Advertisement

The Advances of Biomacromolecule-based Nanomedicine in Brain Disease

  • Yuhua Weng
  • Yuanyu HuangEmail author
Chapter

Abstract

Brain diseases affect a sizable portion of people in the world. Various treatment modalities have been pursued to control, alleviate, or cure these disorders. Biomacromolecules, e.g., antibody, peptide, enzyme, cytokine, nucleic acid, etc., are one kind of important and promising therapeutic regimens that have forced researchers to make great efforts to realize their clinical applications. However, effective and safe systemic delivery of biomacromolecules into the brain faces diverse challenges such as insufficient drug administration, degradation in the blood, first pass clearance, physical brain barriers, off-target accumulation, immune response, and toxicity to normal tissues. Nanotechnology offers advanced strategies to address these problems through rational design and fabrication of biomacromolecule-loaded nanomedicine. In this chapter, we summarized the administration strategies to the brain and design concepts of various biomacromolecular nanomedicines, highlighted their recent advances in preclinical and clinical studies, and discussed the existing challenges and our perspectives on this field.

Keywords

Biomacromolecule Nanomedicine Antibody Peptide Enzyme Nucleic acid 

References

  1. 1.
    Lindsley CW, Lindsley CW, Lindsley CW. New 2016 data and statistics for global pharmaceutical products and projections through 2017. ACS Chem Neurosci. 2017;8(8):1635–6.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Alyautdin R, Khalin I, Nafeeza MI, Haron MH, Kuznetsov D. Nanoscale drug delivery systems and the blood-brain barrier. Int J Nanomedicine. 2014;9:795–811.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Azad TD, James P, Connolly ID, Austin R, Wilson CM, Grant GA. Therapeutic strategies to improve drug delivery across the blood-brain barrier. Neurosurg Focus. 2015;38(3):E9.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Saito R, Bringas JR, McKnight TR, Wendland MF, Mamot C, Drummond DC, Kirpotin DB, Park JW, Berger MS, Bankiewicz KS. Distribution of liposomes into brain and rat brain tumor models by convection-enhanced delivery monitored with magnetic resonance imaging. Cancer Res. 2004;64(7):2572–9.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Tian Y, Mi G, Chen Q, Chaurasiya B, Li Y, Shi D, Zhang Y, Webster TJ, Sun C, Shen Y. Acid-induced activated cell penetrating peptide modified cholesterol-conjugated polyoxyethylene sorbitol oleate mixed micelles for pH-triggered drug release and efficient brain tumor targeting based on a charge reversal mechanism. ACS Appl Mater Interfaces. 2018;10:43411.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Dwivedi N, Shah J, Mishra V, Mohd Amin MC, Iyer AK, Tekade RK, Kesharwani P. Dendrimer-mediated approaches for the treatment of brain tumor. J Biomater Sci Polym Ed. 2016;27(7):557–80.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Picone P, Sabatino MA, Ditta LA, Amato A, San Biagio PL, Mule F, Giacomazza D, Dispenza C, Di Carlo M. Nose-to-brain delivery of insulin enhanced by a nanogel carrier. J Control Release. 2018;270:23–36.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Elzoghby AO, Abd-Elwakil MM, Abd-Elsalam K, Elsayed MT, Hashem Y, Mohamed O. Natural polymeric nanoparticles for brain-targeting: implications on drug and gene delivery. Curr Pharm Des. 2016;22(22):3305–23.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Nigro A, Pellegrino M, Greco M, Comande A, Sisci D, Pasqua L, Leggio A, Morelli C. Dealing with skin and blood-brain barriers: the unconventional challenges of mesoporous silica nanoparticles. Pharmaceutics. 2018;10(4):E250.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Tomitaka A, Arami H, Huang Z, Raymond A, Rodriguez E, Cai Y, Febo M, Takemura Y, Nair M. Hybrid magneto-plasmonic liposomes for multimodal image-guided and brain-targeted HIV treatment. Nanoscale. 2017;10(1):184–94.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Banks WA. From blood-brain barrier to blood-brain interface: new opportunities for CNS drug delivery. Nat Rev Drug Discov. 2016;15(4):275–92.CrossRefGoogle Scholar
  12. 12.
    Keaney J, Campbell M. The dynamic blood-brain barrier. FEBS J. 2015;282(21):4067–79.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Banks WA. Characteristics of compounds that cross the blood-brain barrier. BMC Neurol. 2009;9(Suppl 1):S3.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Hladky SB, Barrand MA. Fluid and ion transfer across the blood-brain and blood-cerebrospinal fluid barriers; a comparative account of mechanisms and roles. Fluids and barriers of the CNS. 2016;13(1):19.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Segal MB. The choroid plexuses and the barriers between the blood and the cerebrospinal fluid. Cell Mol Neurobiol. 2000;20(2):183–96.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Davson H, Hollingsworth G, Segal MB. The mechanism of drainage of the cerebrospinal fluid. Brain J Neurol. 1970;93(4):665–78.CrossRefGoogle Scholar
  17. 17.
    Saunders N, Habgood M. Understanding barrier mechanisms in the developing brain to aid therapy for the dysfunctional brain. Future Neurol. 2011;6(2):187–99.CrossRefGoogle Scholar
  18. 18.
