The Strategies of Nanomaterials for Drug Delivery and Release

  • Jinjin Wang
  • Qianqian Huang
  • Xing-Jie LiangEmail author


Various strategies have sprung to explore appropriate solutions for delivering therapeutic agents into the brain. Recently, breakthroughs of nanomedicines provide an excellent window for brain targeting and thus can be effectively used to treat a wide variety of brain diseases. This chapter comprehensively depicts various types of nanoformulations and novel drug delivery and release approaches of nanotechnology-based drug delivery systems in brain disease. Moreover, the shortages of advanced nanotechnology-based drug delivery system are also discussed in the last part to broaden the understanding of the design of nanomedicines for brain drug delivery and release.


Brain diseases Nanotechnology-based drug delivery system Response release Target 



This work was supported by the Natural Science Foundation key project (31630027 and 31430031) and NSFC-DFG project (31761133013).

Compliance and Ethics

The author(s) declare that they have no conflict of interest.


  1. 1.
    Gao H, Pang Z, Jiang X. Targeted delivery of nano-therapeutics for major disorders of the central nervous system. Pharm Res. 2013;30(10):2485–98.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Pardridge WM. Drug targeting to the brain. Pharm Res. 2007;24(9):1733–44.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Goswami L, Kothiyal P. Current and future trend in nanotechnology: a review. Dialogue. 1981.Google Scholar
  4. 4.
    Sarkar A, Fatima I, Jamal QMS, Sayeed U, Khan MKA, et al. Nanoparticles as a carrier system for drug delivery across blood brain barrier. Curr Drug Metab. 2017;18(2):129–37.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Chen Y, Liu L. Modern methods for delivery of drugs across the blood-brain barrier. Adv Drug Deliv Rev. 2012;64(7):640–65.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Dikpati A, Madgulkar AR, Kshirsagar SJ, Bhalekar MR, Chahal AS. Targeted drug delivery to CNS using nanoparticles. J Adv Pharm Sci. 2012;2:179–91.Google Scholar
  7. 7.
    Bhaskar S, Tian F, Stoeger T, Kreyling W, de la Fuente JM, et al. Multifunctional Nanocarriers for diagnostics, drug delivery and targeted treatment across blood-brain barrier: perspectives on tracking and neuroimaging. Part Fibre Toxicol. 2010;7(1):3.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Koo YE, Reddy GR, Bhojani M, Schneider R, Philbert MA, et al. Brain cancer diagnosis and therapy with nanoplatforms. Adv Drug Deliv Rev. 2006;58(14):1556–77.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Kim JY, Choi WI, Kim YH, Tae G. Brain-targeted delivery of protein using chitosan- and RVG peptide-conjugated, pluronic-based nano-carrier. Biomaterials. 2013;34(4):1170–8.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Malhotra M, Tomaro-Duchesneau C, Prakash S. Synthesis of TAT peptide-tagged PEGylated chitosan nanoparticles for siRNA delivery targeting neurodegenerative diseases. Biomaterials. 2013;34(4):1270–80.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Meng Q, Wang A, Hua H, Jiang Y, Wang Y, et al. Intranasal delivery of Huperzine A to the brain using lactoferrin-conjugated N-trimethylated chitosan surface-modified PLGA nanoparticles for treatment of Alzheimer’s disease. Int J Nanomedicine. 2018;13:705–18.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Fang Z, Chen S, Qin J, Chen B, Ni G, et al. Pluronic P85-coated poly(butylcyanoacrylate) nanoparticles overcome phenytoin resistance in P-glycoprotein overexpressing rats with lithium-pilocarpine-induced chronic temporal lobe epilepsy. Biomaterials. 2016;97:110–21.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Hwang DW, Son S, Jang J, Youn H, Lee S, et al. A brain-targeted rabies virus glycoprotein-disulfide linked PEI nanocarrier for delivery of neurogenic microRNA. Biomaterials. 2011;32(21):4968–75.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Song H, Wei M, Zhang N, Li H, Tan X, et al. Enhanced permeability of blood-brain barrier and targeting function of brain via borneol-modified chemically solid lipid nanoparticle. Int J Nanomedicine. 2018;13:1869–79.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Lee K, David AE, Zhang J, Shin MC, Yang VC. Enhanced accumulation of theranostic nanoparticles in brain tumor by external magnetic field mediated in situ clustering of magnetic nanoparticles. J Ind Eng Chem. 2017;54:389–97.CrossRefGoogle Scholar
  16. 16.
