Phyllosphere and Its Potential Role in Sustainable Agriculture

  • Gulab Chand Arya
  • Arye HarelEmail author


The Phyllosphere – the microbial composition of the aerial part of the plant – has coevolved with its plant host to populate one of the highly dominated places microbes are able to colonize. In contrast to root associated microbes which are engulfed by a buffering soil, the phyllosphere microbial community is highly affected by environmental factors such as climate variation. Considering the high diversity and abundance of foliar community consisting bacteria, fungi, protozoa and nematodes, the phyllosphere is subjected to complex ecological interactions (e.g., antibiosis, competition for resources, and symbiosis) among its members and the plant host. Similar to observation in human gut microbiome, these interactions are likely to affect plant interaction with pathogens, as partially demonstrated in studies of biocontrol agents. Thus, “Plants wear their guts on the outside” as previously suggested by Janzen DH (1985) The natural history of mutualisms. In: The biology of mutualism: ecology and evolution. Croom/Helm, London/Sydney, pp 40–99. In spite of the importance of this community, there are limited studies that deploy functional omics approaches to study the phyllosphere, and specifically the microbial biotic community associated with pathogenic organism - the Pathobiome. Thus, future studies should include functional analysis of the phyllosphere, role of its community members as biofertilizers and growth stimulators, the effect of nutrients (e. g., K, N, P, Fe) composition on its microbial population profile, and phyllosphere-host interactions. Empowered by “next generation sequencing”, findings from these studies should enable to support agrotechnical practice and breeding programs that will improve crops production, quality, and resistance to biotic and abiotic stress.

This chapter covers most important facets of knowledge accumulated from phyllosphere research: Environmental conditions affecting the establishment and composition of the phyllosphere. Advanced methodologies used for detection and study of the phyllosphere, following summary of its taxonomic composition. The role of the phyllosphere in plant fitness and health, including study of the pathobiome. And finally, the potential use of phyllosphere monitoring and manipulation in sustainable agriculture practices.


  1. Abanda-Nkpwatt D, Müsch M, Tschiersch J, Boettner M, Schwab W (2006) Molecular interaction between Methylobacterium extorquens and seedlings: growth promotion, methanol consumption, and localization of the methanol emission site. J Exp Bot 57(15):4025–4032CrossRefPubMedPubMedCentralGoogle Scholar
  2. Agler MT, Ruhe J, Kroll S, Morhenn C, Kim ST, Weigel D, Kemen EM (2016) Microbial Hub Taxa Link Host and Abiotic Factors to Plant Microbiome Variation. Plos Biolo 14Google Scholar
  3. Andrews JH (1992) Biological control in the phyllosphere. Annu Rev Phytopathol 30:603–635CrossRefPubMedPubMedCentralGoogle Scholar
  4. Andrews JH, Harris RF (2000) The ecology and biogeography of microorganisms on plant surfaces. Annu Rev Phytopathol 38:145–180CrossRefPubMedPubMedCentralGoogle Scholar
  5. Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: Are tropical leaves biodiversity hotspots? Ecology 88:541–549CrossRefPubMedPubMedCentralGoogle Scholar
  6. Arnold AE, Mejía LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, Herre EA (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci U S A 100:15649–15654CrossRefPubMedPubMedCentralGoogle Scholar
  7. Atamna-Ismaeel N, Finkel OM, Glaser F, Sharon I, Schneider R, Post AF, Spudich JL, Von Mering C, Vorholt JA, Iluz D, Beja O, Belkin S (2012) Microbial rhodopsins on leaf surfaces of terrestrial plants. Environ Microbiol 14:140–146CrossRefPubMedPubMedCentralGoogle Scholar
  8. Aydogan EL, Moser G, Muller C, Kampfer P, Glaeser SP (2018) Long-term warming shifts the composition of bacterial communities in the phyllosphere of galium album in a permanent grassland field-experiment. Front Microbiol 9:144CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bálint M, Tiffin P, Hallström B, O’Hara RB, Olson MS, Fankhauser JD, Piepenbring M, Schmitt (2013) Host genotype shapes the foliar fungal microbiome of balsam poplar (Populus balsamifera). PLoS One 8:e53987Google Scholar
  10. Bartoli C, Frachon L, Barret M, Rigal M, Huard-Chauveau C, Mayjonade B, Zanchetta C, Bouchez O, Roby D, Carrere S, Roux F (2018) In situ relationships between microbiota and potential pathobiota in Arabidopsis thaliana. ISME J 12:2024–2038CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bashan Y, Diab S, Okon Y (1982) Survival of Xanthomonas campestris pv. vesicatoria in pepper seeds and roots in symptomless and dry leaves in non-host plants and in the soil. Plant Soil 68:161–170CrossRefGoogle Scholar
  12. Beattie GA (2011) Water relations in the interaction of foliar bacterial pathogens with plants. Annu Rev Phytopathol 49:533–555CrossRefPubMedPubMedCentralGoogle Scholar