    Spector R, Johanson CE. The mammalian choroid plexus. Sci Am. 1989;261(5):68–74.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Wang Z, Cai XJ, Qin J, Xie FJ, Han N, Lu HY. The role of histamine in opening blood-tumor barrier. Oncotarget. 2016;7(21):31299–310.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Zhou W, Chen C, Shi Y, Wu Q, Gimple RC, Fang X, Huang Z, Zhai K, Ke SQ, Ping YF, Feng H, Rich JN, Yu JS, Bao S, Bian XW. Targeting glioma stem cell-derived pericytes disrupts the blood-tumor barrier and improves chemotherapeutic efficacy. Cell Stem Cell. 2017;21(5):591–603.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Wolak DJ, Thorne RG. Diffusion of macromolecules in the brain: implications for drug delivery. Mol Pharm. 2013;10(5):1492–504.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Saltzman WM, Radomsky ML. Drugs released from polymers: diffusion and elimination in brain tissue. Chem Eng Sci. 1991;46(10):2429–44.CrossRefGoogle Scholar
  23. 23.
    Nelson AL. Antibody fragments: hope and hype. MAbs. 2010;2(1):77–83.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    T. Yokota, ., D.E. Milenic, M. Whitlow, ., J. Schlom, . Rapid tumor penetration of a single-chain Fv and comparison with other immunoglobulin forms, Cancer Res 52(12) (1992) 3402–3408.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Jain RK. Physiological barriers to delivery of monoclonal antibodies and other macromolecules in tumors. Cancer Res. 1990;50(3 Suppl):814s–9s.PubMedGoogle Scholar
  26. 26.
    Lim ST, Airavaara M, Harvey BK. Viral vectors for neurotrophic factor delivery: a gene therapy approach for neurodegenerative diseases of the CNS. Pharm Res. 2010;61(1):14–26.CrossRefGoogle Scholar
  27. 27.
    Kamei N. Nose-to-brain delivery of peptide drugs enhanced by co-administration of cell-penetrating peptides: therapeutic potential for dementia. Yakugaku Zasshi : J Pharm Soc Jpn. 2017;137(10):1247–53.CrossRefGoogle Scholar
  28. 28.
    Joshi S, Cooke JRN, Ellis JA, Emala CW, Bruce JN. Targeting brain tumors by intra-arterial delivery of cell-penetrating peptides: a novel approach for primary and metastatic brain malignancy. J Neuro-Oncol. 2017;135(3):497–506.CrossRefGoogle Scholar
  29. 29.
    Mastakov MY, Baer K, Kotin RM, During MJ. Recombinant adeno-associated virus serotypes 2- and 5-mediated gene transfer in the mammalian brain: quantitative analysis of heparin co-infusion. Mol Ther. 2002;5(4):371–80.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Hamilton JF, Morrison PF, Chen MY, Harvey-White J, Pernaute RS, Phillips H, Oldfield E, Bankiewicz KS. Heparin coinfusion during convection-enhanced delivery (CED) increases the distribution of the glial-derived neurotrophic factor (GDNF) ligand family in rat striatum and enhances the pharmacological activity of neurturin. Exp Neurol. 2001;168(1):155–61.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Yu YJ, Zhang Y, Kenrick M, Hoyte K, Luk W, Lu Y, Atwal J, Elliott JM, Prabhu S, Watts RJ, Dennis MS. Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target. Sci Transl Med. 2011;3(84):84ra44.PubMedCrossRefGoogle Scholar
  32. 32.
    Carcaboso AM, Elmeliegy MJ, Juel SJ, Zhang ZM, Calabrese C, Tracey L, Waters CM, Stewart CF. Tyrosine kinase inhibitor gefitinib enhances topotecan penetration of gliomas. Cancer Res. 2010;70(11):4499–508.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Doyle L, Ross DD, et al. Oncogene. 2003;22(47):7340.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Enokizono J, Kusuhara H, Ose A, Schinkel AH, Sugiyama Y. Quantitative investigation of the role of breast cancer resistance protein (Bcrp/Abcg2) in limiting brain and testis penetration of xenobiotic compounds. Drug Metab Dispos. 2008;36(6):995.PubMedCrossRefGoogle Scholar
  35. 35.
    Salama NN, Kelly EJ, Bui T, Ho RJ. The impact of pharmacologic and genetic knockout of P-glycoprotein on nelfinavir levels in the brain and other tissues in mice. J Pharm Sci. 2005;94(6):1216–25.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Wong HL, Bendayan R, Rauth AM, Wu XY. Simultaneous delivery of doxorubicin and GG918 (Elacridar) by new polymer-lipid hybrid nanoparticles (PLN) for enhanced treatment of multidrug-resistant breast cancer. J Control Release. 2006;116(3):275–84.PubMedCrossRefGoogle Scholar
  37. 37.
    Glascock JJ, Osman EY, Coady TH, Rose FF, Shababi M, Lorson CL. Delivery of therapeutic agents through intracerebroventricular (ICV) and intravenous (IV) injection in mice. J Vis Exp Jove. 2010;56:e2968.Google Scholar
  38. 38.
    Tosi G, Musumeci T, Ruozi B, Carbone C, Belletti D, Pignatello R, Vandelli MA, Puglisi G. The “fate” of polymeric and lipid nanoparticles for brain delivery and targeting: strategies and mechanism of blood–brain barrier crossing and trafficking into the central nervous system. J Drug Delivery Sci Technol. 2016;32:66–76.CrossRefGoogle Scholar
  39. 39.