    Shen Z, Liu T, Li Y, Lau J, Yang Z, et al. Fenton-Reaction-Acceleratable magnetic nanoparticles for Ferroptosis therapy of Orthotopic brain tumors. ACS Nano. 2018;12(11):11355–65.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Nasr SH, Kouyoumdjian H, Mallett C, Ramadan S, Zhu DC, et al. Detection of beta-amyloid by Sialic acid coated bovine serum albumin magnetic nanoparticles in a mouse model of Alzheimer’s disease. Small. 2018;14(3):1701828.CrossRefGoogle Scholar
  18. 18.
    Zarebkohan A, Najafi F, Moghimi HR, Hemmati M, Deevband MR, et al. Synthesis and characterization of a PAMAM dendrimer nanocarrier functionalized by SRL peptide for targeted gene delivery to the brain. Eur J Pharm Sci. 2015;78:19–30.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Kanazawa T, Akiyama F, Kakizaki S, Takashima Y, Seta Y. Delivery of siRNA to the brain using a combination of nose-to-brain delivery and cell-penetrating peptide-modified nano-micelles. Biomaterials. 2013;34(36):9220–6.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Xie YT, Du YZ, Yuan H, Hu FQ. Brain-targeting study of stearic acid-grafted chitosan micelle drug-delivery system. Int J Nanomedicine. 2012;7:3235–44.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Qu M, Lin Q, He S, Wang L, Fu Y, et al. A brain targeting functionalized liposomes of the dopamine derivative N-3,4-bis(pivaloyloxy)-dopamine for treatment of Parkinson’s disease. J Control Release. 2018;277:173–82.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Boche M, Pokharkar V. Quetiapine Nanoemulsion for intranasal drug delivery: evaluation of brain-targeting efficiency. AAPS Pharm Sci Tech. 2017;18(3):686–96.CrossRefGoogle Scholar
  23. 23.
    Hao J, Zhao J, Zhang S, Tong T, Zhuang Q, et al. Fabrication of an ionic-sensitive in situ gel loaded with resveratrol nanosuspensions intended for direct nose-to-brain delivery. Colloids Surf B Biointerfaces. 2016;147:376–86.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Liu Y, Ma Y, Xu J, Chen Y, Xie J, et al. Apolipoproteins adsorption and brain-targeting evaluation of baicalin nanocrystals modified by combination of Tween80 and TPGS. Colloids Surf B Biointerfaces. 2017;160:619–27.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Kumar MNVR. A review of chitin and chitosan applications. React Funct Polym. 2000;46(1):1–27.CrossRefGoogle Scholar
  26. 26.