  13. Blakeman JP (1972) Effect of plant age on inhibition of Botrytis cinerea spores by bacteria on beetroot leaves. Physiol Plant Pathol 2:143–152CrossRefGoogle Scholar
  14. Bodenhausen N, Horton MW, Bergelson J (2013) Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLoS One 8(2):e56329CrossRefPubMedPubMedCentralGoogle Scholar
  15. Bodenhausen N, Bortfeld-Miller M, Ackermann M, Vorholt JA (2014) A synthetic community approach reveals plant genotypes affecting the phyllosphere microbiota. PLoS Genet 10:e1004283CrossRefPubMedPubMedCentralGoogle Scholar
  16. Bogino PC, Oliva MDLM, Sorroche FG, Giordano W (2013) The role of bacterial biofilms and surface components in plant-bacterial associations. Int J Mol Sci 14(8):15838–15859CrossRefPubMedPubMedCentralGoogle Scholar
  17. Braun-Kiewnick A, Jacobsen BJ, Sands DC (2000) Biological control of Pseudomonas syringae pv. syringae, the causal agent of basal kernel blight of barley, by antagonistic Pantoea agglomerans. Phytopathology 90:368–375CrossRefPubMedPubMedCentralGoogle Scholar
  18. Bringel F, Couee I (2015) Pivotal roles of phyllosphere microorganisms at the interface between plant functioning and atmospheric trace gas dynamics. Front Microbiol 6:486CrossRefPubMedPubMedCentralGoogle Scholar
  19. Brown JK, Hovmoller MS (2002) Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 297:537–541CrossRefPubMedPubMedCentralGoogle Scholar
  20. Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838CrossRefPubMedPubMedCentralGoogle Scholar
  21. Burkhardt J, Hunsche M (2013) “Breath figures” on leaf surfaces-formation and effects of microscopic leaf wetness. Front Plant Sci 4:422CrossRefPubMedPubMedCentralGoogle Scholar
  22. Campisano A, Albanese D, Yousaf S, Pancher M, Donati C, Pertot I (2017) Temperature drives the assembly of endophytic communities' seasonal succession. Environ Microbiol 19(8):3353–3364CrossRefPubMedPubMedCentralGoogle Scholar
  23. Carvalho SD, Castillo JA (2018) Influence of light on plant-phyllosphere interaction. Front Plant Sci 9:1482CrossRefPubMedPubMedCentralGoogle Scholar
  24. Chalivendra S, Derobertis C, Reyes Pineda J, Ham JH, Damann K (2018) Rice phyllosphere bacillus species and their secreted metabolites suppress Aspergillus flavus growth and aflatoxin production in vitro and in maize seeds. Toxins (Basel) 10:1–16CrossRefGoogle Scholar
  25. Chen Y, Wang J, Yang N, Wen Z, Sun X, Chai Y, Ma Z (2018) Wheat microbiome bacteria can reduce virulence of a plant pathogenic fungus by altering histone acetylation. Nat Commun 9:3429CrossRefPubMedPubMedCentralGoogle Scholar
  26. Clemente JC, Ursell LK, Parfrey LW, Knight R (2012) The impact of the gut microbiota on human health: an integrative view. Cell 148:1258–1270CrossRefPubMedPubMedCentralGoogle Scholar
  27. Compant S, Van Der Heijden MG, Sessitsch A (2010) Climate change effects on beneficial plant-microorganism interactions. FEMS Microbiol Ecol 73:197–214PubMedPubMedCentralGoogle Scholar
  28. Correa OS, Romero AM, Montecchia MS, Soria MA (2007) Tomato genotype and Azospirillum inoculation modulate the changes in bacterial communities associated with roots and leaves. J Appl Microbiol 102:781–786CrossRefPubMedPubMedCentralGoogle Scholar
  29. Crombie AT, Larke-Mejia NL, Emery H, Dawson R, Pratscher J, Murphy GP, McGenity TJ, Murrell JC (2018) Poplar phyllosphere harbors disparate isoprene-degrading bacteria. Proc Natl Acad Sci U S A 115(51):13081–13086CrossRefPubMedPubMedCentralGoogle Scholar
  30. Dangl JL, Horvath DM, Staskawicz BJ (2013) Pivoting the plant immune system from dissection to deployment. Science 341:746–751CrossRefPubMedPubMedCentralGoogle Scholar
  31. Davis CL, Brlansky RH (1991) Use of immune gold labelling with scanning electron microscopy to identify phytopathogenic bacteria on leaf surfaces. Appl Environ Microbiol 7(10):3052–3055Google Scholar
  32. de Oliveira CL, de Queiroz MV, Borges AC, de Moraes CA, de Araújo EF (2012) Isolation and characterization of endophytic bacteria isolated from the leaves of the common bean (Phaseolus vulgaris). Braz J Microbiol 43(4):1562CrossRefGoogle Scholar
  33. Dechesne A, Wang G, Gulez G, Or D, Smets BF (2010) Hydration-controlled bacterial motility and dispersal on surfaces. Proc Natl Acad Sci U S A 107:14369–14372CrossRefPubMedPubMedCentralGoogle Scholar
  34. Dees MW, Lysoe E, Nordskog B, Brurberg MB (2015) Bacterial communities associated with surfaces of leafy greens: shift in composition and decrease in richness over time. Appl Environ Microb 81:1530–1539CrossRefGoogle Scholar
  35. Delmotte N, Knief C, Chaffron S, Innerebner G, Roschitzki B, Schlapbach R, Von Mering C, Vorholt JA (2009) Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc Natl Acad Sci U S A 106:16428–16433CrossRefPubMedPubMedCentralGoogle Scholar
  36. Elad Y (2000) Biological control of foliar pathogens by means of Trichoderma harzianum and potential modes of action. Crop Prot 19:709–714CrossRefGoogle Scholar