    Roland N, Fritz SR, Helmut E. Penetration of drugs through the blood-cerebrospinal fluid/blood-brain barrier for treatment of central nervous system infections. Clin Microbiol Rev. 2010;23(4):858–83.CrossRefGoogle Scholar
  40. 40.
    Duskey JT, Belletti D, Pederzoli F, Vandelli MA, Forni F, Ruozi B, Tosi G. Current strategies for the delivery of therapeutic proteins and enzymes to treat brain disorders. Int Rev Neurobiol. 2017;137:1–28.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Garg T, Bhandari S, Rath G, Goyal AK. Current strategies for targeted delivery of bio-active drug molecules in the treatment of brain tumor. J Drug Target. 2015;23(10):865–87.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Parrish KE, Sarkaria JN, Elmquist WF. Improving drug delivery to primary and metastatic brain tumors: strategies to overcome the blood-brain barrier. Clin Pharmacol Ther. 2015;97(4):336–46.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    R.H. Bobo, D.W. Laske, A. Akbasak, ., P.F. Morrison, R.L. Dedrick, E.H. Oldfield, Convection-enhanced delivery of macromolecules in the brain, Proc Natl Acad Sci U S A 91(6) (1994) 2076–2080.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Raghu R, Brady ML, Andreas H, Christoph P, Sampson JH. Convection-enhanced delivery of therapeutics for brain disease, and its optimization. Neurosurg Focus. 2006;20(4):E12.CrossRefGoogle Scholar
  45. 45.
    Barua NU, Gill SS, Seth L. Convection-enhanced drug delivery to the brain: therapeutic potential and neuropathological considerations. Brain Pathol. 2014;24(2):117–27.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Betbeder D, Spérandio S, Latapie JP, Nadaí JD, Etienne A, Zajac JM, Francés B. Biovector™ nanoparticles improve Antinociceptive efficacy of nasal morphine. Pharm Res. 2000;17(6):743–8.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Illum L. Is nose-to-brain transport of drugs in man a reality? J Pharm Pharmacol. 2010;56(1):3–17.CrossRefGoogle Scholar
  48. 48.
    Xiaoling G, Weixing T, Wei L, Qizhi Z, Yan Z, Xinguo J, Shoukuan F. Lectin-conjugated PEG-PLA nanoparticles: preparation and brain delivery after intranasal administration. Biomaterials. 2006;27(18):3482–90.CrossRefGoogle Scholar
  49. 49.
    Ruan Y, Yao L, Zhang B, Zhang S, Guo J. Nanoparticle-mediated delivery of neurotoxin-II to the brain with intranasal administration: an effective strategy to improve antinociceptive activity of neurotoxin. Drug Dev Ind Pharm. 2012;38(1):123–8.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Kumar M, Pandey RS, Patra KC, Jain SK, Soni ML, Dangi JS, Madan J. Evaluation of neuropeptide loaded trimethyl chitosan nanoparticles for nose to brain delivery. Int J Biol Macromol. 2013;61(10):189–95.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Alsarra IA, Hamed AY, Alanazi FK, Maghraby GME. Vesicular Systems for Intranasal Drug Delivery. NeuroMethods. 2010;45:175–203.CrossRefGoogle Scholar
  52. 52.
    Hongbing W, Kaili H, Xinguo J. From nose to brain: understanding transport capacity and transport rate of drugs. Expert Opin Drug Deliv. 2008;5(10):1159–68.CrossRefGoogle Scholar
  53. 53.
    Siew A, Le H, Thiovolet M, Gellert P, Schatzlein A, Uchegbu I. Enhanced oral absorption of hydrophobic and hydrophilic drugs using quaternary ammonium palmitoyl glycol chitosan nanoparticles. Mol Pharm. 2012;9(1):14–28.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Chooi KW, Carlos MIS, Soundararajan R, Gaisford S, Arifin N, Schätzlein AG, Uchegbu IF. Physical characterisation and Long-term stability studies on quaternary ammonium Palmitoyl glycol chitosan (GCPQ)—a new drug delivery polymer. J Pharm Sci. 2014;103(8):2296–306.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Lalatsa A, Garrett NL, Ferrarelli T, Moger J, Schatzlein AG, Uchegbu IF. Delivery of peptides to the blood and brain after oral uptake of quaternary ammonium palmitoyl glycol chitosan nanoparticles. Mol Pharm. 2012;9(6):1764–74.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    S. Nakano, ., K. Matsukado, ., K.L. Black, Increased brain tumor microvessel permeability after intracarotid bradykinin infusion is mediated by nitric oxide, Cancer Res 56(17) (1996) 4027–4031.PubMedPubMedCentralGoogle Scholar
  57. 57.
    E.A. Neuwelt, M. Glasberg, ., J. Diehl, ., E.P. Frenkel, P. Barnett, . Osmotic blood-brain barrier disruption in the posterior fossa of the dog, J Neurosurg 55(5) (1981) 742–748.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    John BA, Apostolos TJ, Christoph HP, Ilhami K, Sherese F, Kartik K, Stephen SM, Susan PC, Theodore SH, Philip S. Safety and maximum tolerated dose of superselective intraarterial cerebral infusion of bevacizumab after osmotic blood-brain barrier disruption for recurrent malignant glioma. Clinical article. J Neurosurg. 2011;114(3):624.CrossRefGoogle Scholar
  59. 59.
    G. Nilaver, ., L.L. Muldoon, R.A. Kroll, M.A. Pagel, X.O. Breakefield, B.L. Davidson, E.A. Neuwelt, Delivery of herpesvirus and adenovirus to nude rat intracerebral tumors after osmotic blood-brain barrier disruption, Proc Natl Acad Sci U S A 92(21) (1995) 9829–9833.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    K. Matsukado, ., T. Inamura, ., S. Nakano, ., M. Fukui, ., R.T. Bartus, K.L. Black, Enhanced tumor uptake of carboplatin and survival in glioma-bearing rats by intracarotid infusion of bradykinin analog, RMP-7, Neurosurgery 39(1) (1996) 125–133.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Nickolai S, Nathan MD, Shipra S, Kullervo H. Effect of focused ultrasound applied with an ultrasound contrast agent on the tight junctional integrity of the brain microvascular endothelium. Ultrasound Med Biol. 2008;34(7):1093–104.CrossRefGoogle Scholar
  62. 62.
    Park J, Aryal M, Vykhodtseva N, Zhang YZ, Mcdannold N. Evaluation of permeability, doxorubicin delivery, and drug retention in a rat brain tumor model after ultrasound-induced blood-tumor barrier disruption. J Control Release. 2017;250:77–85.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Alison B, Kullervo H. Noninvasive and targeted drug delivery to the brain using focused ultrasound. ACS Chem Neurosci. 2013;4(4):519.CrossRefGoogle Scholar
  64. 64.
    Yao L, Song Q, Bai W, Zhang J, Miao D, Jiang M, Wang Y, Shen Z, Hu Q, Gu X. Facilitated brain delivery of poly (ethylene glycol)-poly (lactic acid) nanoparticles by microbubble-enhanced unfocused ultrasound. Biomaterials. 2014;35(10):3384–95.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Hao-Li L, Mu-Yi H, Hung-Wei Y, Chiung-Yin H, Po-Chun C, Jia-Shin W, I-Chou T, Jiun-Jie W, Tzu-Chen Y, Pin-Yuan C. Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain. Proc Natl Acad Sci U S A. 2010;107(34):15205–10.CrossRefGoogle Scholar
  66. 66.
    Jeffrey LJ, Robert TG. Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev. 2012;64(7):614–28.CrossRefGoogle Scholar
  67. 67.
    Lalatsa A, Schatzlein AG, Uchegbu IF. Strategies to deliver peptide drugs to the brain. Mol Pharm. 2014;11(4):1081–93.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Visser CC, Voorwinden LH, Crommelin DJ, Danhof M, de Boer AG. Characterization and modulation of the transferrin receptor on brain capillary endothelial cells. Pharm Res. 2004;21(5):761–9.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Pardridge WM, Boado RJ. Reengineering biopharmaceuticals for targeted delivery across the blood-brain barrier. Methods Enzymol. 2012;503:269–92.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Pardridge WM. Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab. 2012;32(11):1959–72.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Sun H, Su J, Meng Q, Yin Q, Chen L, Gu W, Zhang P, Zhang Z, Yu H, Wang S. Cancer-cell-biomimetic nanoparticles for targeted therapy of homotypic tumors. Adv Mater. 2016;28(43):9581–8.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Luk BT, Jiang Y, Copp JA, Hu CJ, Krishnan N, Gao W, Li S, Fang RH, Zhang L. Biomimetic targeting of nanoparticles to immune cell subsets via cognate antigen interactions. Mol Pharm. 2018;15:3723.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Taurin S, Nehoff H, Aswegen TV, Greish K. Tumor vasculature, EPR effect, and anticancer nanomedicine: connecting the dots. In: Cancer targeted drug delivery: an elusive dream. New York: Springer; 2013.Google Scholar
  74. 74.
    Maedaa H, Daruwalla J. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur J Pharm Biopharm. 2009;71(3):409–19.CrossRefGoogle Scholar
  75. 75.
    Yi X, Kabanov AV. Brain delivery of proteins via their fatty acid and block copolymer modifications. J Drug Target. 2013;21(10):940–55.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Kinstler O, Molineux G, Treuheit M, Ladd D, Gegg C. Mono-N-terminal poly(ethylene glycol)–protein conjugates. Adv Drug Deliv Rev. 2002;54(4):477–85.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Lei T, Jingquan L, Davis TP. Branched polymer-protein conjugates made from mid-chain-functional P(HPMA). Biomacromolecules. 2009;10(10):2847–51.CrossRefGoogle Scholar
  78. 78.
    Kratz F. Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Control Release. 2008;132(3):171–83.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Wilson B, Lavanya Y, Priyadarshini SR, Ramasamy M, Jenita JL. Albumin nanoparticles for the delivery of gabapentin: preparation, characterization and pharmacodynamic studies. Int J Pharm. 2014;473(1–2):73–9.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Tarun G, Animesh K, Goutam R, Goyal AK. Gastroretentive drug delivery systems for therapeutic management of peptic ulcer. Crit Rev Ther Drug Carrier Syst. 2014;31(6):531–57.CrossRefGoogle Scholar
  81. 81.