    Liu Z, Jiang M, Kang T, Miao D, Gu G, et al. Lactoferrin-modified PEG-co-PCL nanoparticles for enhanced brain delivery of NAP peptide following intranasal administration. Biomaterials. 2013;34(15):3870–81.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Loureiro JA, Gomes B, Fricker G, Coelho MAN, Rocha S, et al. Cellular uptake of PLGA nanoparticles targeted with anti-amyloid and anti-transferrin receptor antibodies for Alzheimer’s disease treatment. Colloids Surf B Biointerfaces. 2016;145:8–13.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Hu X, Yang F, Liao Y, Li L, Zhang L. Cholesterol-PEG comodified poly (N-butyl) cyanoacrylate nanoparticles for brain delivery: in vitro and in vivo evaluations. Drug Deliv. 2017;24(1):121–32.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Chertok B, David AE, Yang VC. Polyethyleneimine-modified iron oxide nanoparticles for brain tumor drug delivery using magnetic targeting and intra-carotid administration. Biomaterials. 2010;31(24):6317–24.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Rassu G, Soddu E, Posadino AM, Pintus G, Sarmento B, et al. Nose-to-brain delivery of BACE1 siRNA loaded in solid lipid nanoparticles for Alzheimer’s therapy. Colloids Surf B Biointerfaces. 2017;152:296–301.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Gothwal A, Nakhate KT, Alexander A, Ajazuddin GU. Boosted memory and improved brain bioavailability of Rivastigmine: targeting effort to the brain using covalently tethered lower generation PAMAM Dendrimers with Lactoferrin. Mol Pharm. 2018;15(10):4538–49.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Shao K, Wu J, Chen Z, Huang S, Li J, et al. A brain-vectored angiopep-2 based polymeric micelles for the treatment of intracranial fungal infection. Biomaterials. 2012;33(28):6898–907.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Tanifum EA, Dasgupta I, Srivastava M, Bhavane RC, Sun L, et al. Intravenous delivery of targeted liposomes to amyloid-β pathology in APP/PSEN1 transgenic mice. PLoS One. 2012;7(10):e48515.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Dordevic SM, Cekic ND, Savic MM, Isailovic TM, Randelovic DV, et al. Parenteral nanoemulsions as promising carriers for brain delivery of risperidone: design, characterization and in vivo pharmacokinetic evaluation. Int J Pharm. 2015;493(1–2):40–54.PubMedCrossRefGoogle Scholar
  35. 35.
    Chen T, Li C, Li Y, Yi X, Wang R, et al. Small-sized mPEG-PLGA nanoparticles of Schisantherin A with sustained release for enhanced brain uptake and anti-Parkinsonian activity. ACS Appl Mater Interfaces. 2017;9(11):9516–27.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Sanchez-Lopez E, Ettcheto M, Egea MA, Espina M, Calpena AC, et al. New potential strategies for Alzheimer’s disease prevention: pegylated biodegradable dexibuprofen nanospheres administration to APPswe/PS1dE9. Nanomed Nanotechnol Biol Med. 2017;13(3):1171–82.CrossRefGoogle Scholar
  37. 37.
    Shi B, Du X, Chen J, Fu L, Morsch M, et al. Multifunctional hybrid nanoparticles for traceable drug delivery and intracellular microenvironment-controlled multistage drug-release in neurons. Small. 2017;13(20):1603966.CrossRefGoogle Scholar
  38. 38.
    Jasim A, Abdelghany S, Greish K. Current update on the role of enhanced permeability and retention effect in cancer nanomedicine. In: Mishra V, Kesharwani P, Mohd Amin MCI, Iyer A, editors. Nanotechnology-based approaches for targeting and delivery of drugs and genes. Amsterdam: Academic; 2017. p. 62–109.CrossRefGoogle Scholar
  39. 39.
    Cheng Y, Morshed RA, Auffinger B, Tobias AL, Lesniak MS. Multifunctional nanoparticles for brain tumor imaging and therapy. Adv Drug Deliv Rev. 2014;66:42–57.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Feng Q, Shen Y, Fu Y, Muroski ME, Zhang P, et al. Self-assembly of gold nanoparticles shows microenvironment-mediated dynamic switching and enhanced brain tumor targeting. Theranostics. 2017;7(7):1875–89.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Kozler P, Riljak V, Jandova K, Pokorny J. CT imaging and spontaneous behavior analysis after osmotic blood-brain barrier opening in Wistar rat. Physiol Res. 2014;63(Suppl 4):S529–34.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Foley CP, Nishimura N, Neeves KB, Schaffer CB, Olbricht WL. Flexible microfluidic devices supported by biodegradable insertion scaffolds for convection-enhanced neural drug delivery. Biomed Microdevices. 2009;11(4):915–24.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Chen PY, Ozawa T, Drummond DC, Kalra A, Fitzgerald JB, et al. Comparing routes of delivery for nanoliposomal irinotecan shows superior anti-tumor activity of local administration in treating intracranial glioblastoma xenografts. Neuro-Oncology. 2013;15(2):189–97.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Khan AR, Yang X, Fu M, Zhai G. Recent progress of drug nanoformulations targeting to brain. J Control Release. 2018;291:37–64.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Gao H. Progress and perspectives on targeting nanoparticles for brain drug delivery. Acta Pharm Sin B. 2016;6(4):268–86.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Aulston BD, Schapansky J, Huang Y, Odero GL, Glazner GW. Secreted amyloid precursor protein alpha activates neuronal insulin receptors and prevents diabetes-induced encephalopathy. Exp Neurol. 2018;303:29–37.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Tsutsumi K, Inoue Y, Yoshida C. Suppression of hyperlipidemia-associated cataracts in diabetic rats with the lipoprotein lipase activator NO-1886. Biol Pharm Bull. 2008;19(12):1570–3.CrossRefGoogle Scholar
  48. 48.
