Advertisement

Functional Genomics and Systems Biology Approach for Understanding Agroecosystems

  • Birendra Singh Yadav
  • Ashutosh ManiEmail author
Chapter

Abstract

Plant metabolism is affected by several biotic and abiotic factors of our environment that leads to low yield in crops. The integrative approach of functional genomics and systems biology is one of the most promising tools for understanding the agroecosystems. In this chapter, we will discuss the role of functional genomics to study the effect of stress on plants. Various approaches and tools of systems biology will be also discussed to understand the alteration in biological networks, i.e., gene regulatory, protein-protein and metabolic networks, etc. Different tools available for studying the agroecosystems using omics and systems biology have been explored here in detail.

References

  1. Aghaei K, Komatsu S (2013) Crop and medicinal plants proteomics in response to salt stress. Front Plant Sci 4.  https://doi.org/10.3389/fpls.2013.00008
  2. Aguan K, Carvajal JA, Thompson LP, Weiner CP (2000) Application of a functional genomics approach to identify differentially expressed genes in human myometrium during pregnancy and labour. Mol Hum Reprod 6:1141–1145CrossRefGoogle Scholar
  3. Alam I, Lee DG, Kim KH et al (2010a) Proteome analysis of soybean roots under waterlogging stress at an early vegetative stage. J Biosci 35:49–62.  https://doi.org/10.1007/s12038-010-0007-5CrossRefPubMedGoogle Scholar
  4. Alam I, Sharmin SA, Kim KH et al (2010b) Proteome analysis of soybean roots subjected to short-term drought stress. Plant Soil 333:491–505.  https://doi.org/10.1007/s11104-010-0365-7CrossRefGoogle Scholar
  5. Babu MM, Luscombe NM, Aravind L et al (2004) Structure and evolution of transcriptional regulatory networks. Curr Opin Struct Biol 14:283–291CrossRefGoogle Scholar
  6. Bailey NJC, Oven M, Holmes E et al (2003) Metabolomic analysis of the consequences of cadmium exposure in Silene cucubalus cell cultures via 1H NMR spectroscopy and chemometrics. Phytochemistry 62:851–858.  https://doi.org/10.1016/S0031-9422(02)00719-7CrossRefPubMedGoogle Scholar
  7. Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21:381–395.  https://doi.org/10.1038/cr.2011.22CrossRefPubMedPubMedCentralGoogle Scholar
  8. Barabási AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–113CrossRefGoogle Scholar
  9. Baxter CJ, Redestig H, Schauer N et al (2006) The metabolic response of heterotrophic Arabidopsis cells to oxidative stress. Plant Physiol 143:312–325.  https://doi.org/10.1104/pp.106.090431CrossRefPubMedGoogle Scholar
  10. Bebber DP, Ramotowski MAT, Gurr SJ (2013) Crop pests and pathogens move polewards in a warming world. Nat Clim Chang 3:985–988.  https://doi.org/10.1038/nclimate1990CrossRefGoogle Scholar
  11. Ben-Amar A, Daldoul S, Reustle GM et al (2016) Reverse genetics and high throughput sequencing methodologies for plant functional genomics. Curr Genomics 17:460–475.  https://doi.org/10.2174/1389202917666160520102827CrossRefPubMedPubMedCentralGoogle Scholar
  12. Boone C, Bussey H, Andrews BJ (2007) Exploring genetic interactions and networks with yeast. Nat Rev Genet 8:437–449CrossRefGoogle Scholar
  13. Bosi E, Donati B, Galardini M et al (2015) MeDuSa: a multi-draft based scaffolder. Bioinformatics 31:2443–2451.  https://doi.org/10.1093/bioinformatics/btv171CrossRefPubMedGoogle Scholar
  14. Bovik A (2005) Handbook of image and video processingGoogle Scholar
  15. Bunnik EM, Le Roch KG (2013) An introduction to functional genomics and systems biology. Adv Wound Care 2:490–498.  https://doi.org/10.1089/wound.2012.0379CrossRefGoogle Scholar