    Green MR, Manikhas GS, Afanasyev B, Makhson AM, Bhar P, Hawkins MJ. Abraxane, a novel Cremophor-free, albumin-bound particle form of paclitaxel for the treatment of advanced non-small-cell lung cancer. Ann Oncol. 2006;17(8):1263–8.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Lin T, Zhao P, Jiang Y, Tang Y, Jin H, Pan Z, He H, Yang VC, Huang Y. Blood–brain-barrier-penetrating albumin nanoparticles for biomimetic drug delivery via albumin-binding protein pathways for antiglioma therapy. ACS Nano. 2016;10(11):9999–10012.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Blaire OL, Henrik OS, Bernardetta N, James MH, Joe ZXH, Andrew G, Gordon M, Liubov ZS, Cynthia S. Pharmacokinetic and pharmacodynamic studies of a human serum albumin-interferon-alpha fusion protein in cynomolgus monkeys. J Pharmacol Exp Ther. 2002;303(2):540–8.CrossRefGoogle Scholar
  84. 84.
    Balan V, Sulkowski M, Nelson D, Everson G, Bambury T, Recta J, Zhong J, Mesghali H, Murray J, Osborn B. 313 A 1/2phase study to evaluate the pharmacokinetics, safety, tolerability, immunogenicity, and pharmacodynamics of Albuferon™ in the treatment experienced subjects with chronic hepatitis C. Hepatology. 2003;38(5):307.CrossRefGoogle Scholar
  85. 85.
    Yun X, Maximov VD, Yu J, Zhu G, Vertegel AA, Kindy MS. Nanoparticles for targeted delivery of antioxidant enzymes to the brain after cerebral ischemia and reperfusion injury. J Cereb Blood Flow Metab. 2013;33(4):583–92.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Zhao YZ, Lin M, Lin Q, Yang W, Yu XC, Tian FR, Mao KL, Yang JJ, Lu CT, Wong HL. Intranasal delivery of bFGF with nanoliposomes enhances in vivo neuroprotection and neural injury recovery in a rodent stroke model. J Control Release. 2016;224:165–75.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Wang X, Bodman A, Shi C, Guo D, Wang L, Luo J, Hall WA. Tunable Lipidoid-Telodendrimer hybrid nanoparticles for intracellular protein delivery in brain tumor treatment. Small. 2016;12(31):4185–92.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    K. Michaelis, ., M.M. Hoffmann, S. Dreis, ., E. Herbert, ., R.N. Alyautdin, M. Michaelis, ., J. Kreuter, ., K. Langer, . Covalent linkage of apolipoprotein e to albumin nanoparticles strongly enhances drug transport into the brain, J Pharmacol Exp Ther 317(3) (2006) 1246.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Abakumov MA, Nukolova NV, Sokolsky-Papkov M, Shein SA, Sandalova TO, Vishwasrao HM, Grinenko NF, Gubsky IL, Abakumov AM, Kabanov AV, Chekhonin VP. VEGF-targeted magnetic nanoparticles for MRI visualization of brain tumor. Nanomedicine. 2015;11(4):825–33.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Spencer B, Emadi S, Desplats P, Eleuteri S, Michael S, Kosberg K, Shen J, Rockenstein E, Patrick C, Adame A, Gonzalez T, Sierks M, Masliah E. ESCRT-mediated uptake and degradation of brain-targeted alpha-synuclein single chain antibody attenuates neuronal degeneration in vivo. Mol Ther. 2014;22(10):1753–67.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Chaturvedi M, Molino Y, Sreedhar B, Khrestchatisky M, Kaczmarek L. Tissue inhibitor of matrix metalloproteinases-1 loaded poly(lactic-co-glycolic acid) nanoparticles for delivery across the blood-brain barrier. Int J Nanomedicine. 2014;9:575–88.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Liu Z, Jiang M, Kang T, Miao D, Gu G, Song Q, Yao L, Hu Q, Tu Y, Pang Z, Chen H, Jiang X, Gao X, Chen J. Lactoferrin-modified PEG-co-PCL nanoparticles for enhanced brain delivery of NAP peptide following intranasal administration. Biomaterials. 2013;34(15):3870–81.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Chertok B, David AE, Yang VC. Delivery of functional proteins to brain tumor using MRI-monitored, magnetically-targeted nanoparticles. J Control Release. 2008;132(3):e61–2.CrossRefGoogle Scholar
  94. 94.
    Lindqvist A, Rip J, Gaillard PJ, Bjorkman S, Hammarlund-Udenaes M. Enhanced brain delivery of the opioid peptide DAMGO in glutathione pegylated liposomes: a microdialysis study. Mol Pharm. 2013;10(5):1533–41.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Zhao Y, Haney MJ, Mahajan V, Reiner BC, Dunaevsky A, Mosley RL, Kabanov AV, Gendelman HE, Batrakova EV. Active targeted macrophage-mediated delivery of catalase to affected brain regions in models of Parkinson’s disease. J Nanosci Nanotechnol. 2011;01:S4.Google Scholar
  96. 96.