  37. Enya J, Shinohara H, Yoshida S, Tsukiboshi T, Negishi H, Suyama K, Tsushima S (2007) Culturable leaf-associated bacteria on tomato plants and their potential as biological control agents. Microb Ecol 53:524–536CrossRefPubMedPubMedCentralGoogle Scholar
  38. Ercolani GL (1991) Distribution of epiphytic bacteria on olive leaves and the influence of leaf age and sampling time. Microbial Ecol 21:35–48CrossRefGoogle Scholar
  39. Esitken A, Yildiz HE, Ercisli S, Donmez MF, Turan M, Gunes A (2010) Effects of plant growth promoting bacteria (PGPB) on yield, growth and nutrient contents of organically grown strawberry. Sci Hortic 124(1):62–66CrossRefGoogle Scholar
  40. Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S, Ihsan MZ, Alharby H, Wu C, Wang D, Huang J (2017) Crop production under drought and heat stress: Plant responses and management options. Front Plant Sci 8:1147CrossRefPubMedPubMedCentralGoogle Scholar
  41. Farre-Armengol G, Filella I, Llusia J, Penuelas J (2016) Bidirectional interaction between phyllospheric microbiotas and plant volatile emissions. Trends Plant Sci 21:854–860CrossRefPubMedPubMedCentralGoogle Scholar
  42. Favilli F, Messini A (1990) Nitrogen fixation at phyllospheric level in coniferous plants in Italy. Plant Soil 128:91–95CrossRefGoogle Scholar
  43. Finkel OM, Burch AY, Lindow SE, Post AF, Belkin S (2011) Geographical location determines the population structure in phyllosphere microbial communities of a salt-excreting desert tree. Appl Environ Microbiol 77:7647–7655CrossRefPubMedPubMedCentralGoogle Scholar
  44. Finkel OM, Delmont TO, Post AF, Belkin S (2016) Metagenomic signatures of bacterial adaptation to life in the phyllosphere of a salt-secreting desert tree. Appl Environ Microb 82:2854CrossRefGoogle Scholar
  45. Finkel OM, Castrillo G, Herrera Paredes S, Salas Gonzalez I, Dangl JL (2017) Understanding and exploiting plant beneficial microbes. Curr Opin Plant Biol 38:155–163CrossRefPubMedPubMedCentralGoogle Scholar
  46. Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186–194CrossRefPubMedPubMedCentralGoogle Scholar
  47. Freiberg E (1998) Microclimatic parameters influencing nitrogen fixation in the phyllosphere in a Costa Rican premontane rain forest. Oecologia 117(1–2):9–18CrossRefPubMedPubMedCentralGoogle Scholar
  48. Fu SF, Sun PF, Lu HY, Wei JY, Xiao HS, Fang WT, Cheng BY, Chou JY (2016) Plant growth-promoting traits of yeasts isolated from the phyllosphere and rhizosphere of Drosera spatulata Lab. Fungal Biol 120:433–448CrossRefPubMedPubMedCentralGoogle Scholar
  49. Fürnkranz M, Wanek W, Richter A, Abell G, Rasche F, Sessitsch A (2008) Nitrogen fixation by phyllosphere bacteria associated with higher plants and their colonizing epiphytes of a tropical lowland rainforest of Costa Rica. ISME J 2:561–570CrossRefPubMedPubMedCentralGoogle Scholar
  50. Gaggia F, Mattarelli P, Biavati B (2010) Probiotics and prebiotics in animal feeding for safe food production. Int J Food Microbiol 141(Suppl 1):S15–S28CrossRefPubMedPubMedCentralGoogle Scholar
  51. Glenn DM, Bassett C, Dowd SE (2015) Effect of pest management system on 'Empire' apple leaf phyllosphere populations. Sci Hortic 183:58–65CrossRefGoogle Scholar
  52. Gopal M, Gupta A (2016) Microbiome selection could spur next-generation plant breeding strategies. Front Microbiol 7:1971CrossRefPubMedPubMedCentralGoogle Scholar
  53. Gourion B, Rossignol M, Vorholt JA (2006) A proteomic study of Methylobacterium extorquens reveals a response regulator essential for epiphytic growth. Proc Natl Acad Sci U S A 103:13186–13191CrossRefPubMedPubMedCentralGoogle Scholar
  54. Gross S, Kunz L, Muller DC, Santos Kron A, Freimoser FM (2018) Characterization of antagonistic yeasts for biocontrol applications on apples or in soil by quantitative analyses of synthetic yeast communities. Yeast 35:559–566CrossRefPubMedPubMedCentralGoogle Scholar
  55. Hassani MA, Duran P, Hacquard S (2018) Microbial interactions within the plant holobiont. Microbiome 6:58CrossRefPubMedPubMedCentralGoogle Scholar
  56. Horton MW, Bodenhausen N, Beilsmith K, Meng D, Muegge BD, Subramanian S, Vetter MM, Vilhjálmsson BJ, Nordborg M, Gordon JI, Bergelson J (2014) Genome-wide association study of Arabidopsis thaliana’s leaf microbial community. Nat Commun 5:5320CrossRefPubMedPubMedCentralGoogle Scholar
  57. Idris R, Kuffner M, Bodrossy L, Puschenreiter M, Monchy S, Wenzel WW, Sessitsch A (2006) Characterization of Ni-tolerant methylobacteria associated with the hyper accumulating plant Thlaspi goesingense and description of Methylobacterium goesingense sp. nov. Syst Appl Microbiol 29:634–644CrossRefPubMedPubMedCentralGoogle Scholar
  58. Igiehon NO, Babalola OO (2018) Rhizosphere microbiome modulators: Contributions of nitrogen fixing bacteria towards sustainable agriculture. Int J Environ Res Public Health 15:574CrossRefGoogle Scholar
  59. Ilsan NA, Nawangsih A, Wahyudi A (2016) Rice phyllosphere actinomycetes as biocontrol agent of bacterial leaf blight disease on rice. Asian J Plant Pathol 10:1–8CrossRefGoogle Scholar