  16. Caruso G, Cavaliere C, Guarino C et al (2008) Identification of changes in Triticum durum L. leaf proteome in response to salt stress by two-dimensional electrophoresis and MALDI-TOF mass spectrometry. Anal Bioanal Chem 391:381–390.  https://doi.org/10.1007/s00216-008-2008-xCrossRefPubMedGoogle Scholar
  17. Caspi R (2006) MetaCyc: a multiorganism database of metabolic pathways and enzymes. Nucleic Acids Res 34:D511–D516.  https://doi.org/10.1093/nar/gkj128CrossRefPubMedGoogle Scholar
  18. Cramer GR, Ergül A, Grimplet J et al (2007) Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Funct Integr Genomics 7:111–134.  https://doi.org/10.1007/s10142-006-0039-yCrossRefPubMedGoogle Scholar
  19. Cramer GR, Van Sluyter SC, Hopper DW et al (2013) Proteomic analysis indicates massive changes in metabolism prior to the inhibition of growth and photosynthesis of grapevine (Vitis vinifera L.) in response to water deficit. BMC Plant Biol 13.  https://doi.org/10.1186/1471-2229-13-49
  20. D’Alessandro A, Taamalli M, Gevi F et al (2013) Cadmium stress responses in Brassica juncea: hints from proteomics and metabolomics. J Proteome Res 12:4979–4997.  https://doi.org/10.1021/pr400793eCrossRefPubMedGoogle Scholar
  21. de Folter S (2005) Comprehensive interaction map of the Arabidopsis MADS box transcription factors. Plant Cell Online 17:1424–1433.  https://doi.org/10.1105/tpc.105.031831CrossRefGoogle Scholar
  22. Dhondt S, Wuyts N, Inzé D (2013) Cell to whole-plant phenotyping: the best is yet to come. Trends Plant Sci 18:1360–1385CrossRefGoogle Scholar
  23. Dubey S, Misra P, Dwivedi S et al (2010) Transcriptomic and metabolomic shifts in rice roots in response to Cr (VI) stress. BMC Genomics 11.  https://doi.org/10.1186/1471-2164-11-648
  24. Fiehn O (2002) Metabolomics – the link between genotypes and phenotypes. Plant Mol Biol 48:155–171.  https://doi.org/10.1023/A:1013713905833CrossRefPubMedGoogle Scholar
  25. Franz M, Rodriguez H, Lopes C et al (2018) GeneMANIA update 2018. Nucleic Acids Res 46:W60–W64.  https://doi.org/10.1093/nar/gky311CrossRefPubMedPubMedCentralGoogle Scholar
  26. Fu S-F, Chen P-Y, Nguyen QTT et al (2014) Transcriptome profiling of genes and pathways associated with arsenic toxicity and tolerance in Arabidopsis. BMC Plant Biol 14:94.  https://doi.org/10.1186/1471-2229-14-94CrossRefPubMedPubMedCentralGoogle Scholar
  27. Funahashi A, Matsuoka Y, Jouraku A, et al (2006) Celldesigner: a modeling tool for biochemical networks. In: Proceedings – Winter Simulation Conference. pp 1707–1712Google Scholar
  28. Furbank RT, Tester M (2011) Phenomics - technologies to relieve the phenotyping bottleneck. Trends Plant Sci 16:635–644CrossRefGoogle Scholar
  29. Gans C (2005) Checklist and bibliography of the amphisbaenia of the world. Bull Am Museum Nat Hist 289:1.  https://doi.org/10.1206/0003-0090(2005)289<0001:CABOTA>2.0.CO;2CrossRefGoogle Scholar
  30. Gasperskaja E, Kučinskas V (2017) The most common technologies and tools for functional genome analysis. Acta medica Litu 24:1–11.  https://doi.org/10.6001/actamedica.v24i1.3457CrossRefGoogle Scholar
  31. Geisler-Lee J, O’Toole N, Ammar R et al (2007) A predicted Interactome for Arabidopsis. Plant Physiol 145:317–329.  https://doi.org/10.1104/pp.107.103465CrossRefPubMedPubMedCentralGoogle Scholar
  32. Ghatak A (2017) Machine learning with R. Springer, SingaporeCrossRefGoogle Scholar
  33. Ghosh D, Xu J (2014) Abiotic stress responses in plant roots: a proteomics perspective. Front Plant Sci 5.  https://doi.org/10.3389/fpls.2014.00006
