johnson RJ (2007) Adverse effects of the classic antioxidant uric acid in adipocytes: NADPH oxidase-mediated oxidative/nitrosative stress. Am J Physiol Cell Physiol 293(2):C584–C596CrossRefPubMedGoogle Scholar
  87. 87.
    Sautin YY, Johnson RJ (2008) Uric acid: the oxidant-antioxidant paradox. Nucleos Nucleot Nucleic Acid 27(6):608–619CrossRefGoogle Scholar
  88. 88.
    Morato-Conceiçao YT, Alves-junior ER, Arruda TA, Lopes JC, Fontes CJF (2016) Serum uric acid levels during leprosy reaction episodes. Peer J 4:4e1799. Scholar
  89. 89.
    Schalcher TR, Vieira JLF, Salgado CG, Borges RS, Monteiro MC (2013) Antioxidant factors, nitric oxide levels, and cellular damage in leprosy patients. Rev Soc Bras Med Trop 46(5):645–649CrossRefPubMedGoogle Scholar
  90. 90.
    Raka I, Rastogi MK, Gahalaut P, Kaur J, Mishra N (2018) Enzymatic oxidative stress indicators and oxidative stress índex in patients of leprosy. Nepal J Dermatol Venereol Leprol 16(1):35–40CrossRefGoogle Scholar
  91. 91.
    Elesawy FM, Mikhael NW, Sabry JH (2015) Serum nitric oxide metabolites in leprosy patients as a parameter of prognostic value. J Egypt Women Dermatol Soc 12:44–48CrossRefGoogle Scholar
  92. 92.
    Abd-Elmaged WM, Hassan MH, Mostafa MA, Ahmed NS, Samy ES (2017) Lesional levels of superoxide dismutase and malondialdehyde in paucibacillary and multibacillary leprosy patients. J Egypt Women Dermatol Soc 14:156–160CrossRefGoogle Scholar
  93. 93.
    Pradhan T, Kumari S (2015) Evaluation of oxidative status and zinc level in leprosy patients after zinc supplementation. Int J Biol Med Res 6(2):4984–4987Google Scholar
  94. 94.
    Oliveira FM, Barbosa Junior F, Jordão Junior AA, Foss NT, Navarro AM, Frade MAC (2015) Oxidative stress and micronutrients in leprosy. Rev Nutr 28(4):349–357CrossRefGoogle Scholar
  95. 95.
    Partogi D, Dalimunthe DA, Hazlianda CP (2018) A study of Selenium in leprosy. Macedonian J Med Sci 6(3):485–487CrossRefGoogle Scholar
  96. 96.
    Vázquez CMP, Mendes Netto RS, Barbosa KBF et al (2014) Micronutrients influencing the immune response in leprosy. Nutr Hosp 29(1):26–36Google Scholar
  97. 97.
    Ferrari CKB (2005) Minerals. From basic aspects to newly discovered physiological and nutritional actions. Evid Based Integrat Med 2(3):123–131CrossRefGoogle Scholar
  98. 98.
    Rayman MP (2012) Selenium and human health. Lancet 379(9822):1256–1268CrossRefPubMedGoogle Scholar
  99. 99.
    Ferrari CKB (2014) Nutrição, saúde e longevidade baseadas em evidências científicas. Plêiade 8(15):26–36Google Scholar
  100. 100.
    Arias ARL, Santos VG (2008) Metalotioneína: processos celulares e moleculares. Cad Saúde Col 16(4):701–716Google Scholar
  101. 101.
    Jarosz M, Olbert M, Wyszogrodzka G, Mlyniec K, Librowski T (2017) Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-ĸB signaling. Inflammopharmacology 25(1):11–24CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Wessels I, Maywald M, Rink L (2017) Zinc as a gatekeeper of immune function. Nutrients 9(12):1286. Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Instituto de Ciências Biológicas e da Saúde (ICBS), Campus Universitário do AraguaiaUniversidade Federal de Mato Grosso (UFMT)Barra do GarçasBrazil

Personalised recommendations