  60. Innerebner G, Knief C, Vorholt JA (2011) Protection of Arabidopsis thaliana against leaf-pathogenic Pseudomonas syringae by Sphingomonas strains in a controlled model system. Appl Environ Microbiol 77:3202–3210CrossRefPubMedPubMedCentralGoogle Scholar
  61. IPCC (2013) Climate change 2013 the physical science basis: working group I contribution to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  62. Izuno A, Kanzaki M, Artchawakom T, Wachrinrat C, Isagi Y (2016) Vertical structure of phyllosphere fungal communities in a tropical forest in thailand uncovered by high-throughput sequencing. PLoS One 11:e0166669CrossRefPubMedPubMedCentralGoogle Scholar
  63. Jackson CR, Randolph KC, Osborn SL, Tyler HL (2013) Culture dependent and independent analysis of bacterial communities associated with commercial salad leaf vegetables. BMC Microbiol 13:274CrossRefPubMedPubMedCentralGoogle Scholar
  64. Janzen DH (1985) The natural history of mutualisms. In: The biology of mutualism: ecology and evolution. Croom/Helm, London/Sydney, pp 40–99Google Scholar
  65. Jakuschkin B, Fievet V, Schwaller L, Fort T, Robin C, Vacher C (2016) Deciphering the Pathobiome: Intra- and Interkingdom Interactions Involving the Pathogen Erysiphe alphitoides. Microb Ecol 72:870–880CrossRefPubMedPubMedCentralGoogle Scholar
  66. Jefferson R (1994) The Hologenome. In: Agriculture, environment and the developing world: A future of PCR. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, New YorkGoogle Scholar
  67. Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329CrossRefPubMedPubMedCentralGoogle Scholar
  68. Jumpponen A, Jones KL (2009) Massively parallel 454 sequencing indicates hyper diverse fungal communities in temperate Quercus macrocarpa phyllosphere. New Phytol 184:438–448CrossRefPubMedPubMedCentralGoogle Scholar
  69. Kadivar H, Stapleton AE (2003) Ultraviolet radiation alters maize phyllosphere bacterial diversity. Microb Ecol 45:353–361CrossRefPubMedPubMedCentralGoogle Scholar
  70. Kalogiannis S, Tjamos SE, Stergiou A, Antoniou PP, Ziogas BN, Tjamos EC (2006) Selection and evaluation of phyllosphere yeasts as biocontrol agents against grey mould of tomato. Eur J Plant Pathol 116:69–76CrossRefGoogle Scholar
  71. Karlsson I, Friberg H, Steinberg C, Persson P (2014) Fungicide effects on fungal community composition in the wheat phyllosphere. PLoS One 9:e111786CrossRefPubMedPubMedCentralGoogle Scholar
  72. Karthikeyan M, Bhaskaran R, Mathiyazhagan S, Velazhahan R (2007) Influence of phylloplane colonizing biocontrol agents on the black spot of rose caused by Diplocarpon rosae. J Plant Interact 2:225–231CrossRefGoogle Scholar
  73. Kim M, Singh D, Lai-Hoe A, Go R, Abdul Rahim R, Ainuddin AN, Chun J, Adams JM (2012) Distinctive phyllosphere bacterial communities in tropical trees. Microb Ecol 63:674–681CrossRefPubMedPubMedCentralGoogle Scholar
  74. Klerks MM, Franz E, Van Gent-Pelzer M, Zijlstra C, Van Bruggen AH (2007) Differential interaction of Salmonella enterica serovars with lettuce cultivars and plant-microbe factors influencing the colonization efficiency. ISME J 1:620–631CrossRefPubMedPubMedCentralGoogle Scholar
  75. Knief C, Delmotte N, Chaffron S, Stark M, Innerebner G, Wassmann R, Von Mering C, Vorholt JA (2012) Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J 6:1378–1390CrossRefPubMedPubMedCentralGoogle Scholar
  76. Kumar S, Chaudhary D, Jangra R (2018) Establishment of antifungal phyllospheric bacteria in potato (Solanum tuberosum L.). Int J Curr Microbiol Appl Sci 7:1048–1056CrossRefGoogle Scholar
  77. Kuypers MM, Marchant HK, Kartal B (2018) The microbial nitrogen-cycling network. Nat Rev Microbiol 16(5):263CrossRefPubMedPubMedCentralGoogle Scholar
  78. Lambais MR, Crowley DE, Cury JC, Bull RC, Rodrigues RR (2006) Bacterial diversity in tree canopies of the Atlantic forest. Science 312:1917CrossRefPubMedPubMedCentralGoogle Scholar
  79. Larousse M, Galiana E (2017) Microbial partnerships of pathogenic oomycetes. PLoS Pathog 13:e1006028CrossRefPubMedPubMedCentralGoogle Scholar
  80. Le Houérou HN (1996) Climate change, drought and desertification. J Arid Environ 34(2):133–185Google Scholar
  81. Li Y, Wu X, Chen T, Wang W, Liu G, Zhang W, Li S, Wang M, Zhao C, Zhou H, Zhang G (2018) Plant phenotypic traits eventually shape its microbiota: A common garden test. Front Microbiol 9:2479CrossRefPubMedPubMedCentralGoogle Scholar
  82. Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69:1875–1883CrossRefPubMedPubMedCentralGoogle Scholar
  83. Magan N, Baxter ES (1996) Effect of increased CO2 concentration and temperature on the phyllosphere mycoflora of winter wheat flag leaves during ripening. Ann Appl Biol 129(2):189–195CrossRefGoogle Scholar
  84. Mansvelt EL, Hattingh MJ (1987) Scanning electron microscopy of colonization of pear leaves by Pseudomonas syringae pv. syringae. Can J Bot 65:2517–2522CrossRefGoogle Scholar
  85. Mansvelt EL, Hattingh MJ (1989) Scanning electron microscopy of invasion of apple leaves and blossoms by pseudomonas syringae pv. Syringae Appl Environ Microbiol 55:533–538PubMedPubMedCentralGoogle Scholar