  34. Gibson G, Muse SV (2009) Primer of genome science. Sinauer Associates, SunderlandGoogle Scholar
  35. Gong F, Hu X, Wang W (2015) Proteomic analysis of crop plants under abiotic stress conditions: where to focus our research? Front Plant Sci 6.  https://doi.org/10.3389/fpls.2015.00418
  36. Goossens A (2003) Secretion of secondary metabolites by ATP-binding cassette transporters in plant cell suspension cultures. Plant Physiol 131:1161–1164.  https://doi.org/10.1104/pp.102.016329CrossRefPubMedPubMedCentralGoogle Scholar
  37. Großkinsky DK, Svensgaard J, Christensen S, Roitsch T (2015) Plant phenomics and the need for physiological phenotyping across scales to narrow the genotype-to-phenotype knowledge gap. J Exp Bot 66:5429–5440CrossRefGoogle Scholar
  38. Halket JM, Waterman D, Przyborowska AM, et al (2005) Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS. In: J Exp Botany 56(410). pp 219–243Google Scholar
  39. Hamuda E, Glavin M, Jones E (2016) A survey of image processing techniques for plant extraction and segmentation in the field. Comput Electron Agric 125:184–199CrossRefGoogle Scholar
  40. Hashimshony T, Wagner F, Sher N, Yanai I (2012) CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. Cell Rep 2:666–673.  https://doi.org/10.1016/j.celrep.2012.08.003CrossRefPubMedGoogle Scholar
  41. Herbette S, Taconnat L, Hugouvieux V et al (2006) Genome-wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots. Biochimie 88:1751–1765.  https://doi.org/10.1016/j.biochi.2006.04.018CrossRefPubMedGoogle Scholar
  42. Hossain Z, Nouri MZ, Komatsu S (2012) Plant cell organelle proteomics in response to abiotic stress. J Proteome Res 11:37–48CrossRefGoogle Scholar
  43. Huang T-L, Nguyen QTT, Fu S-F et al (2012) Transcriptomic changes and signalling pathways induced by arsenic stress in rice roots. Plant Mol Biol 80:587–608.  https://doi.org/10.1007/s11103-012-9969-zCrossRefPubMedGoogle Scholar
  44. Joyce AR, Palsson BØ (2006) The model organism as a system: integrating “omics” data sets. Nat Rev Mol Cell Biol 7:198–210CrossRefGoogle Scholar
  45. Kanehisa M, Furumichi M, Tanabe M et al (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45:D353–D361.  https://doi.org/10.1093/nar/gkw1092CrossRefPubMedGoogle Scholar
  46. Kell DB (2002) Genotype - phenotype mapping: genes as computer programs. Trends Genet 18:555–559CrossRefGoogle Scholar
  47. Kintlová M, Blavet N, Cegan R, Hobza R (2017) Transcriptome of barley under three different heavy metal stress reaction. Genomics Data 13:15–17.  https://doi.org/10.1016/j.gdata.2017.05.016CrossRefPubMedPubMedCentralGoogle Scholar
  48. Klose R, Penlington J, Ruckelshausen A (2011) Usability of 3D time-of-flight cameras for automatic plant phenotyping. Bornimer Agrartech Berichte 69:93–105.  https://doi.org/10.1103/PhysRevC.92.024618CrossRefGoogle Scholar
  49. Komatsu S, Yamada E, Furukawa K (2009) Cold stress changes the concanavalin A-positive glycosylation pattern of proteins expressed in the basal parts of rice leaf sheaths. Amino Acids 36:115–123.  https://doi.org/10.1007/s00726-008-0039-4CrossRefPubMedGoogle Scholar
  50. Komatsu S, Sugimoto T, Hoshino T et al (2010) Identification of flooding stress responsible cascades in root and hypocotyl of soybean using proteome analysis. Amino Acids 38:729–738.  https://doi.org/10.1007/s00726-009-0277-0CrossRefPubMedGoogle Scholar
  51. Komatsu S, Makino T, Yasue H (2013a) Proteomic and biochemical analyses of the cotyledon and root of flooding-stressed soybean plants. PLoS One 8(6).  https://doi.org/10.1371/journal.pone.0065301