    Morris MC, Deshayes S, Heitz F, Divita G. Cell-penetrating peptides: from molecular mechanisms to therapeutics. Biol Cell. 2008;100(4):201–17.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Eiriksdottir E, Konate K, Langel U, Divita G, Deshayes S. Secondary structure of cell-penetrating peptides controls membrane interaction and insertion. Biochim Biophys Acta. 2010;1798(6):1119–28.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Herve F, Ghinea N, Scherrmann JM. CNS delivery via adsorptive transcytosis. AAPS J. 2008;10(3):455–72.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Kumar P, Wu H, McBride JL, Jung KE, Kim MH, Davidson BL, Lee SK, Shankar P, Manjunath N. Transvascular delivery of small interfering RNA to the central nervous system. Nature. 2007;448(7149):39–43.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Park TE, Singh B, Li H, Lee JY, Kang SK, Choi YJ, Cho CS. Enhanced BBB permeability of osmotically active poly(mannitol-co-PEI) modified with rabies virus glycoprotein via selective stimulation of caveolar endocytosis for RNAi therapeutics in Alzheimer’s disease. Biomaterials. 2015;38:61–71.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Haroon MM, Dar GH, Jeyalakshmi D, Venkatraman U, Saba K, Rangaraj N, Patel AB, Gopal V. A designed recombinant fusion protein for targeted delivery of siRNA to the mouse brain. J Control Release. 2016;228:120–31.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Kim JY, Choi WI, Kim YH, Tae G. Brain-targeted delivery of protein using chitosan- and RVG peptide-conjugated, pluronic-based nano-carrier. Biomaterials. 2013;34(4):1170–8.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Demeule M, Currie JC, Bertrand Y, Che C, Nguyen T, Regina A, Gabathuler R, Castaigne JP, Beliveau R. Involvement of the low-density lipoprotein receptor-related protein in the transcytosis of the brain delivery vector angiopep-2. J Neurochem. 2008;106(4):1534–44.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Bertrand Y, Currie JC, Demeule M, Regina A, Che C, Abulrob A, Fatehi D, Sartelet H, Gabathuler R, Castaigne JP, Stanimirovic D, Beliveau R. Transport characteristics of a novel peptide platform for CNS therapeutics. J Cell Mol Med. 2010;14(12):2827–39.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Thomas FC, Kunal T, Vinay R, Satyanarayana G, Thorsheim HR, Gaasch JA, Mittapalli RK, Diane P, Steeg PS, Lockman PR. Uptake of ANG1005, a novel paclitaxel derivative, through the blood-brain barrier into brain and experimental brain metastases of breast cancer. Pharm Res. 2009;26(11):2486.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Regina A, Demeule M, Che C, Lavallee I, Poirier J, Gabathuler R, Beliveau R, Castaigne JP. Antitumour activity of ANG1005, a conjugate between paclitaxel and the new brain delivery vector Angiopep-2. Br J Pharmacol. 2008;155(2):185–97.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Hao Y, Zhang B, Zheng C, Ji R, Ren X, Guo F, Sun S, Shi J, Zhang H, Zhang Z, Wang L, Zhang Y. The tumor-targeting core-shell structured DTX-loaded PLGA@Au nanoparticles for chemo-photothermal therapy and X-ray imaging. J Control Release. 2015;220(Pt A):545–55.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Huang R, Ma H, Guo Y, Liu S, Kuang Y, Shao K, Li J, Liu Y, Han L, Huang S, An S, Ye L, Lou J, Jiang C. Angiopep-conjugated nanoparticles for targeted long-term gene therapy of Parkinson’s disease. Pharm Res. 2013;30(10):2549–59.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Yan H, Wang L, Wang J, Weng X, Lei H, Wang X, Jiang L, Zhu J, Lu W, Wei X, Li C. Two-order targeted brain tumor imaging by using an optical/paramagnetic nanoprobe across the blood brain barrier. ACS Nano. 2012;6(1):410–20.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    S. Zhang, ., T. Holmes, ., C. Lockshin, ., A. Rich, . Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane, Proc Natl Acad Sci U S A 90(8) (1993) 3334–3338.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Ulijn RV, Smith AM. Designing peptide based nanomaterials. Chem Soc Rev. 2008;37(4):664–75.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Zhang S, Marini DM, Hwang W, Santoso S. Design of nanostructured biological materials through self-assembly of peptides and proteins. Curr Opin Chem Biol. 2002;6(6):865–71.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Mazza M, Notman R, Anwar J, Rodger A, Hicks M, Parkinson G, McCarthy D, Daviter T, Moger J, Garrett N, Mead T, Briggs M, Schatzlein AG, Uchegbu IF. Nanofiber-based delivery of therapeutic peptides to the brain. ACS Nano. 2013;7(2):1016–26.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Pang Z, Lu W, Gao H, Hu K, Chen J, Zhang C, Gao X, Jiang X, Zhu C. Preparation and brain delivery property of biodegradable polymersomes conjugated with OX26. J Control Release. 2008;128(2):120–7.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Aktas Y, Yemisci M, Andrieux K, Gursoy RN, Alonso MJ, Fernandez-Megia E, Novoa-Carballal R, Quinoa E, Riguera R, Sargon MF, Celik HH, Demir AS, Hincal AA, Dalkara T, Capan Y, Couvreur P. Development and brain delivery of chitosan-PEG nanoparticles functionalized with the monoclonal antibody OX26. Bioconjug Chem. 2005;16(6):1503–11.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Yue PJ, He L, Qiu SW, Li Y, Liao YJ, Li XP, Xie D, Peng Y. OX26/CTX-conjugated PEGylated liposome as a dual-targeting gene delivery system for brain glioma. Mol Cancer. 2014;13(1):191.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Shi N, Zhang Y, Zhu C, Boado RJ, Pardridge WM. Brain-specific expression of an exogenous gene after i.v. administration. Proc Natl Acad Sci U S A. 2001;98(22):12754–9.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Battaglia L, Gallarate M, Peira E, Chirio D, Solazzi I, Giordano SM, Gigliotti CL, Riganti C, Dianzani C. Bevacizumab loaded solid lipid nanoparticles prepared by the coacervation technique: preliminary in vitro studies. Nanotechnology. 2015;26(25):255102.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Carradori D, Balducci C, Re F, Brambilla D, Le Droumaguet B, Flores O, Gaudin A, Mura S, Forloni G, Ordonez-Gutierrez L, Wandosell F, Masserini M, Couvreur P, Nicolas J, Andrieux K. Antibody-functionalized polymer nanoparticle leading to memory recovery in Alzheimer’s disease-like transgenic mouse model. Nanomedicine. 2018;14(2):609–18.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Giovanni T, Luca B, Barbara R, Anna Valeria V, Lucia B, Anna F, Francesco R, Flavio F, Maria Angela V. Can leptin-derived sequence-modified nanoparticles be suitable tools for brain delivery? Nanomedicine. 2012;7(3):365–82.CrossRefGoogle Scholar
  121. 121.