  86. Mathur S, Sutton J (2017) Personalized medicine could transform healthcare. Biomed Rep 7:3–5CrossRefPubMedPubMedCentralGoogle Scholar
  87. Mechri B, Attia F, Tekaya M, Cheheb H, Hammami M (2014) Colonization of olive trees (Olea europaea l.) with the arbuscular mycorrhizal fungus glomus sp. Modified the glycolipids biosynthesis and resulted in accumulation of unsaturated fatty acids. J Plant Physiol 171:1217–1220CrossRefPubMedPubMedCentralGoogle Scholar
  88. Mercier J, Lindow SE (2000) Role of leaf surface sugars in colonization of plants by bacterial epiphytes. Appl Environ Microbiol 66:369–374CrossRefPubMedPubMedCentralGoogle Scholar
  89. Mew TW, Mew IC, Huang JS (1984) Scanning electron microscopy of virulent and avirulent strains of Xanthomonas campestris pv. oryzae on rice leaves. Phytopathology 74:635–641CrossRefGoogle Scholar
  90. Meyer SLF, Wergin WP (1998) Colonization of soybean cyst nematode females, cysts, and gelatinous matrices by the fungus Verticillium lecanii. J Nematol 30(4):436PubMedPubMedCentralGoogle Scholar
  91. Michavila G, Adler C, De Gregorio PR, Lami MJ, Caram Di Santo MC, Zenoff AM, de Cristobal RE, Vincent PA (2017) Pseudomonas protegens CS1 from the lemon phyllosphere as a candidate for citrus canker biocontrol agent. Plant Biol 19(4):608–617CrossRefPubMedPubMedCentralGoogle Scholar
  92. Mikiciński A, Sobiczewski P, Puławska J, Malusa E (2016) Antagonistic potential of Pseudomonas graminis 49M against Erwinia amylovora, the causal agent of fire blight. Arch Microbiol 198:531–539CrossRefPubMedPubMedCentralGoogle Scholar
  93. Miles WG, Daines RH, Rue JW (1977) Presymptomatic egress of Xanthomonas pruni from infected peach leaves. Phytopathology 67(7):895–897CrossRefGoogle Scholar
  94. Mitter B, Pfaffenbichler N, Sessitsch A (2016) Plant-microbe partnerships in 2020. Microb Biotechnol 9:635–640CrossRefPubMedPubMedCentralGoogle Scholar
  95. Montzka SA, Dlugokencky EJ, Butler JH (2011) Non-CO2 greenhouse gases and climate change. Nature 476(7358):43CrossRefPubMedPubMedCentralGoogle Scholar
  96. Morris CE (2002) Phyllosphere. In: Encyclopedia of life sciences. Wiley, Chichester, pp 1–8Google Scholar
  97. Morris CE, Kinkel L (2002) Fifty years of phyllosphere microbiology: significant contributions to research in related fields. In: Lindow SE, Hecht-Poinar EI, Vern JE (eds) Phyllosphere microbiology. APS Press, St. Paul, Minn, pp 365–375Google Scholar
  98. Muller DB, Vogel C, Bai Y, Vorholt JA (2016) The plant microbiota: Systems-level insights and perspectives. Annu Rev Genet 50:211–234CrossRefPubMedPubMedCentralGoogle Scholar
  99. Nuclo RL, Johnson KB, Stockwell VO, Sugar D (1998) Secondary colonization of pear blossoms by two bacterial antagonists of the fire blight pathogen. Plant Dis 82:661–668CrossRefPubMedPubMedCentralGoogle Scholar
  100. O’Callaghan M, Gerard EM, Waipara NW, Young SD, Glare TR, Barrell PJ, Conner AJ (2005) Microbial communities of Solanum tuberosum and magainin-producing transgenic lines. Plant Soil 266:47–56CrossRefGoogle Scholar
  101. Oerke EC (2006) Crop losses to pests. J Agric Sci 144(1):31–43CrossRefGoogle Scholar
  102. Ottesen AR, Peña AG, White JR, Pettengill JB, Li C, Allard S, Rideout S, Allard M, Hill T, Evans P, Strain E (2013) Baseline survey of the anatomical microbial ecology of an important food plant: Solanum lycopersicum (tomato). BMC Microbiol 13:114CrossRefPubMedPubMedCentralGoogle Scholar
  103. Ottesen AR, Gorham S, Pettengill JB, Rideout S, Evans P, Brown E (2015) The impact of systemic and copper pesticide applications on the phyllosphere microflora of tomatoes. J Sci Food Agric 95:1116–1125CrossRefPubMedPubMedCentralGoogle Scholar
  104. Pal KK, Gardener BM (2006) Biological control of plant pathogens. Plant Health Instructor 2:1117–1142Google Scholar
  105. Pankova YI, Konyushkova MV (2013) Effect of global warming on soil salinity of the arid regions. Russ Agric Sci 39:464–467CrossRefGoogle Scholar
  106. Parnell JJ, Berka R, Young HA, Sturino JM, Kang Y, Barnhart DM, DiLeo MV (2016) From the lab to the farm: an industrial perspective of plant beneficial microorganisms. Front Plant Sci 7:1110CrossRefPubMedPubMedCentralGoogle Scholar
  107. Pedron T, Sansonetti P (2008) Commensals, bacterial pathogens and intestinal inflammation: an intriguing menage a trois. Cell Host Microbe 3:344–347CrossRefPubMedPubMedCentralGoogle Scholar
  108. Peredo EL, Simmons SL (2018) Leaf-FISH: Microscale imaging of bacterial taxa on phyllosphere. Front Microbiol 8:1–14Google Scholar
  109. Prince DC, Rallapalli G, Xu D, Schoonbeek HJ, Cevik V, Asai S, Kemen E, Cruz-Mireles N, Kemen A, Belhaj K, Schornack S, Kamoun S, Holub EB, Halkier BA, Jones JD (2017) Albugo-imposed changes to tryptophan-derived antimicrobial metabolite biosynthesis may contribute to suppression of non-host resistance to Phytophthora infestans in Arabidopsis thaliana. BMC Biol 15:20CrossRefPubMedPubMedCentralGoogle Scholar
  110. Pusey PL, Stockwell VO, Reardon CL, Smits TH, Duffy B (2011) Antibiosis activity of Pantoea agglomerans biocontrol strain E325 against Erwinia amylovora on apple flower stigmas. Phytopathology 101:1234–1241CrossRefPubMedPubMedCentralGoogle Scholar
  111. Pusztahelyi T, Holb IJ, Pócsi I (2015) Secondary metabolites in fungus-plant interactions. Front Plant Sci 6:573CrossRefPubMedPubMedCentralGoogle Scholar
  112. Rasche F, Marco-Noales E, Velvis H, van Overbeek LS, López MM, van Elsas JD, Sessitsch A (2006a) Structural characteristics and plant-beneficial effects of bacteria colonizing the shoots of field grown conventional and genetically modified T4-lysozyme producing potatoes. Plant Soil 289:123–140CrossRefGoogle Scholar
  113. Rasche F, Trondl R, Naglreiter C, Reichenauer TG, Sessitsch A (2006b) Chilling and cultivar type affect the diversity of bacterial endophytes colonizing sweet pepper (Capsicum annuum L.). Can J Microbiol 52:1036–1045CrossRefPubMedPubMedCentralGoogle Scholar
  114. Rasche F, Velvis H, Zachow C, Berg G, Van Elsas JD, Sessitsch A (2006c) Impact of transgenic potatoes expressing anti-bacterial agents on bacterial endophytes is comparable with the effects of plant genotype, soil type and pathogen infection. J Appl Ecol 43:555–566CrossRefGoogle Scholar
  115. Rastogi G, Sbodio A, Tech JJ, Suslow TV, Coaker GL, Leveau JHJ (2012) Leaf microbiota in an agroecosystem: Spatiotemporal variation in bacterial community composition on field-grown lettuce. ISME J 6:1812–1822CrossRefPubMedPubMedCentralGoogle Scholar
  116. Redford AJ, Bowers RM, Knight R, Linhart Y, Fierer N (2010) The ecology of the phyllosphere: Geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ Microbiol 12:2885–2893CrossRefPubMedPubMedCentralGoogle Scholar
  117. Reisberg EE, Hildebrandt U, Riederer M, Hentschel U (2013) Distinct phyllosphere bacterial communities on Arabidopsis wax mutant leaves. PLoS One 8:e78613CrossRefPubMedPubMedCentralGoogle Scholar
  118. Reiter B, Sessitsch A (2006) Bacterial endophytes of the wildflower Crocus albiflorus analyzed by characterization of isolates and by a cultivation-independent approach. Can J Microbiol 52:140–149CrossRefPubMedPubMedCentralGoogle Scholar
  119. Remus-Emsermann MN, Lucker S, Muller DB, Potthoff E, Daims H, Vorholt JA (2014) Spatial distribution analyses of natural phyllosphere-colonizing bacteria on Arabidopsis thaliana revealed by fluorescence in situ hybridization. Environ Microbiol 16:2329–2340CrossRefPubMedPubMedCentralGoogle Scholar
  120. Ritpitakphong U, Falquet L, Vimoltust A, Berger A, Metraux JP, L'Haridon F (2016) The microbiome of the leaf surface of Arabidopsis protects against a fungal pathogen. New Phytol 210:1033–1043CrossRefPubMedPubMedCentralGoogle Scholar
  121. Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339CrossRefPubMedPubMedCentralGoogle Scholar
  122. Roos IM, Hattingh MJ (1983) Scanning Electron Microscopy of Pseudomonas syringae pv, morsprunorum on sweet cherry leaves. J Phytopathol 108:18–25CrossRefGoogle Scholar
  123. Ruhe J, Agler MT, Placzek A, Kramer K, Finkemeier I, Kemen EM (2016) Obligate biotroph pathogens of the genus Albugo are better adapted to active host defense compared to niche competitors. Front Plant Sci 7:820CrossRefPubMedPubMedCentralGoogle Scholar
  124. Ruinen J (1956) Occurrence of Beijerinckia species in the ‘phyllosphere’. Nature 177:220–221CrossRefGoogle Scholar
  125. Runion GB, Curl EA, Rogers HH, Backman PA, Rodriguez-Kabana R, Helms BE (1994) Effects of free-air CO2 enrichment on microbial populations in the rhizosphere and phyllosphere of cotton. Agric For Meteorol 70:117–130CrossRefGoogle Scholar
  126. Sahoo RK, Bhardwaj D, Tuteja N (2013) Biofertilizers: A sustainable eco-friendly agricultural approach to crop improvement. In: Tuteja N, Singh Gill S (eds) Plant acclimation to environmental stress. Springer, New York, pp 403–432CrossRefGoogle Scholar
  127. Saijo Y, Loo EP, Yasuda S (2018) Pattern recognition receptors and signaling in plant-microbe interactions. Plant J 93:592–613CrossRefPubMedPubMedCentralGoogle Scholar
  128. Sapkota R, Knorr K, Jørgensen LN, O'Hanlon KA, Nicolaisen M (2015) Host genotype is an important determinant of the cereal phyllosphere mycobiome. New Phytol 207:1134–1144CrossRefPubMedPubMedCentralGoogle Scholar
  129. Schlaeppi K, Bulgarelli D (2015) The Plant Microbiome at Work. Mol Plant-Microbe Interact 28:212–217CrossRefPubMedPubMedCentralGoogle Scholar
  130. Schloss PD, Handelsman J (2004) Status of the microbial census. Microbiol Mol Biol Rev 68:686–691CrossRefPubMedPubMedCentralGoogle Scholar
  131. Schonherr J (2006) Characterization of aqueous pores in plant cuticles and permeation of ionic solutes. J Exp Bot 57:2471–2491CrossRefPubMedPubMedCentralGoogle Scholar
  132. Sengupta B, Naudi AS, Samanta RK, Pal D, Sengupta DN, Sen SP (1981) Nitrogen fixation in the phyllosphere of tropical plants: occurrence of phyllosphere nitrogen-fixing microorganisms in eastern India and their utility for the growth and nutrition of host plants. Ann Bot 48:705–716CrossRefGoogle Scholar
  133. Sessitsch A, Hackl E, Wenzl P, Kilian A, Kostic T, Stralis-Pavese N, Sandjong BT, Bodrossy L (2006) Diagnostic microbial microarrays in soil ecology. New Phytol 171:719–736CrossRefPubMedPubMedCentralGoogle Scholar
  134. Shrestha BK, Karki HS, Groth DE, Jungkhun N, Ham JH (2016) Biological control activities of rice-associated Bacillus sp. Strains against sheath blight and bacterial panicle blight of rice. PLoS One 11:e0146764CrossRefPubMedPubMedCentralGoogle Scholar
  135. Singh S (2014) Guttation: quantification, microbiology and implications for phytopathology. In: Lüttge U, Beyschlag W, Cushman J (eds) Progress in botany. Progress in botany (genetics – physiology – systematics – ecology). Springer, Berlin/HeidelbergGoogle Scholar
  136. Sousa LP, Da Silva MJ, Mondego JMC (2018) Leaf-associated bacterial microbiota of coffee and its correlation with manganese and calcium levels on leaves. Genet Mol Biol 41:455–465CrossRefPubMedPubMedCentralGoogle Scholar
  137. Stapleton AE, Simmons SJ (2006) Plant control of phyllosphere diversity: genotype interactions with ultraviolet-B radiation. In: Microbial ecology of aerial plant surfacesGoogle Scholar
  138. Stevenson A, Burkhardt J, Cockell CS, Cray JA, Dijksterhuis J, Fox-Powell M, Kee TP, Kminek G, Mcgenity TJ, Timmis KN, Timson DJ, Voytek MA, Westall F, Yakimov MM, Hallsworth JE (2015) Multiplication of microbes below 0.690 water activity: implications for terrestrial and extra-terrestrial life. Environ Microbiol 17:257–277CrossRefPubMedPubMedCentralGoogle Scholar
  139. Stintzi A, Barnes C, Xu J, Raymond KN (2000) Microbial iron transport via a siderophore shuttle: a membrane ion transport paradigm. Proc Natl Acad Sci U S A 97:10691–10696CrossRefPubMedPubMedCentralGoogle Scholar
  140. Stockwell VO, Johnson KB, Sugar D, Loper JE (2002) Antibiosis contributes to biological control of fire blight by Pantoea agglomerans strain eh252 in orchards. Phytopathology 92:1202–1209CrossRefPubMedPubMedCentralGoogle Scholar
  141. Stromberg KD, Kinkel LL, Leonard KJ (2000) Interactions between Xanthomonas translucens pv. translucens, the causal agent of bacterial leaf streak of wheat, and bacterial epiphytes in the wheat phyllosphere. Biol Control 17:61–72CrossRefGoogle Scholar
  142. Sun PF, Fang WT, Shin LY, Wei JY, Fu SF, Chou JY (2014) Indole-3-acetic acid-producing yeasts in the phyllosphere of the carnivorous plant Drosera indica L. PLoS One 9:e114196CrossRefPubMedPubMedCentralGoogle Scholar
  143. Surico G (1993) Scanning electron microscopy of olive and oleander leaves colonized by Pseudomonas syringae subsp. savastanoi. J Phytopathol 138(1):31–40CrossRefGoogle Scholar
  144. Sy A, Timmers AC, Knief C, Vorholt JA (2005) Methylotrophic metabolism is advantageous for Methylobacterium extorquens during colonization of Medicago truncatula under competitive conditions. Appl Environ Microb 71:7245–7252CrossRefGoogle Scholar
  145. Thapa S, Prasanna R (2018) Prospecting the characteristics and significance of the phyllosphere microbiome. Ann Microbiol 68:229–245CrossRefGoogle Scholar
  146. Thapa S, Ranjan K, Ramakrishnan B, Velmourougane K, Prasanna R (2018) Influence of fertilizers and rice cultivation methods on the abundance and diversity of phyllosphere microbiome. J Basic Microbiol 58:172–186CrossRefPubMedPubMedCentralGoogle Scholar
  147. Thompson IP, Bailey MJ, Fenlon JS, Fermor TR, Lilley AK, Lynch JM, McCormack PJ, McQuilken MP, Purdy KJ, Rainey PB, Whipps JM (1993) Quantitative and qualitative seasonal-changes in the microbial community from the phyllosphere of sugar-beet (Beta vulgaris). Plant Soil 150:177–191CrossRefGoogle Scholar
  148. Timmer LW, Marios JJ, Achor D (1987) Growth and survival of Xanthomonads under conditions nonconductive to disease development. Phytopathology 77:1341–1345CrossRefGoogle Scholar
  149. Tukey HB (1970) The leaching of substances from plants. Annu Rev Plant Physiol 21:305–324CrossRefGoogle Scholar
  150. Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, Solovyev VV, Rubin EM, Rokhsar DS, Banfield JF (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428:37–43CrossRefPubMedPubMedCentralGoogle Scholar
  151. Uku J, Bjork M, Bergman B, Diez B (2007) Characterization and comparison of prokaryotic epiphytes associated with three east African sea grasses. J Phycol 43:768–779CrossRefGoogle Scholar
  152. Vacher C, Hampe A, Porté AJ, Sauer U, Compant S, Morris CE (2016) The phyllosphere: microbial jungle at the plant–climate interface. Annu Rev Ecol Evol Syst 47:1–24CrossRefGoogle Scholar
  153. Vayssier-Taussat M, Albina E, Citti C, Cosson JF, Jacques MA, Lebrun MH, Le Loir Y, Ogliastro M, Petit MA, Roumagnac P, Candresse T (2014) Shifting the paradigm from pathogens to pathobiome: new concepts in the light of meta-omics. Front Cell Infect Microbiol 4:29CrossRefPubMedPubMedCentralGoogle Scholar