  52. Komatsu S, Nanjo Y, Nishimura M (2013b) Proteomic analysis of the flooding tolerance mechanism in mutant soybean. J Proteome 79:231–250.  https://doi.org/10.1016/j.jprot.2012.12.023CrossRefGoogle Scholar
  53. Komatsu S, Nakamura T, Sugimoto Y, Sakamoto K (2014) Proteomic and Metabolomic analyses of soybean root tips under flooding stress. Protein Pept Lett 21:865–884.  https://doi.org/10.2174/0929866521666140320110521CrossRefPubMedGoogle Scholar
  54. Kumar Yadav R, Srivastava SK (2015) Effect of Arsenite and arsenate on lipid peroxidation, Enzymatic and Non-Enzymatic Antioxidants in Zea mays Linn Biochem Physiol Open Access 4:.  https://doi.org/10.4172/2168-9652.1000186
  55. Kumar D, Chapagai D, Dean P, Davenport M (2015) Biotic and abiotic stress signaling mediated by salicylic acid. In: Elucidation of abiotic stress signaling in plants: functional genomics perspectives. pp 329–346Google Scholar
  56. Lafuente A, Pérez-Palacios P, Doukkali B et al (2015) Unraveling the effect of arsenic on the model Medicago-Ensifer interaction: a transcriptomic meta-analysis. New Phytol 205:255–272.  https://doi.org/10.1111/nph.13009CrossRefPubMedGoogle Scholar
  57. Lange BM, Ghassemian M (2005) Comprehensive post-genomic data analysis approaches integrating biochemical pathway maps. Phytochemistry 66:413–451CrossRefGoogle Scholar
  58. Le Lay P, Isaure MP, Sarry JE et al (2006) Metabolomic, proteomic and biophysical analyses of Arabidopsis thaliana cells exposed to a caesium stress. Influence Potassium Supply Biochimie 88:1533–1547.  https://doi.org/10.1016/j.biochi.2006.03.013CrossRefPubMedGoogle Scholar
  59. Lenco M (1982) Remote sensing and natural resources. Nat Resour 18:2–9Google Scholar
  60. Li S, Assmann SM, Albert R (2006) Predicting essential components of signal transduction networks: a dynamic model of guard cell abscisic acid signaling. PLoS Biol 4:1732–1748.  https://doi.org/10.1371/journal.pbio.0040312CrossRefGoogle Scholar
  61. Long TA, Brady SM, Benfey PN (2008) Systems approaches to identifying gene regulatory networks in plants. Annu Rev Cell Dev Biol 24:81–103.  https://doi.org/10.1146/annurev.cellbio.24.110707.175408CrossRefPubMedPubMedCentralGoogle Scholar
  62. Lowe R, Shirley N, Bleackley M et al (2017) Transcriptomics technologies. PLoS Comput Biol 13.  https://doi.org/10.1371/journal.pcbi.1005457
  63. Marioni JC, Mason CE, Mane SM et al (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 18:1509–1517.  https://doi.org/10.1101/gr.079558.108CrossRefPubMedPubMedCentralGoogle Scholar
  64. McLaughlin MJ, Zarcinas BA, Stevens DP, Cook N (2000) Soil testing for heavy metals. Commun Soil Sci Plant Anal 31:1661–1700.  https://doi.org/10.1080/00103620009370531CrossRefGoogle Scholar
  65. Meng Y, Shao C, Wang H, Chen M (2011) The regulatory activities of plant MicroRNAs: a more dynamic perspective. Plant Physiol 157:1583–1595.  https://doi.org/10.1104/pp.111.187088CrossRefPubMedPubMedCentralGoogle Scholar
  66. Mirzaei M, Soltani N, Sarhadi E et al (2012) Shotgun proteomic analysis of long-distance drought signaling in rice roots. J Proteome Res 11:348–358.  https://doi.org/10.1021/pr2008779CrossRefPubMedGoogle Scholar
  67. Mohammadi PP, Moieni A, Hiraga S, Komatsu S (2012) Organ-specific proteomic analysis of drought-stressed soybean seedlings. J Proteome 75:1906–1923.  https://doi.org/10.1016/j.jprot.2011.12.041CrossRefGoogle Scholar
  68. Mushegian AA (2017) Stress signals in plants. Sci Signal 10Google Scholar
  69. Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149:88–95.  https://doi.org/10.1104/pp.108.129791CrossRefPubMedPubMedCentralGoogle Scholar
  70. Nam MH, Huh SM, Kim KM et al (2012) Comparative proteomic analysis of early salt stress-responsive proteins in roots of SnRK2 transgenic rice. Proteome Sci 10.  https://doi.org/10.1186/1477-5956-10-25
  71. Oono Y, Yazawa T, Kanamori H et al (2016) Genome-wide transcriptome analysis of cadmium stress in rice. Biomed Res Int 2016.  https://doi.org/10.1155/2016/9739505
  72. Ozsolak F, Milos PM (2011) RNA sequencing: advances, challenges and opportunities. Nat Rev Genet 12:87–98.  https://doi.org/10.1038/nrg2934CrossRefPubMedGoogle Scholar
  73. Padhi J, Misra RK, Payero JO (2012) Estimation of soil water deficit in an irrigated cotton field with infrared thermography. F Crop Res 126:45–55.  https://doi.org/10.1016/j.fcr.2011.09.015CrossRefGoogle Scholar
  74. Paley SM, Karp PD (2006) The pathway tools cellular overview diagram and Omics viewer. Nucleic Acids Res 34:3771–3778.  https://doi.org/10.1093/nar/gkl334CrossRefPubMedPubMedCentralGoogle Scholar
  75. Pandey A, Sharma M, Pandey GK (2015) Small and large G proteins in biotic and abiotic stress responses in plants. In: Elucidation of abiotic stress signaling in plants: functional genomics perspectives. pp 231–270Google Scholar
  76. Pandey GK, Pandey A, Prasad M, Böhmer M (2016) Editorial: abiotic stress signaling in plants: functional genomic intervention. Front Plant Sci 7.  https://doi.org/10.3389/fpls.2016.00681
  77. Paulose B, Kandasamy S, Dhankher OP (2010) Expression profiling of Crambe abyssinica under arsenate stress identifies genes and gene networks involved in arsenic metabolism and detoxification. BMC Plant Biol 10.  https://doi.org/10.1186/1471-2229-10-108
  78. Pérez-Clemente RM, Vives V, Zandalinas SI et al (2013) Biotechnological approaches to study plant responses to stress. Biomed Res Int 2013Google Scholar
  79. Piétu G, Mariage-Samson R, Fayein NA et al (1999) The genexpress IMAGE knowledge base of the human brain transcriptome: a prototype integrated resource for functional and computational genomics. Genome Res 9:195–209.  https://doi.org/10.1101/gr.9.2.195CrossRefPubMedPubMedCentralGoogle Scholar
  80. Pires ND, Yi K, Breuninger H et al (2013) Recruitment and remodeling of an ancient gene regulatory network during land plant evolution. Proc Natl Acad Sci 110:9571–9576.  https://doi.org/10.1073/pnas.1305457110CrossRefPubMedGoogle Scholar
  81. Ptaszek M (2013) Progress in molecular biology and translational science. In: Progress in molecular biology and translational science. pp 59–108Google Scholar
  82. Ramegowda V, Senthil-Kumar M (2015) The interactive effects of simultaneous biotic and abiotic stresses on plants: mechanistic understanding from drought and pathogen combination. J Plant Physiol 176:47–54CrossRefGoogle Scholar
  83. Rao VS, Srinivas K, Sujini GN, Kumar GNS (2014) Protein-protein interaction detection: methods and analysis. Int J Proteomics 2014:1–12.  https://doi.org/10.1155/2014/147648CrossRefGoogle Scholar
  84. Rizhsky L (2004) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134:1683–1696.  https://doi.org/10.1104/pp.103.033431CrossRefPubMedPubMedCentralGoogle Scholar
  85. Rollins JA, Habte E, Templer SE et al (2013) Leaf proteome alterations in the context of physiological and morphological responses to drought and heat stress in barley (Hordeum vulgare L.). J Exp Bot 64:3201–3212.  https://doi.org/10.1093/jxb/ert158CrossRefPubMedPubMedCentralGoogle Scholar
  86. Saito K, Matsuda F (2010) Metabolomics for functional genomics, systems biology, and biotechnology. Annu Rev Plant Biol 61:463–489.  https://doi.org/10.1146/annurev.arplant.043008.092035CrossRefPubMedGoogle Scholar
  87. Scheible W-R (2004) Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiol 136:2483–2499.  https://doi.org/10.1104/pp.104.047019CrossRefPubMedPubMedCentralGoogle Scholar
  88. Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470.  https://doi.org/10.1126/science.270.5235.467CrossRefPubMedPubMedCentralGoogle Scholar
  89. Schuster SC (2007) Next-generation sequencing transforms today’s biology. Nat Methods 5:16–18.  https://doi.org/10.1038/nmeth1156CrossRefPubMedGoogle Scholar
  90. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski BIT (2003) Cytoscape: an open source platform for complex network analysis and visualization. Genome Res. http://www.cytoscape.org/
  91. Shendure J, Aiden EL (2012) The expanding scope of DNA sequencing. Nat Biotechnol 30:1084–1094.  https://doi.org/10.1038/nbt.2421CrossRefPubMedPubMedCentralGoogle Scholar
  92. Shulaev V (2006) Metabolomics technology and bioinformatics. Brief Bioinform 7:128–139CrossRefGoogle Scholar
  93. Singh V, Misra AK (2017) Detection of plant leaf diseases using image segmentation and soft computing techniques. Inf Process Agric 4:41–49.  https://doi.org/10.1016/j.inpa.2016.10.005CrossRefGoogle Scholar
  94. Singh A, Ganapathysubramanian B, Singh AK, Sarkar S (2016) Machine learning for high-throughput stress phenotyping in plants. Trends Plant Sci 21:110–124CrossRefGoogle Scholar
  95. Stefano GB (2014) Comparing Bioinformatic gene expression profiling methods: microarray and RNA-Seq. Med Sci Monit Basic Res 20:138–142.  https://doi.org/10.12659/MSMBR.892101CrossRefPubMedPubMedCentralGoogle Scholar
  96. Su YH, McGrath SP, Zhao FJ (2010) Rice is more efficient in arsenite uptake and translocation than wheat and barley. Plant Soil 328:27–34.  https://doi.org/10.1007/s11104-009-0074-2CrossRefGoogle Scholar
  97. Szklarczyk D, Morris JH, Cook H et al (2017) The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res 45:D362–D368.  https://doi.org/10.1093/nar/gkw937CrossRefPubMedGoogle Scholar
  98. Team N (2014) NetworkX. networkx.github.io
  99. Thimm O, Bläsing O, Gibon Y et al (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–939.  https://doi.org/10.1111/j.1365-313X.2004.02016.xCrossRefPubMedGoogle Scholar
  100. Todaka D, Nakashima K, Shinozaki K, Yamaguchi-Shinozaki K (2012) Toward understanding transcriptional regulatory networks in abiotic stress responses and tolerance in rice. Rice 5:1–9CrossRefGoogle Scholar
  101. Tokimatsu T (2005) KaPPA-view. A web-based analysis tool for integration of transcript and metabolite data on plant metabolic pathway maps. Plant Physiol 138:1289–1300.  https://doi.org/10.1104/pp.105.060525CrossRefPubMedPubMedCentralGoogle Scholar
  102. Uhrig JF (2006) Protein interaction networks in plants. Planta 224:771–781CrossRefGoogle Scholar
  103. Van Der Heijden G, Song Y, Horgan G et al (2012) SPICY: towards automated phenotyping of large pepper plants in the greenhouse. Funct Plant Biol 39:870–877.  https://doi.org/10.1071/FP12019CrossRefGoogle Scholar
  104. Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270:484–487.  https://doi.org/10.1126/science.270.5235.484CrossRefPubMedPubMedCentralGoogle Scholar
  105. Wang R, Gao F, Guo BQ et al (2013) Short-term chromium-stress-induced alterations in the maize leaf proteome. Int J Mol Sci 14:11125–11144.  https://doi.org/10.3390/ijms140611125CrossRefPubMedPubMedCentralGoogle Scholar
  106. Washburn MP, Wolters D, Yates JR (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19:242–247.  https://doi.org/10.1038/85686CrossRefPubMedGoogle Scholar
  107. Weinstein JN (1998) Fishing expeditions. Science 282:627CrossRefGoogle Scholar
  108. Williams EJB, Bowles DJ (2004) Coexpression of neighboring genes in the genome of Arabidopsis thaliana. Genome Res 14:1060–1067.  https://doi.org/10.1101/gr.2131104CrossRefPubMedPubMedCentralGoogle Scholar
  109. Witzel K, Weidner A, Surabhi GK et al (2009) Salt stress-induced alterations in the root proteome of barley genotypes with contrasting response towards salinity. J Exp Bot 60:3545–3557.  https://doi.org/10.1093/jxb/erp198CrossRefPubMedPubMedCentralGoogle Scholar
  110. Wright DW, Angus T, Enright AJ, Freeman TC (2014) Visualisation of BioPAX networks using BioLayout Express3D. F1000Research.  https://doi.org/10.12688/f1000research.5499.1
  111. Wurtele ES, Li J, Diao L et al (2003) MetNet: software to build and model the biogenetic lattice of Arabidopsis. Comp Funct Genomics 4:239–245.  https://doi.org/10.1002/cfg.285CrossRefPubMedPubMedCentralGoogle Scholar
  112. Xuan J, Song Y, Zhang H et al (2013) Comparative proteomic analysis of the stolon cold stress response between the C4 perennial grass species Zoysia japonica and Zoysia metrella. PLoS One 8.  https://doi.org/10.1371/journal.pone.0075705
  113. Yadav BS, Mani A (2018) Analysis of bHLH coding genes of Cicer arietinum during heavy metal stress using biological network. Physiol Mol Biol Plants.  https://doi.org/10.1007/s12298-018-0625-1
  114. Yuan JS, Galbraith DW, Dai SY et al (2008) Plant systems biology comes of age. Trends Plant Sci 13:165–171CrossRefGoogle Scholar
  115. Yue R, Lu C, Qi J et al (2016) Transcriptome analysis of cadmium-treated roots in maize (Zea mays L.). Front Plant Sci 7.  https://doi.org/10.3389/fpls.2016.01298
  116. Yun KY, Park MR, Mohanty B et al (2010) Transcriptional regulatory network triggered by oxidative signals configures the early response mechanisms of japonica rice to chilling stress. BMC Plant Biol 10.  https://doi.org/10.1186/1471-2229-10-16
  117. Zhang P (2005) MetaCyc and AraCyc. Metabolic pathway databases for plant research. Plant Physiol 138:27–37.  https://doi.org/10.1104/pp.105.060376CrossRefPubMedPubMedCentralGoogle Scholar
  118. Zhang X, Jafari N, Barnes RB et al (2005) Studies of gene expression in human cumulus cells indicate pentraxin 3 as a possible marker for oocyte quality. Fertil Steril 83:1169–1179.  https://doi.org/10.1016/j.fertnstert.2004.11.030CrossRefPubMedGoogle Scholar
  119. Zhang H, Ni Z, Chen Q et al (2016) Proteomic responses of drought-tolerant and drought-sensitive cotton varieties to drought stress. Mol Gen Genomics 291:1293–1303.  https://doi.org/10.1007/s00438-016-1188-xCrossRefGoogle Scholar
  120. Zhu Z, Chen J, Zheng HL (2012) Physiological and proteomic characterization of salt tolerance in a mangrove plant, Bruguiera gymnorrhiza (L.) Lam. Tree Physiol 32:1378–1388.  https://doi.org/10.1093/treephys/tps097CrossRefPubMedGoogle Scholar
  121. Zilberman D, Henikoff S (2007) Genome-wide analysis of DNA methylation patterns. Development 134:3959–3965.  https://doi.org/10.1242/dev.001131CrossRefPubMedGoogle Scholar
  122. Zulak KG, Cornish A, Daskalchuk TE et al (2007) Gene transcript and metabolite profiling of elicitor-induced opium poppy cell cultures reveals the coordinate regulation of primary and secondary metabolism. Planta 225:1085–1106.  https://doi.org/10.1007/s00425-006-0419-5CrossRefPubMedGoogle Scholar
  123. Zulfiqar A, Paulose B, Chhikara S, Dhankher OP (2011) Identifying genes and gene networks involved in chromium metabolism and detoxification in Crambe abyssinica. Environ Pollut 159:3123–3128.  https://doi.org/10.1016/j.envpol.2011.06.027CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of BiotechnologyMotilal Nehru National Institute of TechnologyAllahabadIndia

Personalised recommendations