    Ruan S, Yuan M, Zhang L, Hu G, Chen J, Cun X, Zhang Q, Yang Y, He Q, Gao H. Tumor microenvironment sensitive doxorubicin delivery and release to glioma using angiopep-2 decorated gold nanoparticles. Biomaterials. 2015;37:425–35.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Ruan S, Qian J, Shen S, Chen J, Zhu J, Jiang X, He Q, Yang W, Gao H. Fluorescent carbonaceous nanodots for noninvasive glioma imaging after angiopep-2 decoration. Bioconjug Chem. 2014;25(12):2252–9.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Tang SC, Bates S, Kesari S, Brenner AJ, Anders CK, Garcia A, Ibrahim NK, Tkaczuk K, Kumthekar P. Abstract P6-17-04: A phase II, open-label, multi-center study of ANG1005, a novel brain-penetrant taxane derivative, in breast cancer patients with recurrent CNS metastases. Cancer Res. 2016;76(4 Supplement):P6-17-04.Google Scholar
  124. 124.
    Yong L, Pan Y, Shi Y, Huang X, Jia N, Jiang J. Delivery of large molecules via poly(butyl cyanoacrylate) nanoparticles into the injured rat brain. Nanotechnology. 2012;23(23):165101.Google Scholar
  125. 125.
    Vinzant N, Scholl JL, Wu CM, Kindle T, Koodali R, Forster GL. Iron oxide nanoparticle delivery of peptides to the brain: reversal of anxiety during drug withdrawal. Front Neurosci. 2017;11:608.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Mamot C, Drummond DC, Noble CO, Kallab V, Guo Z, Hong K, Kirpotin DB, Park JW. Epidermal growth factor receptor-targeted immunoliposomes significantly enhance the efficacy of multiple anticancer drugs in vivo. Cancer Res. 2005;65(24):11631–8.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Muthusamy J, Ansell SM, Mui BL, Tam KY, Jianxin C, Xinyao D, David B, Laxman E, Shigeo M, Narayanannair JK. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew Chem. 2012;51(34):8529–33.CrossRefGoogle Scholar
  128. 128.
    Wei L, Guo XY, Yang T, Yu MZ, Chen DW, Wang JC. Brain tumor-targeted therapy by systemic delivery of siRNA with transferrin receptor-mediated core-shell nanoparticles. Int J Pharm. 2016;510(1):394–405.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Rungta RL, Choi HB, Lin PJ, Ko RW, Ashby D, Nair J, Manoharan M, Cullis PR, Macvicar BA. Lipid nanoparticle delivery of siRNA to silence neuronal gene expression in the brain. Mol Ther–Nucleic Acids. 2013;2(12):e136.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Dwarki VJ, Malone RW, Verma IM, Wu R. Cationic liposome-mediated RNA transfection. Proc Natl Acad Sci U S A. 1989;86(16):6077–81.CrossRefGoogle Scholar
  131. 131.
    Kwok A. The challenges and current advances in delivering RNAi as therapeutics. Berlin/Heidelberg: Springer; 2013.CrossRefGoogle Scholar
  132. 132.
    Jiehua Z, Shum KT, Burnett JC, Rossi JJ. Nanoparticle-based delivery of RNAi therapeutics: Progress and challenges. Pharmaceuticals. 2013;6(1):85–107.CrossRefGoogle Scholar
  133. 133.
    Zheng M, Tao W, Zou Y, Farokhzad OC, Shi B. Nanotechnology-based strategies for siRNA brain delivery for disease therapy. Trends Biotechnol. 2018;36(5):562–75.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Dalby B, Cates S, Harris A, Ohki EC, Tilkins ML, Price PJ, Ciccarone VC. Advanced transfection with Lipofectamine 2000 reagent: primary neurons, siRNA, and high-throughput applications. Methods. 2004;33(2):95–103.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Julia B, Meng D, Sebastian T, Kamilla P, Elke K, Godehard F, Ulrich S, Claus-Michael L, Ulrich K, Mürdter TE. Efficient telomerase inhibition in human non-small cell lung cancer cells by liposomal delivery of 2′-O-methyl-RNA. J Pharm Sci. 2010;98(5):1765–74.Google Scholar
  136. 136.
    Xingfang S, Jennifer F, Kavanagh DG, Irvine DJ. In vitro and in vivo mRNA delivery using lipid-enveloped pH-responsive polymer nanoparticles. Mol Pharm. 2011;8(3):774–87.CrossRefGoogle Scholar
  137. 137.
    Kormann MSD, Günther H, Aneja MK, Gabriela N, Flemmer AW, Susanne HJ, Marceline H, Mays LE, Marta I, Andrea S. Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nat Biotechnol. 2011;29(2):154–7.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Thess A, Grund S, Mui BL, Hope MJ, Baumhof P, Fotin-Mleczek M, Schlake T. Sequence-engineered mRNA without chemical nucleoside modifications enables an effective protein therapy in large animals. Mol Ther. 2015;23(9):1456–64.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Gomesdasilva LC, Fonseca NA, Moura V, Mc PDL, Simões S, Moreira JN. Lipid-based nanoparticles for siRNA delivery in cancer therapy: paradigms and challenges. Acc Chem Res. 2012;45(7):1163.CrossRefGoogle Scholar
  140. 140.
    Joppi R, Bertele V, Garattini S. Orphan drugs, orphan diseases. The first decade of orphan drug legislation in the EU. Eur J Clin Pharmacol. 2013;69(4):1009–24.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Yang ZZ, Li JQ, Wang ZZ, Dong DW, Qi XR. Tumor-targeting dual peptides-modified cationic liposomes for delivery of siRNA and docetaxel to gliomas. Biomaterials. 2014;35(19):5226–39.PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Keam SJ. Inotersen: first global approval. Drugs. 2018;78:1–6.CrossRefGoogle Scholar
  143. 143.
    Benson MD, Waddington-Cruz M, Berk JL, Polydefkis M, Dyck PJ, Wang AK, Plante-Bordeneuve V, Barroso FA, Merlini G, Obici L, Scheinberg M, Brannagan TH 3rd, Litchy WJ, Whelan C, Drachman BM, Adams D, Heitner SB, Conceicao I, Schmidt HH, Vita G, Campistol JM, Gamez J, Gorevic PD, Gane E, Shah AM, Solomon SD, Monia BP, Hughes SG, Kwoh TJ, McEvoy BW, Jung SW, Baker BF, Ackermann EJ, Gertz MA, Coelho T. Inotersen treatment for patients with hereditary transthyretin amyloidosis. N Engl J Med. 2018;379(1):22–31.PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Yurek DM, Flectcher AM, Kowalczyk TH, Padegimas L, Cooper MJ. Compacted DNA nanoparticle gene transfer of GDNF to the rat striatum enhances the survival of grafted fetal dopamine neurons. Cell Transplant. 2009;18(10):1183–96.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Yurek DM, Hasselrot U, Cass WA, Sesenoglu-Laird O, Padegimas L, Cooper MJ. Age and lesion-induced increases of GDNF transgene expression in brain following intracerebral injections of DNA nanoparticles. Neuroscience. 2015;284:500–12.PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Ugur S, Katalin K, Türeci Ö. mRNA-based therapeutics--developing a new class of drugs. Nat Rev Drug Discov. 2014;13(10):759–80.CrossRefGoogle Scholar
  147. 147.
    Kreiter S, Diken M, Selmi A, Türeci Ö, Sahin U. Tumor vaccination using messenger RNA: prospects of a future therapy. Curr Opin Immunol. 2011;23(3):399–406.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Axel H, Doris C, Jens D, Donna Y, Maurice MA, Lallas CD, Philipp D, Donna N, Eli G, Johannes V. Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. J Clin Investig. 2002;109(3):409–17.CrossRefGoogle Scholar
  149. 149.
    Geall AJ, Mandl CW, Ulmer JB. RNA: the new revolution in nucleic acid vaccines. Semin Immunol. 2013;25(2):152–9.PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Wong HL, Wu XY, Bendayan R. Nanotechnological advances for the delivery of CNS therapeutics. Adv Drug Deliv Rev. 2012;64(7):686–700.PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Hussain SM, Javorina AM, Schrand AK, Duhart HM, Ali SF, Schlager JJ. The interaction of manganese nanoparticles with PC-12 cells induces dopamine depletion. Toxicol Sci. 2006;92(2):456–63.PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Wang J, Rahman MF, Duhart HM, Newport GD, Patterson TA, Murdock RC, Hussain SM, Schlager JJ, Ali SF. Expression changes of dopaminergic system-related genes in PC12 cells induced by manganese, silver, or copper nanoparticles. Neurotoxicology. 2009;30(6):926–33.PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Hu YL, Gao JQ. Potential neurotoxicity of nanoparticles. Int J Pharm. 2010;394(1):115–21.PubMedCrossRefGoogle Scholar
  154. 154.
    Wu J, Wang C, Sun J, Xue Y. Neurotoxicity of silica nanoparticles: brain localization and dopaminergic neurons damage pathways. ACS Nano. 2011;5(6):4476–89.PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Xiaoyong D, Qixia L, Wenting C, Yanli W, Minghong W, Haijiao Z, Zheng J. Nanosized zinc oxide particles induce neural stem cell apoptosis. Nanotechnology. 2009;20(11):115101.CrossRefGoogle Scholar
  156. 156.
    Long TC, Saleh N, Tilton RD, Lowry GV, Veronesi B. Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity. Environ Sci Technol. 2006;40(14):4346–52.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Life Science, Advanced Research Institute of Multidisciplinary Science, and Institute of Engineering MedicineBeijing Institute of TechnologyBeijingChina

Personalised recommendations