  154. Vogel C, Bodenhausen N, Gruissem W, Vorholt JA (2016) The Arabidopsis leaf transcriptome reveals distinct but also overlapping responses to colonization by phyllosphere commensals and pathogen infection with impact on plant health. New Phytol 212(1):192–207CrossRefPubMedPubMedCentralGoogle Scholar
  155. Volksch B, May R (2001) Biological control of Pseudomonas syringae pv. glycinea by epiphytic bacteria under field conditions. Microb Ecol 41:132–139PubMedPubMedCentralGoogle Scholar
  156. Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10:828–840CrossRefPubMedPubMedCentralGoogle Scholar
  157. Voříšková J, Baldrian P (2013) Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J 7:477–486CrossRefPubMedPubMedCentralGoogle Scholar
  158. Wagner MR, Lundberg DS, Tijana G, Tringe SG, Dangl JL, Mitchell-Olds T (2016) Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat Commun 7:1–15CrossRefGoogle Scholar
  159. Wallace J, Kremling KA, Kovar LL, Buckler ES (2018) Quantitative genetics of the maize leaf microbiome. Phytobiomes J.: In Press 2:208CrossRefGoogle Scholar
  160. Wang HB, Zhang ZX, Li H, He HB, Fang CX, Zhang AJ, Li QS, Chen RS, Guo XK, Lin HF, Wu LK, Lin S, Chen T, Lin RY, Peng XX, Lin WX (2011) Characterization of metaproteomics in crop rhizospheric soil. J Proteome Res 10:932–940CrossRefPubMedPubMedCentralGoogle Scholar
  161. Watanabe K, Kohzu A, Suda W, Yamamura S, Takamatsu T, Takenaka A, Koshikawa MK, Hayashi S, Watanabe M (2016) Microbial nitrification in through fall of a Japanese cedar associated with archaea from the tree canopy. Springerplus 5:1596CrossRefPubMedPubMedCentralGoogle Scholar
  162. Wildman HG, Parkinson D (1981) Seasonal changes in water-soluble carbohydrates on Populus tremuloides leaves. Can J Bot 59:862–869CrossRefGoogle Scholar
  163. Williams P (2007) Quorum sensing, communication and cross-kingdom signalling in the bacterial world. Microbiology 153:3923–3938CrossRefPubMedPubMedCentralGoogle Scholar
  164. Williams TR, Moyne AL, Harris LJ, Marco ML (2013) Season, irrigation, leaf age, and Escherichia coli inoculation influence the bacterial diversity in the lettuce phyllosphere. PLoS One 8:e68642CrossRefPubMedPubMedCentralGoogle Scholar
  165. Wilson M, Lindow SE (1994a) Ecological similarity and coexistence of epiphytic ice-nucleating (ice+) Pseudomonas syringae strains and a non-ice-nucleating (ice-) biological control agent. Appl Environ Microbiol 60:3128–3137PubMedPubMedCentralGoogle Scholar
  166. Wilson M, Lindow SE (1994b) Coexistence among epiphytic bacterial populations mediated through nutritional resource partitioning. Appl Environ Microbiol 60(12):4468–4477PubMedPubMedCentralGoogle Scholar
  167. Wu L, Wang H, Zhang Z, Lin R, Zhang Z, Lin W (2011) Comparative metaproteomic analysis on consecutively Rehmannia glutinosa-monocultured rhizosphere soil. PLoS One 6(5):e20611CrossRefPubMedPubMedCentralGoogle Scholar
  168. Xu Y, Zhao F (2018) Single-cell metagenomics: Challenges and applications. Protein Cell 9:501–510CrossRefPubMedPubMedCentralGoogle Scholar
  169. Yadav RKP, Kakamanoli K, Despoina V (2010) Estimating bacterial population on the phyllosphere by serial dilution plating and leaf imprint methods. Ecoprint: Int J Ecol 17:47–52CrossRefGoogle Scholar
  170. Yang CH, Crowley DE, Borneman J, Keen NT (2001) Microbial phyllosphere populations are more complex than previously realized. Proc Natl Acad Sci U S A 98:3889–3894CrossRefPubMedPubMedCentralGoogle Scholar
  171. Yashiro E, Spear RN, McManus PS (2011) Culture- dependent and culture independent assessment of bacteria in the apple phyllosphere. J Appl Microbiol 110:1284–1296CrossRefPubMedPubMedCentralGoogle Scholar
  172. Yeats TH, Rose JK (2013) The formation and function of plant cuticles. Plant Physiol 163:5–20CrossRefPubMedPubMedCentralGoogle Scholar
  173. Yoon HS, Price DC, Stepanauskas R, Rajah VD, Sieracki ME, Wilson WH, Yang EC, Duffy S, Bhattacharya D (2011) Single-cell genomics reveals organismal interactions in uncultivated marine protists. Science 332:714–717CrossRefPubMedPubMedCentralGoogle Scholar
  174. Yuen GY, Steadman JR, Lindgren DT, Schaff D, Jochum C (2001) Bean rust biological control using bacterial agents. Crop Prot 20:395–402CrossRefGoogle Scholar
  175. Zhang Z, Yuen GY (1999) Biological control of Bipolaris sorokiniana on tall fescue by Stenotrophomonas maltophilia strain C3. Phytopathology 89:817–822CrossRefPubMedPubMedCentralGoogle Scholar
  176. Zhang B, Bai Z, Hoefel D, Tang L, Wang X, Li B, Li Z, Zhuang G (2009) The impacts of cypermethrin pesticide application on the non-target microbial community of the pepper plant phyllosphere. Sci Total Environ 407:1915–1922CrossRefPubMedPubMedCentralGoogle Scholar
  177. Zhang Z, Luo L, Tan X, Kong X, Yang J, Wang D, Zhang D, Jin D, Liu Y (2018) Pumpkin powdery mildew disease severity influences the fungal diversity of the phyllosphere. Peer J 6:e4559CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Vegetable and Field Crops, Institute of Plant SciencesAgricultural Research Organization, Volcani CenterRishon LeZionIsrael

Personalised recommendations