    Qian ZM, Li H, Sun H, Ho K. Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol Rev. 2002;54(4):561–87.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Mahajan SD, Roy I, Xu GX, Yong KT, Ding H, et al. Enhancing the delivery of anti retroviral drug “Saquinavir” across the blood brain barrier using nanoparticles. Curr HIV Res. 2010;8(5):396–404.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Bao H, Jin X, Li L, Lv F, Liu T. OX26 modified hyperbranched polyglycerol-conjugated poly(lactic-co-glycolic acid) nanoparticles: synthesis, characterization and evaluation of its brain delivery ability. J Mater Sci Mater Med. 2012;23(8):1891–901.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Kim SS, Rait A, Kim E, Pirollo KF, Nishida M, et al. A nanoparticle carrying the p53 gene targets tumors including cancer stem cells, sensitizes glioblastoma to chemotherapy and improves survival. ACS Nano. 2014;8(6):5494–514.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Salvati E, Re F, Sesana S, Cambianica I, Sancini G, et al. Liposomes functionalized to overcome the blood–brain barrier and to target amyloid-β peptide: the chemical design affects the permeability across an in vitro model. Int J Nanomedicine. 2013;8(8):1749–58.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Hu K, Shi Y, Jiang W, Han J, Huang S, et al. Lactoferrin conjugated PEG-PLGA nanoparticles for brain delivery: preparation, characterization and efficacy in Parkinson’s disease. Int J Pharm. 2011;415(1–2):273–83.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Molino Y, David M, Varini K, Jabes F, Gaudin N, et al. Use of LDL receptor-targeting peptide vectors for in vitro and in vivo cargo transport across the blood-brain barrier. FASEB J. 2017;31(5):1807–27.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Dieu LH, Wu D, Palivan CG, Balasubramanian V, Huwyler J. Polymersomes conjugated to 83-14 monoclonal antibodies: in vitro targeting of brain capillary endothelial cells. Eur J Pharm Biopharm. 2014;88(2):316–24.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Agarwal M, Sahoo AK, Bose B. Receptor-mediated enhanced cellular delivery of nanoparticles using recombinant receptor-binding domain of diphtheria toxin. Mol Pharm. 2016;14(1):23–30.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Wei X, Zhan C, Shen Q, Fu W, Xie C, et al. A D-peptide ligand of nicotine acetylcholine receptors for brain-targeted drug delivery. Angew Chem Int Ed Engl. 2015;127(10):3066–70.CrossRefGoogle Scholar
  58. 58.
    Tortorella S, Karagiannis TC. Transferrin receptor-mediated endocytosis: a useful target for cancer therapy. J Membr Biol. 2014;247(4):291–307.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Alahmady ZS. Selective drug delivery approaches to lesioned brain through blood brain barrier disruption. Expert Opin Drug Deliv. 2018;15(4):335–49.CrossRefGoogle Scholar
  60. 60.
    Zhu Y, Zhang J, Meng F, Deng C, Cheng R, et al. cRGD-functionalized reduction-sensitive shell-sheddable biodegradable micelles mediate enhanced doxorubicin delivery to human glioma xenografts in vivo. J Control Release. 2016;233:29–38.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Fang Y, Jiang Y, Zou Y, Meng F, Zhang J, et al. Targeted glioma chemotherapy by cyclic RGD peptide-functionalized reversibly core-crosslinked multifunctional poly(ethylene glycol)- b -poly(ε-caprolactone) micelles. Acta Biomater. 2017;50:396–406.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Wang F, Zhang W, Shen Y, Huang Q, Zhou D, et al. Efficient RNA delivery by integrin-targeted glutathione responsive polyethyleneimine capped gold nanorods. Acta Biomater. 2015;23:136–46.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Gao H, Cao S, Yang Z, Zhang S, Zhang Q, et al. Preparation,-characterization and anti-Glioma effects of Docetaxel-incorporated albumin-lipid nanoparticles. J Biomed Nanotechnol. 2015;11(12):2137–47.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Araque A, Navarrete M. Glial cells in neuronal network function. Philos Trans R Soc Lond Ser B Biol Sci. 2010;365(1551):2375–81.CrossRefGoogle Scholar
  65. 65.
    Anderson MA, Ao Y, Sofroniew MV. Heterogeneity of reactive astrocytes. Neurosci Lett. 2014;565(17):23–9.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Overman JJ, Clarkson AN, Wanner IB, Overman WT, Eckstein I, et al. A role for ephrin-A5 in axonal sprouting, recovery, and activity-dependent plasticity after stroke. Proc Natl Acad Sci U S A. 2012;109(33):E2230–9.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Haughey NJ, Nath A, Chan SL, Borchard AC, Rao MS, et al. Disruption of neurogenesis by amyloid β-peptide, and perturbed neural progenitor cell homeostasis, in models of Alzheimer’s disease. J Neurochem. 2010;83(6):1509–24.CrossRefGoogle Scholar
  68. 68.
    Agyare EK, Jaruszewski KM, Curran GL, Rosenberg JT, Grant SC, et al. Engineering theranostic nanovehicles capable of targeting cerebrovascular amyloid deposits. J Control Release. 2014;185(1):121–9.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Rip J, Chen L, Hartman R, van den Heuvel A, Reijerkerk A, et al. Glutathione PEGylated liposomes: pharmacokinetics and delivery of cargo across the blood-brain barrier in rats. J Drug Target. 2014;22(5):460–7.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Rotman M, Welling MM, Bunschoten A, de Backer ME, Rip J, et al. Enhanced glutathione PEGylated liposomal brain delivery of an anti-amyloid single domain antibody fragment in a mouse model for Alzheimer’s disease. J Control Release. 2015;203:40–50.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Milletti F. Cell-penetrating peptides: classes, origin, and current landscape. Drug Discov Today. 2012;17(15–16):850–60.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Saw PE, Ko YT, Jon S. Efficient liposomal Nanocarrier-mediated Oligodeoxynucleotide delivery involving dual use of a cell-penetrating peptide as a packaging and intracellular delivery agent. Macromol Rapid Commun. 2010;31(13):1155–62.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Wang H, Su W, Wang S, Wang X, Liao Z, et al. Smart multifunctional core-shell nanospheres with drug and gene co-loaded for enhancing the therapeutic effect in a rat intracranial tumor model. Nanoscale. 2012;4(20):6501–8.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Veiseh O, Kievit FM, Mok H, Ayesh J, Clark C, et al. Cell transcytosing poly-arginine coated magnetic nanovector for safe and effective siRNA delivery. Biomaterials. 2011;32(24):5717–25.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Xia H, Gao X, Gu G, Liu Z, Zeng N, et al. Low molecular weight protamine-functionalized nanoparticles for drug delivery to the brain after intranasal administration. Biomaterials. 2011;32(36):9888–98.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Qin Y, Zhang QY, Chen HL, Yuan WM, Kuai R, et al. Comparison of four different peptides to enhance accumulation of liposomes into the brain. J Drug Target. 2012;20(3):235–45.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Lu W, Wan J, Zhang Q, She Z, Jiang X. Aclarubicin-loaded cationic albumin-conjugated pegylated nanoparticle for glioma chemotherapy in rats. Int J Cancer. 2010;120(2):420–31.CrossRefGoogle Scholar
  78. 78.
    Lu W, Sun Q, Wan J, She Z, Jiang XG. Cationic albumin–conjugated Pegylated nanoparticles allow gene delivery into brain tumors via intravenous administration. Cancer Res. 2006;66(24):11878.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Wei L. Adsorptive-mediated brain delivery systems. Curr Pharm Biotechnol. 2012;13(12):2340–8.CrossRefGoogle Scholar
  80. 80.
    Tabatabaei SN, Duchemin S, Girouard H, Martel S. Towards MR-navigable Nanorobotic carriers for drug delivery into the brain. Paper presented at The IEEE international conference on robotics and automation. 2012.Google Scholar
  81. 81.
    Tabatabaei SN, Girouard H, Carret AS, Martel S. Remote control of the permeability of the blood-brain barrier by magnetic heating of nanoparticles: a proof of concept for brain drug delivery. J Control Release. 2015;206:49–57.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Huang HY, Liu HL, Hsu PH, Chiang CS, Tsai CH, et al. A Multitheragnostic Nanobubble system to induce blood–brain barrier disruption with magnetically guided focused ultrasound. Adv Mater. 2015;27(4):655.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Vykhodtseva N, McDannold N, Hynynen K. Progress and problems in the application of focused ultrasound for blood-brain barrier disruption. Ultrasonics. 2008;48(4):279–96.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Lynn JG, Zwemer RL, Chick AJ, Miller AE. A new method for the generation and use of focused ultrasound in experimental biology. J Gen Physiol. 1942;26(2):179–93.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Medel R, Monteith SJ, Elias WJ, Eames M, Snell J, et al. Magnetic resonance-guided focused ultrasound surgery: part 2: a review of current and future applications. Neurosurgery. 2012;71(4):755–63.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Airan RD, Meyer RA, Ellens NP, Rhodes KR, Farahani K, et al. Noninvasive targeted transcranial Neuromodulation via focused ultrasound gated drug release from Nanoemulsions. Nano Lett. 2017;17(2):652–9.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Lamsam L, Johnson E, Connolly ID, Wintermark M, Hayden Gephart M. A review of potential applications of MR-guided focused ultrasound for targeting brain tumor therapy. Neurosurg Focus. 2018;44(2):E10.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Liu C, Liu XN, Wang GL, Yu H, Meng S, et al. A dual-mediated liposomal drug delivery system targeting the brain: rational construction, integrity evaluation across the blood–brain barrier, and the transporting mechanism to glioma cells. Int J Nanomedicine. 2017;12:2407–25.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Byeon HJ, Thao le Q, Lee S, Min SY, Lee ES, et al. Doxorubicin-loaded nanoparticles consisted of cationic- and mannose-modified-albumins for dual-targeting in brain tumors. J Control Release. 2016;225:301–13.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Zhang J, Chen N, Wang H, Gu W, Liu K, et al. Dual-targeting superparamagnetic iron oxide nanoprobes with high and low target density for brain glioma imaging. J Colloid Interface Sci. 2016;469:86–92.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Ruan S, Xiao W, Hu C, Zhang H, Rao J, et al. Ligand-mediated and enzyme-directed precise targeting and retention for the enhanced treatment of glioblastoma. ACS Appl Mater Interfaces. 2017;9(24):20348–60.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Macdonald J, Henri J, Goodman L, Xiang D, Duan W, et al. Development of a bi-functional aptamer targeting the transferrin receptor and EpCAM for the treatment of brain cancer metastases. ACS Chem Neurosci. 2017;8(4):777–84.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Gao H. Perspectives on dual targeting delivery systems for brain tumors. J Neuroimmune Pharmacol. 2017;12(1):6–16.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Quader S, Liu X, Chen Y, Mi P, Chida T, et al. cRGD peptide-installed epirubicin-loaded polymeric micelles for effective targeted therapy against brain tumors. J Control Release. 2017;258:56–66.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Ruan S, Qin L, Xiao W, Hu C, Zhou Y, et al. Acid-responsive transferrin dissociation and GLUT mediated exocytosis for increased blood–brain barrier Transcytosis and programmed Glioma targeting delivery. Adv Funct Mater. 2018;28(30):1802227.CrossRefGoogle Scholar
  96. 96.
    Shen Y, Cao B, Snyder NR, Woeppel KM, Eles JR, et al. ROS responsive resveratrol delivery from LDLR peptide conjugated PLA-coated mesoporous silica nanoparticles across the blood–brain barrier. J Nanobiotechnol. 2018;16(1):13.CrossRefGoogle Scholar
  97. 97.
    Li Y, Li Y, Ji W, Lu Z, Liu L, et al. Positively charged Polyprodrug Amphiphiles with enhanced drug loading and ROS-responsive release ability for traceable synergistic therapy. J Am Chem Soc. 2018;140(11):jacs.8b01641.CrossRefGoogle Scholar
  98. 98.
    Abouhussein DMN, Khattab A, Bayoumi NA, Mahmoud AF, Sakr TM. Brain targeted rivastigmine mucoadhesive thermosensitive in situ gel: optimization, in vitro evaluation, radiolabeling, in vivo pharmacokinetics and biodistribution. J Drug Delivery Sci Technol. 2018;43:129–40.CrossRefGoogle Scholar
  99. 99.
    Sridhar V, Wairkar S, Gaud R, Bajaj A, Meshram P. Brain targeted delivery of mucoadhesive thermosensitive nasal gel of selegiline hydrochloride for treatment of Parkinson’s disease. J Drug Target. 2018;26(2):150–61.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Ma M, Gao N, Sun Y, Ren J, Qu X. A near-infrared responsive drug sequential release system for better eradicating amyloid aggregates. Small. 2017;13(46):1701817.CrossRefGoogle Scholar
  101. 101.
    Zhang TT, Li W, Meng G, Wang P, Liao W. Strategies for transporting nanoparticles across the blood-brain barrier. Biomater Sci. 2016;4(2):219–29.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Khan AR, Liu M, Khan MW, Zhai G. Progress in brain targeting drug delivery system by nasal route. J Control Release. 2017;268:364–89.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Pardeshi CV, Belgamwar VS. Direct nose to brain drug delivery via integrated nerve pathways bypassing the blood-brain barrier: an excellent platform for brain targeting. Expert Opin Drug Deliv. 2013;10(7):957–72.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Fonseca FN, Betti AH, Carvalho FC, Gremião MPD, Dimer FA, et al. Mucoadhesive Amphiphilic Methacrylic copolymer-functionalized poly(ε-caprolactone) Nanocapsules for nose-to-brain delivery of olanzapine. J Biomed Nanotechnol. 2015;11(8):1472–81.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Zhang C, Chen J, Feng C, Shao X, Liu Q, et al. Intranasal nanoparticles of basic fibroblast growth factor for brain delivery to treat Alzheimer’s disease. Int J Pharm. 2014;461(1–2):192–202.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Dhuria SV, Hanson LR, Frey WH 2nd. Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J Pharm Sci. 2010;99(4):1654–73.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Kozlovskaya L, Abou-Kaoud M, Stepensky D. Quantitative analysis of drug delivery to the brain via nasal route. J Control Release. 2014;189(10):133–40.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Tibbitt MW, Dahlman JE, Langer R. Emerging Frontiers in drug delivery. J Am Chem Soc. 2016;138(3):704.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Shi J, Votruba AR, Farokhzad OC, Langer RJNL. Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett. 2010;10(9):3223–30.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Jinjin Wang
    • 1
    • 2
  • Qianqian Huang
    • 1
    • 2
  • Xing-Jie Liang
    • 1
    • 2
    Email author
  1. 1.CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyChinese Academy of Sciences, National Center for Nanoscience and Technology of ChinaBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations