Advertisement

Engineering Allostery into Proteins

  • Scott D. Gorman
  • Rebecca N. D’Amico
  • Dennis S. Winston
  • David D. BoehrEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1163)

Abstract

Our ability to engineer protein structure and function has grown dramatically over recent years. Perhaps the next level in protein design is to develop proteins whose function can be regulated in response to various stimuli, including ligand binding, pH changes, and light. Endeavors toward these goals have tested and expanded on our understanding of protein function and allosteric regulation. In this chapter, we provide examples from different methods for developing new allosterically regulated proteins. These methods range from whole insertion of regulatory domains into new host proteins, to covalent attachment of photoswitches to generate light-responsive proteins, and to targeted changes to specific amino acid residues, especially to residues identified to be important for relaying allosteric information across the protein framework. Many of the examples we discuss have already found practical use in medical and biotechnology applications.

Keywords

Allostery Protein regulation Protein engineering Energy landscape Amino acid network Domain insertion Covalent modification 

References

  1. 1.
    Axe JM, O’Rourke KF, Kerstetter NE, Yezdimer EM, Chan YM, Chasin A, Boehr DD (2015) Severing of a hydrogen bond disrupts amino acid networks in the catalytically active state of the alpha subunit of tryptophan synthase. Protein Sci 24(4):484–494PubMedCrossRefGoogle Scholar
  2. 2.
    Axe JM, Yezdimer EM, O’Rourke KF, Kerstetter NE, You W, Chang CE, Boehr DD (2014) Amino acid networks in a (beta/alpha) (8) barrel enzyme change during catalytic turnover. J Am Chem Soc 136(19):6818–6821PubMedCrossRefGoogle Scholar
  3. 3.
    Berliner L (2015) Protein NMR: modern techniques and biomedical applicationsGoogle Scholar
  4. 4.
    Blackmore NJ, Nazmi AR, Hutton RD, Webby MN, Baker EN, Jameson GB, Parker EJ (2015) Complex formation between two biosynthetic enzymes modifies the allosteric regulatory properties of both: AN EXAMPLE OF MOLECULAR SYMBIOSIS. J Biol Chem 290(29):18187–18198PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Blackmore NJ, Reichau S, Jiao W, Hutton RD, Baker EN, Jameson GB, Parker EJ (2013) Three sites and you are out: ternary synergistic allostery controls aromatic amino acid biosynthesis in Mycobacterium tuberculosis. J Mol Biol 425(9):1582–1592PubMedCrossRefGoogle Scholar
  6. 6.
    Boehr DD, D’Amico RN, O’Rourke KF (2018) Engineered control of enzyme structural dynamics and function. Protein Sci 27(4):825–838PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Boehr DD, Schnell JR, McElheny D, Bae SH, Duggan BM, Benkovic SJ, Dyson HJ, Wright PE. A distal mutation perturbs dynamic amino acid networks in dihydrofolate reductase. pp 1520–4995 (Electronic)Google Scholar
  8. 8.
    Bongard J, Lorenz M, Vetter IR, Stege P, Porfetye AT, Schmitz AL, Kaschani F, Wolf A, Koch U, Nussbaumer P, Klebl B, Kaiser MA, Ehrmann MA. Identification of Noncatalytic Lysine Residues from Allosteric Circuits via Covalent Probes. pp 1554–8937 (Electronic)Google Scholar
  9. 9.
    Bose M, Groff D, Xie J, Brustad E, Schultz PG (2006) The incorporation of a photoisomerizable amino acid into proteins in E. coli. J Am Chem Soc 128(2):388–389PubMedCrossRefGoogle Scholar
  10. 10.
    Boswell ZK, Rahman S, Canny MD, Latham MP (2018) A dynamic allosteric pathway underlies Rad50 ABC ATPase function in DNA repair. Sci Rep 8(1):1639PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Boulton S, Akimoto M, Selvaratnam R, Bashiri A, Melacini G (2014) A tool set to map allosteric networks through the NMR chemical shift covariance analysis. Sci Rep 4:7306PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Buller AA-O, van Roye P, Cahn JKB, Scheele RA, Herger M, Arnold FA-OX. Directed Evolution Mimics Allosteric Activation by Stepwise Tuning of the Conformational Ensemble. pp 1520–5126 (Electronic))Google Scholar
  13. 13.
    Buller AR, Brinkmann-Chen S, Romney DK, Herger M, Murciano-Calles J, Arnold FH (2015) Directed evolution of the tryptophan synthase beta-subunit for stand-alone function recapitulates allosteric activation. Proc Natl Acad Sci U S A 112(47):14599–14604PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Choi JH, Laurent AH, Hilser VJ, Ostermeier M (2015) Design of protein switches based on an ensemble model of allostery. Nat Commun 6:6968PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Cristian C, Laura A, Sabrina G, Marco A, Edoardo R, Solei C, Paolo Z, Jan P, Monica B, van Etten JL (2015) Optogenetics. Engineering of a light-gated potassium channel. Science 348(6235):707CrossRefGoogle Scholar
  16. 16.
    Cross PJ, Allison TM, Dobson RC, Jameson GB, Parker EJ. Engineering allosteric control to an unregulated enzyme by transfer of a regulatory domain. pp 1091–6490 (Electronic)Google Scholar
  17. 17.
    Cui DS, Beaumont V, Ginther PS, Lipchock JM, Loria JP (2017) Leveraging reciprocity to identify and characterize unknown allosteric sites in protein tyrosine phosphatases. J Mol Biol 429(15):2360–2372PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Davies BR, Guan N, Logie A, Crafter C, Hanson L, Jacobs V, James N, Dudley P, Jacques K, Ladd B, D’Cruz CM, Zinda M, Lindemann J, Kodaira M, Tamura K, Jenkins EL (2015) Tumors with AKT1E17K mutations are rational targets for single agent or combination therapy with AKT inhibitors. Mol Cancer Ther 14(11):2441–2451PubMedCrossRefGoogle Scholar
  19. 19.
    Dayie KT, Wagner G, Lefevre JF (1996) Theory and practice of nuclear spin relaxation in proteins. Annu Rev Phys Chem 47:243–282PubMedCrossRefGoogle Scholar
  20. 20.
    Di Russo NV, Marti MA, Roitberg AE (2014) Underlying thermodynamics of pH-dependent allostery. J Phys ChemB 118(45):12818–12826CrossRefGoogle Scholar
  21. 21.
    Djuranovic S, Nahvi A, Green R (2011) A parsimonious model for gene regulation by miRNAs. Science (New York, NY) 331(6017):550–553CrossRefGoogle Scholar
  22. 22.
    Du L, Lou L (2010) PKS and NRPS release mechanisms. Nat Prod Rep 27(2):255–278PubMedCrossRefGoogle Scholar
  23. 23.
    Fan Y, Cross PJ, Jameson GB, Parker EJ (2018) Exploring modular allostery via interchangeable regulatory domains. Proc Natl Acad Sci U S A 115(12):3006–3011PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Feng W, Zhang M (2009) Organization and dynamics of PDZ-domain-related supramodules in the postsynaptic density. Nat Rev Neurosci 10(2):87–99PubMedCrossRefGoogle Scholar
  25. 25.
    Frauenfelder H, Sligar SG, Wolynes PG (1991) The energy landscapes and motions of proteins. Science (New York, NY) 254(5038):1598–1603CrossRefGoogle Scholar
  26. 26.
    Gautier A, Gauron C, Volovitch M, Bensimon D, Jullien L, Vriz S (2014) How to control proteins with light in living systems. Nat Chem Biol 10(7):533–541PubMedCrossRefGoogle Scholar
  27. 27.
    Gehrig S, Macpherson JA, Driscoll PC, Symon A, Martin SR, MacRae JI, Kleinjung J, Fraternali F, Anastasiou D (2017) An engineered photoswitchable mammalian pyruvate kinase. FEBS J 284(18):2955–2980PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Gera N, Hill AB, White DP, Carbonell RG, Rao BM. Design of pH sensitive binding proteins from the hyperthermophilic Sso7d scaffold. pp 1932–6203 (Electronic)Google Scholar
  29. 29.
    Ghosh A, Vishveshwara S (2007) A study of communication pathways in methionyl- tRNA synthetase by molecular dynamics simulations and structure network analysis. Proc Natl Acad Sci U S A 104(40):15711–15716PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Gianni S, Haq SR, Montemiglio LC, Jurgens MC, Engstrom A, Chi CN, Brunori M, Jemth P. Sequence-specific long range networks in PSD-95/discs large/ZO-1 (PDZ) domains tune their binding selectivity. pp 1083–351X (Electronic)Google Scholar
  31. 31.
    Guntas G, Mansell TJ, Kim JR, Ostermeier M (2005) Directed evolution of protein switches and their application to the creation of ligand-binding proteins. Proc Natl Acad Sci U S A 102(32):11224–11229PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Guntas G, Mitchell SF, Ostermeier M (2004) A molecular switch created by in vitro recombination of nonhomologous genes. Chem Biol 11(11):1483–1487PubMedCrossRefGoogle Scholar
  33. 33.
    Guntas G, Ostermeier M (2004) Creation of an allosteric enzyme by domain insertion. J Mol Biol 336(1):263–273PubMedCrossRefGoogle Scholar
  34. 34.
    Guo Z, Johnston WA, Stein V, Kalimuthu P, Perez-Alcala S, Bernhardt PV, Alexandrov K. Engineering PQQ-glucose dehydrogenase into an allosteric electrochemical Ca (2+) sensor. pp 1364–548X (Electronic)Google Scholar
  35. 35.
    Halavaty AS, Moffat K (2007) N- and C-terminal flanking regions modulate light-induced signal transduction in the LOV2 domain of the blue light sensor phototropin 1 from Avena sativa. Biochemistry 46(49):14001–14009PubMedCrossRefGoogle Scholar
  36. 36.
    Harper SM, Neil LC, Gardner KH (2003) Structural basis of a phototropin light switch. Science (New York, NY) 301(5639):1541–1544CrossRefGoogle Scholar
  37. 37.
    Heinzelman P, Krais J, Ruben E, Pantazes R (2015) Engineering pH responsive fibronectin domains for biomedical applications. J Biol Eng 9:6PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Helmstaedt K, Krappmann S, Braus GH (2001) Allosteric regulation of catalytic activity: Escherichia coli aspartate transcarbamoylase versus yeast chorismate mutase. Microbiol Mol Biol R 65(3):404–421, table of contentsPubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Hisatomi O, Furuya K (2015) A light-regulated bZIP module, photozipper, induces the binding of fused proteins to the target DNA sequence in a blue light-dependent manner. Photochem Photobiol Sci: Off J Eur Photochem Assoc Eur Soc Photobiol 14(11):1998–2006CrossRefGoogle Scholar
  40. 40.
    Holliday MJ, Camilloni C, Armstrong GS, Vendruscolo M, Eisenmesser EZ (2017) Networks of dynamic Allostery regulate enzyme function. Structure (London, England: 1993) 25(2):276–286PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    Hong W, Jiao W, Hu J, Zhang J, Liu C, Fu X, Shen D, Xia B, Chang Z (2005) Periplasmic protein HdeA exhibits chaperone-like activity exclusively within stomach pH range by transforming into disordered conformation. The J Biol Chem 280(29):27029–27034PubMedCrossRefGoogle Scholar
  42. 42.
    Horovitz A, Fersht AR (1990) Strategy for analysing the co-operativity of intramolecular interactions in peptides and proteins. J Mol Biol 214(3):613–617PubMedCrossRefGoogle Scholar
  43. 43.
    Huisman FH, Koon N, Bulloch EM, Baker HM, Baker EN, Squire CJ, Parker EJ (2012) Removal of the C-terminal regulatory domain of alpha-isopropylmalate synthase disrupts functional substrate binding. Biochemistry 51(11):2289–2297PubMedCrossRefGoogle Scholar
  44. 44.
    Idili A, Vallee-Belisle A, Ricci F (2014) Programmable pH-triggered DNA nanoswitches. J Am Chem Soc 136(16):5836–5839PubMedCrossRefGoogle Scholar
  45. 45.
    Isom DG, Castaneda CA, Cannon BR, Garcia-Moreno B. Large shifts in pKa values of lysine residues buried inside a protein. pp 1091–6490 (Electronic)Google Scholar
  46. 46.
    Itoh SG, Damjanovic A, Brooks BR (2011) pH replica-exchange method based on discrete protonation states. Proteins 79(12):3420–3436PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Jiao W, Hutton RD, Cross PJ, Jameson GB, Parker EJ. Dynamic cross-talk among remote binding sites: the molecular basis for unusual synergistic allostery. pp 1089–8638 (Electronic)Google Scholar
  48. 48.
    Ke W, Laurent AH, Armstrong MD, Chen Y, Smith WE, Liang J, Wright CM, Ostermeier M, van den Akker F (2012) Structure of an engineered beta-lactamase maltose binding protein fusion protein: insights into heterotropic allosteric regulation. PLoS One 7(6):e39168PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Keeler C, Jablonski EM, Albert YB, Taylor BD, Myszka DG, Clevenger CV, Hodsdon ME (2007) The kinetics of binding human prolactin, but not growth hormone, to the prolactin receptor vary over a physiologic pH range. Biochemistry 46(9):2398–2410PubMedCrossRefGoogle Scholar
  50. 50.
    Kisovec M, Rezelj S, Knap P, Cajnko MM, Caserman S, Flasker A, Znidarsic N, Repic M, Mavri J, Ruan Y, Scheuring S, Podobnik M, Anderluh G. Engineering a pH responsive pore forming protein. pp 2045–2322 (Electronic)Google Scholar
  51. 51.
    Kohse S, Neubauer A, Pazidis A, Lochbrunner S, Kragl U. Photoswitching of enzyme activity by laser-induced pH-jump. pp 1520–5126 (Electronic)Google Scholar
  52. 52.
    Kong Y, Karplus M (2009) Signaling pathways of PDZ2 domain: a molecular dynamics interaction correlation analysis. Proteins 74(1):145–154PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Koshland DE Jr, Nemethy G, Filmer D (1966) Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry 5(1):365–385PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Koushanpour A, Gamella M, Guo Z, Honarvarfard E, Poghossian A, Schoning MJ, Alexandrov K, Katz EA. Ca (2+)-Switchable Glucose Dehydrogenase Associated with Electrochemical/Electronic Interfaces: Applications to Signal-Controlled Power Production and Biomolecular Release. pp 1520–5207 (Electronic)Google Scholar
  55. 55.
    Kulkarni MV, Tettamanzi MC, Murphy JW, Keeler C, Myszka DG, Chayen NE, Lolis EJ, Hodsdon ME. Two independent histidines, one in human prolactin and one in its receptor, are critical for pH-dependent receptor recognition and activation. pp 1083–351X (Electronic)Google Scholar
  56. 56.
    Kumar R, McEwan IJ (2012) Allosteric modulators of steroid hormone receptors: structural dynamics and gene regulation. Endocr Rev 33(2):271–299PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Lafrance-Vanasse J, Williams GJ, Tainer JA (2015) Envisioning the dynamics and flexibility of Mre11-Rad50-Nbs1 complex to decipher its roles in DNA replication and repair. Prog Biophys Mol Bio 117(2–3):182–193CrossRefGoogle Scholar
  58. 58.
    Lang EJ, Cross PJ, Mittelstadt G, Jameson GB, Parker EJ (2014) Allosteric ACTion: the varied ACT domains regulating enzymes of amino-acid metabolism. Curr Opin Struct Biol 29:102–111PubMedCrossRefGoogle Scholar
  59. 59.
    Lee J, Natarajan M, Nashine VC, Socolich M, Vo T, Russ WP, Benkovic SJ, Ranganathan R (2008) Surface sites for engineering allosteric control in proteins. Science (New York, NY) 322(5900):438–442CrossRefGoogle Scholar
  60. 60.
    Ling Y, Jing M, Wang XD (2015) Allosteric therapies for lung cancer. Cancer Metast Rev 34(2):303–312CrossRefGoogle Scholar
  61. 61.
    Liu D, Karanicolas J, Yu C, Zhang Z, Woolley GAJB, Letters MC (1997) Site-specific incorporation of photoisomerizable azobenzene groups into ribonuclease S. Bioorganic Med Chem Lett 7(20):2677–2680CrossRefGoogle Scholar
  62. 62.
    Liu J, Swails J, Zhang JZH, He X, Roitberg AE (2018) A coupled ionization-conformational equilibrium is required to understand the properties of Ionizable residues in the hydrophobic interior of staphylococcal nuclease. J Am Chem Soc 140(5):1639–1648PubMedCrossRefGoogle Scholar
  63. 63.
    Lockless SW, Ranganathan R (1999) Evolutionarily conserved pathways of energetic connectivity in protein families. Science (New York, NY) 286(5438):295–299CrossRefGoogle Scholar
  64. 64.
    Lu S, Li S, Zhang J. Harnessing allostery: a novel approach to drug discovery. pp 1098–1128 (Electronic)Google Scholar
  65. 65.
    Lungu OI, Hallett RA, Choi EJ, Aiken MJ, Hahn KM, Kuhlman B (2012) Designing photoswitchable peptides using the AsLOV2 domain. Chem Biol 19(4):507–517PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Mandal M, Breaker RR (2004) Gene regulation by riboswitches. Nat Rev Mol Cell Biol 5(6):451–463PubMedCrossRefGoogle Scholar
  67. 67.
    Mart RJ, Allemann RK (2016) Azobenzene photocontrol of peptides and proteins. Chem Commun 52(83):12262–12277CrossRefGoogle Scholar
  68. 68.
    Marttila AT, Hytonen VP, Laitinen OH, Bayer EA, Wilchek M, Kulomaa MS. Mutation of the important Tyr-33 residue of chicken avidin: functional and structural consequences. pp 0264–6021 (Print)Google Scholar
  69. 69.
    Maurer D, Lohkamp B, Krumpel M, Widersten M, Dobritzsch DA. Crystal structure and pH-dependent allosteric regulation of human beta-ureidopropionase, an enzyme involved in anticancer drug metabolism. pp 1470–8728 (Electronic)Google Scholar
  70. 70.
    McConnell EM, Bolzon R, Mezin P, Frahm G, Johnston M, DeRosa MC (2016) pHAST (pH-driven aptamer switch for thrombin) catch-and-release of target protein. Bioconjug Chem 27(6):1493–1499PubMedCrossRefGoogle Scholar
  71. 71.
    Meister GE, Joshi NS (2013) An engineered calmodulin-based allosteric switch for peptide biosensing. Chembiochem 14(12):1460–1467PubMedCrossRefGoogle Scholar
  72. 72.
    Mills E, Chen X, Pham E, Wong S, Truong K (2012) Engineering a photoactivated caspase-7 for rapid induction of apoptosis. ACS Synth Biol 1(3):75–82PubMedCrossRefGoogle Scholar
  73. 73.
    Monod J, Wyman J, Changeux JP (1965) On the nature of allosteric transitions: a plausible model. J Mol Biol 12:88–118PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Mootz HD (2017) Split InteinsGoogle Scholar
  75. 75.
    Morcos F, Pagnani A, Lunt B, Bertolino A, Marks DS, Sander C, Zecchina R, Onuchic JN, Hwa T, Weigt M (2011) Direct-coupling analysis of residue coevolution captures native contacts across many protein families. Proc Natl Acad Sci U S A 108(49):E1293–E1301PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Motlagh HN, Wrabl JO, Li J, Hilser VJ (2014) The ensemble nature of allostery. Nature 508(7496):331–339PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Motta-Mena LB, Reade A, Mallory MJ, Glantz S, Weiner OD, Lynch KW, Gardner KH (2014) An optogenetic gene expression system with rapid activation and deactivation kinetics. Nat Chem Biol 10(3):196–202PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Munro JB, Vaiana A, Sanbonmatsu KY, Blanchard SC (2008) A new view of protein synthesis: mapping the free energy landscape of the ribosome using single-molecule FRET. Biopolymers 89(7):565–577PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Muranaka N, Hohsaka T, Sisido M (2002) Photoswitching of peroxidase activity by position-specific incorporation of a photoisomerizable non-natural amino acid into horseradish peroxidase. FEBS Lett 510(1–2):10–12PubMedCrossRefGoogle Scholar
  80. 80.
    Murciano-Calles J, Romney DK, Brinkmann-Chen S, Buller AR, Arnold FH (2016) A panel of TrpB biocatalysts derived from tryptophan synthase through the transfer of mutations that mimic allosteric activation. Angew Chem Int Ed Engl 55(38):11577–11581PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Nadler DC, Morgan SA, Flamholz A, Kortright KE, Savage DF (2016) Rapid construction of metabolite biosensors using domain-insertion profiling. Nat Commun 7:12266PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Nakayama K, Endo M, Majima T (2004) Photochemical regulation of the activity of an endonuclease BamHI using an azobenzene moiety incorporated site-selectively into the dimer interface. Chem Commun 21:2386–2387CrossRefGoogle Scholar
  83. 83.
    Nguyen LM, Roche J (2017) High-pressure NMR techniques for the study of protein dynamics, folding and aggregation. J Magnet Reson (San Diego, Calif: 1997) 277:179–185CrossRefGoogle Scholar
  84. 84.
    Nihongaki Y, Kawano F, Nakajima T, Sato M (2015) Photoactivatable CRISPR-Cas9 for optogenetic genome editing. Nat Biotechnol 33(7):755–760PubMedCrossRefGoogle Scholar
  85. 85.
    Niks D, Hilario E, Dierkers A, Ngo H, Borchardt D, Neubauer TJ, Fan L, Mueller LJ, Dunn MF. Allostery and substrate channeling in the tryptophan synthase bienzyme complex: evidence for two subunit conformations and four quaternary states. pp 1520–4995 (Electronic)Google Scholar
  86. 86.
    Niopek D, Benzinger D, Roensch J, Draebing T, Wehler P, Eils R, Di Ventura B (2014) Engineering light-inducible nuclear localization signals for precise spatiotemporal control of protein dynamics in living cells. Nat Commun 5:4404PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Nordlund HR, Hytonen VP, Laitinen OH, Uotila ST, Niskanen EA, Savolainen J, Porkka E, Kulomaa MS (2003) Introduction of histidine residues into avidin subunit interfaces allows pH-dependent regulation of quaternary structure and biotin binding. FEBS Lett 555(3):449–454PubMedCrossRefGoogle Scholar
  88. 88.
    Nussinov R, Tsai CJ (2015) Allostery without a conformational change? Revisiting the paradigm. Curr Opin Struct Biol 30:17–24CrossRefGoogle Scholar
  89. 89.
    O’Rourke KF, Gorman SD, Boehr DD. Biophysical and computational methods to analyze amino acid interaction networks in proteins. pp 2001–0370 (Print)Google Scholar
  90. 90.
    Oakes BL, Nadler DC, Flamholz A, Fellmann C, Staahl BT, Doudna JA, Savage DF (2016) Profiling of engineering hotspots identifies an allosteric CRISPR-Cas9 switch. Nat Biotechnol 34(6):646–651PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Ochman H, Gerber AS, Hartl DL (1988) Genetic applications of an inverse polymerase chain reaction. Genetics 120(3):621–623PubMedPubMedCentralGoogle Scholar
  92. 92.
    Olsson U, Wolf-Watz M (2010) Overlap between folding and functional energy landscapes for adenylate kinase conformational change. Nat Commun 1:111PubMedCrossRefGoogle Scholar
  93. 93.
    Pande VS, Beauchamp K, Bowman GR (2010) Everything you wanted to know about Markov State Models but were afraid to ask. Methods (San Diego, Calif) 52(1):99–105CrossRefGoogle Scholar
  94. 94.
    Petit CM, Zhang J, Sapienza PJ, Fuentes EJ, Lee AL (2009) Hidden dynamic allostery in a PDZ domain. Proc Natl Acad Sci U S A 106(43):18249–18254PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Pierre B, Shah V, Xiao J, Kim JR. Construction of a random circular permutation library using an engineered transposon. pp 1096–0309 (Electronic)Google Scholar
  96. 96.
    Pittolo S, Gomez-Santacana X, Eckelt K, Rovira X, Dalton J, Goudet C, Pin JP, Llobet A, Giraldo J, Llebaria A, Gorostiza P (2014) An allosteric modulator to control endogenous G protein-coupled receptors with light. Nat Chem Biol 10(10):813–815PubMedCrossRefGoogle Scholar
  97. 97.
    Popovych N, Sun S, Ebright RH, Kalodimos CG (2006) Dynamically driven protein allostery. Nat Struct Mol Biol 13(9):831–838PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Putri RM, Zulfikri H, Fredy JW, Juan A, Tananchayakul P, Cornelissen J, Koay MST, Filippi C, Katsonis N (2018) Photoprogramming Allostery in human serum albumin. Bioconjug Chem 29(7):2215–2224PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Qin BY, Bewley MC, Creamer LK, Baker HM, Baker EN, Jameson GB (1998) Structural basis of the Tanford transition of bovine beta-lactoglobulin. Biochemistry 37(40):14014–14023PubMedCrossRefGoogle Scholar
  100. 100.
    Ramanathan RK, McDonough SL, Kennecke HF, Iqbal S, Baranda JC, Seery TE, Lim HJ, Hezel AF, Vaccaro GM, Blanke CD (2015) Phase 2 study of MK-2206, an allosteric inhibitor of AKT, as second-line therapy for advanced gastric and gastroesophageal junction cancer: a SWOG cooperative group trial (S1005). Cancer 121(13):2193–2197PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Renner C, Moroder L (2006) Azobenzene as conformational switch in model peptides. Chembiochem 7(6):868–878PubMedCrossRefGoogle Scholar
  102. 102.
    Ribeiro LF, Nicholes N, Tullman J, Ribeiro LF, Fuzo CA, Vieira DS, Furtado GP, Ostermeier M, Ward RJ (2015) Insertion of a xylanase in xylose binding protein results in a xylose-stimulated xylanase. Biotechnol Biofuels 8:118PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Ribeiro LF, Tullman J, Nicholes N, Silva SR, Vieira DS, Ostermeier M, Ward RJ (2016) A xylose-stimulated xylanase-xylose binding protein chimera created by random nonhomologous recombination. Biotechnol Biofuels 9:119PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Richman DE, Majumdar A, Garcia-Moreno EB (2015) Conformational reorganization coupled to the ionization of internal Lys residues in proteins. Biochemistry 54(38):5888–5897PubMedCrossRefGoogle Scholar
  105. 105.
    Richter F, Fonfara I, Bouazza B, Schumacher CH, Bratovic M, Charpentier E, Moglich A (2016) Engineering of temperature- and light-switchable Cas9 variants. Nucleic Acids Res 44(20):10003–10014PubMedPubMedCentralGoogle Scholar
  106. 106.
    Rockwell KLA, (24 Nov 2016) Allosterism in drug discoveryGoogle Scholar
  107. 107.
    Sarkar CA, Lowenhaupt K, Horan T, Boone TC, Tidor B, Lauffenburger DA (2002) Rational cytokine design for increased lifetime and enhanced potency using pH-activated “histidine switching”. Nat Biotechnol 20(9):908–913PubMedCrossRefGoogle Scholar
  108. 108.
    Schierling B, Noel AJ, Wende W, Hien LT, Volkov E, Kubareva E, Oretskaya T, Kokkinidis M, Rompp A, Spengler B, Pingoud A. Controlling the enzymatic activity of a restriction enzyme by light. pp 1091–6490 (Electronic)Google Scholar
  109. 109.
    Schonberger M, Trauner D (2014) A photochromic agonist for mu-opioid receptors. Angew Chem Int Ed Engl 53(12):3264–3267PubMedCrossRefGoogle Scholar
  110. 110.
    Seifert S, Brakmann S (2018) LOV Domains in the design of photoresponsive enzymes. ACS Chem Biol 13(8):1914–1920PubMedCrossRefGoogle Scholar
  111. 111.
    Selvaratnam R, Chowdhury S Schouwen B, Melacini G. Mapping allostery through the covariance analysis of NMR chemical shifts. pp 1091–6490 (Electronic)Google Scholar
  112. 112.
    Shah V, Kim JR (2016) Transposon for protein engineering. Mob Genet Elem 6(6):e1239601CrossRefGoogle Scholar
  113. 113.
    Shah V, Pierre B. Fau-Kim JR, Kim JR. Facile construction of a random protein domain insertion library using an engineered transposon. pp 1096–0309 (Electronic)Google Scholar
  114. 114.
    Spiltoir JI, Strickland D, Glotzer M, Tucker CL (2016) Optical control of Peroxisomal trafficking. ACS Synth Biol 5(7):554–560PubMedCrossRefGoogle Scholar
  115. 115.
    Srivastava J, Barber DL, Jacobson MP (2007) Intracellular pH sensors: design principles and functional significance. Physiology (Bethesda, Md) 22:30–39PubMedCrossRefGoogle Scholar
  116. 116.
    Stauffer ME, Chazin WJ (2004) Structural mechanisms of DNA replication, repair, and recombination. J Biol Chem 279(30):30915–30918PubMedCrossRefGoogle Scholar
  117. 117.
    Strickland D, Moffat K, Sosnick TR (2008) Light-activated DNA binding in a designed allosteric protein. Proc Natl Acad Sci U S A 105(31):10709–10714PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Swails JM, Roitberg AE. Enhancing conformation and protonation state sampling of Hen Egg White Lysozyme Using pH Replica Exchange Molecular Dynamics. pp 1549–9618 (Print)Google Scholar
  119. 119.
    Swint-Kruse L, Matthews KS (2009) Allostery in the LacI/GalR family: variations on a theme. Curr Opin Microbiol 12(2):129–137PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Tillotson BJ, Goulatis LI, Parenti I, Duxbury E, Shusta EV (2015) Engineering an anti-transferrin receptor ScFv for pH-sensitive binding leads to increased intracellular accumulation. PLoS One 10(12):e0145820PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Tsai YT, Chuang MJ, Tang SH, Wu ST, Chen YC, Sun GH, Hsiao PW, Huang SM, Lee HJ, Yu CP, Ho JY, Lin HK, Chen MR, Lin CC, Chang SY, Lin VC, Yu DS, Cha TL (2015) Novel Cancer therapeutics with allosteric modulation of the mitochondrial C-Raf-DAPK complex by Raf inhibitor combination therapy. Cancer Res 75(17):3568–3582PubMedCrossRefGoogle Scholar
  122. 122.
    Ueda T, Murayama K, Yamamoto T, Kimura S, Imanishi Y (1994) Photo-regulation of hydrolysis activity of semisynthetic mutant phospholipases A2 replaced by non-natural aromatic amino acids. J Chem Soc 2(2):225–230Google Scholar
  123. 123.
    Vishveshwara S, Brinda K, Nkjjo T, Chemistry C (2002) Protein structure: insights from graph theory. J Theoret Comput Chem 1(01):187–211CrossRefGoogle Scholar
  124. 124.
    Volgraf M, Gorostiza P, Szobota S, Helix MR, Isacoff EY, Trauner D (2007) Reversibly caged glutamate: a photochromic agonist of ionotropic glutamate receptors. J Am Chem Soc 129(2):260–261PubMedCrossRefGoogle Scholar
  125. 125.
    Wang H, Vilela M, Winkler A, Tarnawski M, Schlichting I, Yumerefendi H, Kuhlman B, Liu R, Danuser G, Hahn KM (2016) LOVTRAP: an optogenetic system for photoinduced protein dissociation. Nat Methods 13(9):755–758PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Webby CJ, Jiao W, Hutton RD, Blackmore NJ, Baker HM, Baker EN, Jameson GB, Parker EJ (2010) Synergistic allostery, a sophisticated regulatory network for the control of aromatic amino acid biosynthesis in Mycobacterium tuberculosis. J Biol Chem 285(40):30567–30576PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Wehler P, Niopek D, Eils R, Di Ventura B (2016) Optogenetic control of nuclear protein import in living cells using light-inducible nuclear localization signals (LINuS). Curr Protoc Chem Biol 8(2):131–145PubMedCrossRefGoogle Scholar
  128. 128.
    Willner I, Rubin S, Riklin A (1991) Photoregulation of papain activity through anchoring photochromic azo groups to the enzyme backbone, vol 113CrossRefGoogle Scholar
  129. 129.
    Wilson CJ, Zhan H, Swint-Kruse L, Matthews KS (2007) The lactose repressor system: paradigms for regulation, allosteric behavior and protein folding. Cell Mol Life Sci 64(1):3–16PubMedCrossRefGoogle Scholar
  130. 130.
    Wong S, Mosabbir AA, Truong K (2015) An engineered Split Intein for Photoactivated protein trans-splicing. PLoS One 10(8):e0135965PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Wright CM, Majumdar A, Tolman JR, Ostermeier M (2010) NMR characterization of an engineered domain fusion between maltose binding protein and TEM1 beta-lactamase provides insight into its structure and allosteric mechanism. Proteins 78(6):1423–1430PubMedGoogle Scholar
  132. 132.
    Wright CM, Wright RC, Eshleman JR, Ostermeier M (2011) A protein therapeutic modality founded on molecular regulation. Proc Natl Acad Sci U S A 108(39):16206–16211PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Wu YI, Frey D, Lungu OI, Jaehrig A, Schlichting I, Kuhlman B, Hahn KM (2009) A genetically encoded photoactivatable Rac controls the motility of living cells. Nature 461(7260):104–108PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Xu J, Sarma AVS, Wei Y, Beamer LJ, Van Doren SR (2017) Multiple ligand-bound states of a Phosphohexomutase revealed by principal component analysis of NMR peak shifts. Sci Rep 7(1):5343PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Yamada MD, Nakajima Y, Maeda H, Maruta S (2007) Photocontrol of kinesin ATPase activity using an azobenzene derivative. J Biochem 142(6):691–698PubMedCrossRefGoogle Scholar
  136. 136.
    Yates FE, Iberall ASJAOBE (1973) Chance and necessity: an essay on the natural philosophy of modern biology by Jacques Monod. Ann Biomed Eng 1(3):381–384CrossRefGoogle Scholar
  137. 137.
    Yi JJ, Wang H, Vilela M, Danuser G, Hahn KM (2014) Manipulation of endogenous kinase activity in living cells using photoswitchable inhibitory peptides. ACS Synth Biol 3(11):788–795PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Yumerefendi H, Lerner AM, Zimmerman SP, Hahn K, Bear JE, Strahl BD, Kuhlman B. Light-induced nuclear export reveals rapid dynamics of epigenetic modifications. pp 1552–4469 (Electronic)Google Scholar
  139. 139.
    Zhang Y, Kitazawa S, Peran I, Stenzoski N, McCallum SA, Raleigh DP, Royer CA (2016) High pressure ZZ-exchange NMR reveals key features of protein folding transition states. J Am Chem Soc 138(46):15260–15266PubMedCrossRefGoogle Scholar
  140. 140.
    Zimenkov Y, Dublin SN, Ni R, Tu RS, Breedveld V, Apkarian RP, Conticello VP (2006) Rational design of a reversible pH-responsive switch for peptide self-assembly. J Am Chem Soc 128(21):6770–6771PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Scott D. Gorman
    • 1
  • Rebecca N. D’Amico
    • 1
  • Dennis S. Winston
    • 1
  • David D. Boehr
    • 1
    Email author
  1. 1.Department of ChemistryThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations