Advertisement

Allosteric Regulation of Protein Kinases Downstream of PI3-Kinase Signalling

  • Alejandro E. Leroux
  • Lissy Z. F. Gross
  • Mariana Sacerdoti
  • Ricardo M. BiondiEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1163)

Abstract

Allostery is a basic principle that enables proteins to process and transmit cellular information. Protein kinases evolved allosteric mechanisms to transduce cellular signals to downstream signalling components or effector molecules. Protein kinases catalyse the transfer of the terminal phosphate from ATP to protein substrates upon specific stimuli. Protein kinases are targets for the development of small molecule inhibitors for the treatment of human diseases. Drug development has focussed on ATP-binding site, while there is increase interest in the development of drugs targeting alternative sites, i.e. allosteric sites. Here, we review the mechanism of regulation of protein kinases, which often involve the allosteric modulation of the ATP-binding site, enhancing or inhibiting activity. We exemplify the molecular mechanism of allostery in protein kinases downstream of PI3-kinase signalling with a focus on phosphoinositide-dependent protein kinase 1 (PDK1), a model kinase where small compounds can allosterically modulate the conformation of the kinase bidirectionally.

Keywords

Allostery Kinase PDK1 PIF pocket Small molecules AGC kinase Allosteric drug Bidirectional allostery ATP binding site 

Notes

Acknowledgements

The work was supported by DFG BI 1044/12-1, CONICET (subsidio P. UE.); ANPCyT (subsidio PICT PRH-2016-4835), ANPCyT (subsidio PICT -2016-3525), FOCEM-Mercosur (COF 03/11) and CONICET.

References

  1. 1.
    Changeux JP (2012) Allostery and the Monod-Wyman-Changeux model after 50 years. Annu Rev Biophys 41:103–133.  https://doi.org/10.1146/annurev-biophys-050511-102222CrossRefPubMedGoogle Scholar
  2. 2.
    Goodey NM, Benkovic SJ (2008) Allosteric regulation and catalysis emerge via a common route. Nat Chem Biol 4(8):474–482.  https://doi.org/10.1038/nchembio.98CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Nussinov R, Tsai CJ (2013) Allostery in disease and in drug discovery. Cell 153(2):293–305.  https://doi.org/10.1016/j.cell.2013.03.034CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Changeux JP (2013) 50 years of allosteric interactions: the twists and turns of the models. Nat Rev Mol Cell Biol 14(12):819–829.  https://doi.org/10.1038/nrm3695CrossRefPubMedGoogle Scholar
  5. 5.
    Whittington AC, Larion M, Bowler JM, Ramsey KM, Bruschweiler R, Miller BG (2015) Dual allosteric activation mechanisms in monomeric human glucokinase. Proc Natl Acad Sci U S A 112(37):11553–11558.  https://doi.org/10.1073/pnas.1506664112CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Nussinov R, Tsai CJ, Ma B (2013) The underappreciated role of allostery in the cellular network. Annu Rev Biophys 42:169–189.  https://doi.org/10.1146/annurev-biophys-083012-130257CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Pawson T, Scott JD (2005) Protein phosphorylation in signaling--50 years and counting. Trends Biochem Sci 30(6):286–290CrossRefGoogle Scholar
  8. 8.
    Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298(5600):1912–1934CrossRefGoogle Scholar
  9. 9.
    Hunter T (2012) Why nature chose phosphate to modify proteins. Philos Trans R Soc Lond Ser B Biol Sci 367(1602):2513–2516.  https://doi.org/10.1098/rstb.2012.0013CrossRefGoogle Scholar
  10. 10.
    Manning BD, Toker A (2017) AKT/PKB signaling: navigating the network. Cell 169(3):381–405.  https://doi.org/10.1016/j.cell.2017.04.001CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Biondi RM (2004) Phosphoinositide-dependent protein kinase 1, a sensor of protein conformation. Trends Biochem Sci 29(3):136–142CrossRefGoogle Scholar
  12. 12.
    Tompa P (2016) The principle of conformational signaling. Chem Soc Rev 45(15):4252–4284.  https://doi.org/10.1039/c6cs00011hCrossRefPubMedGoogle Scholar
  13. 13.
    Cowan-Jacob SW, Guez V, Fendrich G, Griffin JD, Fabbro D, Furet P, Liebetanz J, Mestan J, Manley PW (2004) Imatinib (STI571) resistance in chronic myelogenous leukemia: molecular basis of the underlying mechanisms and potential strategies for treatment. Mini-Rev Med Chem 4(3):285–299CrossRefGoogle Scholar
  14. 14.
    Saladino G, Gervasio FL (2016) Modeling the effect of pathogenic mutations on the conformational landscape of protein kinases. Curr Opin Struct Biol 37:108–114.  https://doi.org/10.1016/j.sbi.2016.01.005CrossRefPubMedGoogle Scholar
  15. 15.
    Marino KA, Sutto L, Gervasio FL (2015) The effect of a widespread cancer-causing mutation on the inactive to active dynamics of the B-Raf kinase. J Am Chem Soc 137(16):5280–5283.  https://doi.org/10.1021/jacs.5b01421CrossRefPubMedGoogle Scholar
  16. 16.
    Shi Z, Resing KA, Ahn NG (2006) Networks for the allosteric control of protein kinases. Curr Opin Struct Biol 16(6):686–692.  https://doi.org/10.1016/j.sbi.2006.10.011CrossRefPubMedGoogle Scholar
  17. 17.
    Leroux AE, Schulze JO, Biondi RM (2017) AGC kinases, mechanisms of regulation and innovative drug development. Semin Cancer Biol.  https://doi.org/10.1016/j.semcancer.2017.05.011CrossRefGoogle Scholar
  18. 18.
    Dar AC, Shokat KM (2011) The evolution of protein kinase inhibitors from antagonists to agonists of cellular signaling. Annu Rev Biochem 80:769–795.  https://doi.org/10.1146/annurev-biochem-090308-173656CrossRefPubMedGoogle Scholar
  19. 19.
    Christopoulos A, Changeux JP, Catterall WA, Fabbro D, Burris TP, Cidlowski JA, Olsen RW, Peters JA, Neubig RR, Pin JP, Sexton PM, Kenakin TP, Ehlert FJ, Spedding M, Langmead CJ (2014) International Union of Basic and Clinical Pharmacology. XC. Multisite pharmacology: Recommendations for the nomenclature of receptor allosterism and allosteric ligands. Pharmacol Rev 66(4):918–947.  https://doi.org/10.1124/pr.114.008862CrossRefPubMedGoogle Scholar
  20. 20.
    Taylor SS, Zhang P, Steichen JM, Keshwani MM, Kornev AP (2013) PKA: lessons learned after twenty years. Biochim Biophys Acta 1834(7):1271–1278.  https://doi.org/10.1016/j.bbapap.2013.03.007CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Johnson DA, Akamine P, Radzio-Andzelm E, Madhusudan M, Taylor SS (2001) Dynamics of cAMP-dependent protein kinase. Chem Rev 101(8):2243–2270CrossRefGoogle Scholar
  22. 22.
    Knighton DR, Zheng JH, Ten Eyck LF, Ashford VA, Xuong NH, Taylor SS, Sowadski JM (1991) Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science 253(5018):407–414CrossRefGoogle Scholar
  23. 23.
    Hubbard SR (1997) Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog. EMBO J 16(18):5572–5581.  https://doi.org/10.1093/emboj/16.18.5572CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Yang J, Cron P, Good VM, Thompson V, Hemmings BA, Barford D (2002) Crystal structure of an activated Akt/protein kinase B ternary complex with GSK3-peptide and AMP-PNP. Nat Struct Biol 9(12):940–944CrossRefGoogle Scholar
  25. 25.
    Srivastava AK, McDonald LR, Cembran A, Kim J, Masterson LR, McClendon CL, Taylor SS, Veglia G (2014) Synchronous opening and closing motions are essential for cAMP-dependent protein kinase A signaling. Structure 22(12):1735–1743.  https://doi.org/10.1016/j.str.2014.09.010CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kornev AP, Haste NM, Taylor SS, Eyck LF (2006) Surface comparison of active and inactive protein kinases identifies a conserved activation mechanism. Proc Natl Acad Sci U S A 103(47):17783–17788.  https://doi.org/10.1073/pnas.0607656103CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Huse M, Kuriyan J (2002) The conformational plasticity of protein kinases. Cell 109(3):275–282CrossRefGoogle Scholar
  28. 28.
    Jeffrey PD, Russo AA, Polyak K, Gibbs E, Hurwitz J, Massague J, Pavletich NP (1995) Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature 376(6538):313–320.  https://doi.org/10.1038/376313a0CrossRefPubMedGoogle Scholar
  29. 29.
    Huang H, Zhao R, Dickson BM, Skeel RD, Post CB (2012) alphaC helix as a switch in the conformational transition of Src/CDK-like kinase domains. J Phys Chem B 116(15):4465–4475.  https://doi.org/10.1021/jp301628rCrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Baumli S, Lolli G, Lowe ED, Troiani S, Rusconi L, Bullock AN, Debreczeni JE, Knapp S, Johnson LN (2008) The structure of P-TEFb (CDK9/cyclin T1), its complex with flavopiridol and regulation by phosphorylation. EMBO J 27(13):1907–1918.  https://doi.org/10.1038/emboj.2008.121CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Zhang X, Gureasko J, Shen K, Cole PA, Kuriyan J (2006) An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell 125(6):1137–1149CrossRefGoogle Scholar
  32. 32.
    Lemmon MA, Schlessinger J, Ferguson KM (2014) The EGFR family: not so prototypical receptor tyrosine kinases. Cold Spring Harb Perspect Biol 6(4):a020768.  https://doi.org/10.1101/cshperspect.a020768CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Plaza-Menacho I, Barnouin K, Barry R, Borg A, Orme M, Chauhan R, Mouilleron S, Martinez-Torres RJ, Meier P, McDonald NQ (2016) RET functions as a dual-specificity kinase that requires allosteric inputs from juxtamembrane elements. Cell Rep 17(12):3319–3332.  https://doi.org/10.1016/j.celrep.2016.11.061CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Register AC, Leonard SE, Maly DJ (2014) SH2-catalytic domain linker heterogeneity influences allosteric coupling across the SFK family. Biochemistry 53(44):6910–6923.  https://doi.org/10.1021/bi5008194CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Engen JR, Wales TE, Hochrein JM, Meyn MA 3rd, Banu Ozkan S, Bahar I, Smithgall TE (2008) Structure and dynamic regulation of Src-family kinases. Cell Mol Life Sci 65(19):3058–3073.  https://doi.org/10.1007/s00018-008-8122-2CrossRefPubMedGoogle Scholar
  36. 36.
    Marcotte DJ, Liu YT, Arduini RM, Hession CA, Miatkowski K, Wildes CP, Cullen PF, Hong V, Hopkins BT, Mertsching E, Jenkins TJ, Romanowski MJ, Baker DP, Silvian LF (2010) Structures of human Bruton’s tyrosine kinase in active and inactive conformations suggest a mechanism of activation for TEC family kinases. Protein Sci 19(3):429–439.  https://doi.org/10.1002/pro.321CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Deindl S, Kadlecek TA, Brdicka T, Cao X, Weiss A, Kuriyan J (2007) Structural basis for the inhibition of tyrosine kinase activity of ZAP-70. Cell 129(4):735–746.  https://doi.org/10.1016/j.cell.2007.03.039CrossRefPubMedGoogle Scholar
  38. 38.
    Kannan N, Neuwald AF, Taylor SS (2008) Analogous regulatory sites within the alphaC-beta4 loop regions of ZAP-70 tyrosine kinase and AGC kinases. Biochim Biophys Acta 1784(1):27–32.  https://doi.org/10.1016/j.bbapap.2007.09.007CrossRefPubMedGoogle Scholar
  39. 39.
    Filippakopoulos P, Kofler M, Hantschel O, Gish GD, Grebien F, Salah E, Neudecker P, Kay LE, Turk BE, Superti-Furga G, Pawson T, Knapp S (2008) Structural coupling of SH2-kinase domains links Fes and Abl substrate recognition and kinase activation. Cell 134(5):793–803CrossRefGoogle Scholar
  40. 40.
    Ogawa A, Takayama Y, Sakai H, Chong KT, Takeuchi S, Nakagawa A, Nada S, Okada M, Tsukihara T (2002) Structure of the carboxyl-terminal Src kinase, Csk. J Biol Chem 277(17):14351–14354.  https://doi.org/10.1074/jbc.C200086200CrossRefPubMedGoogle Scholar
  41. 41.
    Kemp BE, Bylund DB, Huang TS, Krebs EG (1975) Substrate specificity of the cyclic AMP-dependent protein kinase. Proc Natl Acad Sci U S A 72(9):3448–3452CrossRefGoogle Scholar
  42. 42.
    Zetterqvist O, Ragnarsson U, Humble E, Berglund L, Engstrom L (1976) The minimum substrate of cyclic AMP-stimulated protein kinase, as studied by synthetic peptides representing the phosphorylatable site of pyruvate kinase (type L) of rat liver. Biochem Biophys Res Commun 70(3):696–703CrossRefGoogle Scholar
  43. 43.
    Yaffe MB, Leparc GG, Lai J, Obata T, Volinia S, Cantley LC (2001) A motif-based profile scanning approach for genome-wide prediction of signaling pathways. Nat Biotechnol 19(4):348–353.  https://doi.org/10.1038/86737CrossRefPubMedGoogle Scholar
  44. 44.
    Pinna LA, Ruzzene M (1996) How do protein kinases recognize their substrates? Biochim Biophys Acta 1314(3):191–225CrossRefGoogle Scholar
  45. 45.
    Kettenbach AN, Wang T, Faherty BK, Madden DR, Knapp S, Bailey-Kellogg C, Gerber SA (2012) Rapid determination of multiple linear kinase substrate motifs by mass spectrometry. Chem Biol 19(5):608–618.  https://doi.org/10.1016/j.chembiol.2012.04.011CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Kemp BE, Pearson RB (1991) Design and use of peptide substrates for protein kinases. Methods Enzymol 200:121–134CrossRefGoogle Scholar
  47. 47.
    Biondi RM, Nebreda AR (2003) Signalling specificity of Ser/Thr protein kinases through docking-site-mediated interactions. Biochem J 372(Pt 1):1–13CrossRefGoogle Scholar
  48. 48.
    Gavin AC, Nebreda AR (1999) A MAP kinase docking site is required for phosphorylation and activation of p90(rsk)/MAPKAP kinase-1. Curr Biol 9(5):281–284CrossRefGoogle Scholar
  49. 49.
    Kallunki T, Deng T, Hibi M, Karin M (1996) c-Jun can recruit JNK to phosphorylate dimerization partners via specific docking interactions. Cell 87(5):929–939CrossRefGoogle Scholar
  50. 50.
    Xu B, Stippec S, Robinson FL, Cobb MH (2001) Hydrophobic as well as charged residues in both MEK1 and ERK2 are important for their proper docking. J Biol Chem 276(28):26509–26515CrossRefGoogle Scholar
  51. 51.
    Lisa MN, Gil M, Andre-Leroux G, Barilone N, Duran R, Biondi RM, Alzari PM (2015) Molecular basis of the activity and the regulation of the eukaryotic-like S/T protein kinase PknG from Mycobacterium tuberculosis. Structure 23(6):1039–1048.  https://doi.org/10.1016/j.str.2015.04.001CrossRefPubMedGoogle Scholar
  52. 52.
    Engh RA, Bossemeyer D (2002) Structural aspects of protein kinase control-role of conformational flexibility. Pharmacol Ther 93(2-3):99–111CrossRefGoogle Scholar
  53. 53.
    Cheetham GM, Knegtel RM, Coll JT, Renwick SB, Swenson L, Weber P, Lippke JA, Austen DA (2002) Crystal structure of aurora-2, an oncogenic serine/threonine kinase. J Biol Chem 277(45):42419–42422.  https://doi.org/10.1074/jbc.C200426200CrossRefPubMedGoogle Scholar
  54. 54.
    Hubbard SR, Wei L, Ellis L, Hendrickson WA (1994) Crystal structure of the tyrosine kinase domain of the human insulin receptor. Nature 372(6508):746–754.  https://doi.org/10.1038/372746a0CrossRefPubMedGoogle Scholar
  55. 55.
    Wan PT, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz D, Good VM, Jones CM, Marshall CJ, Springer CJ, Barford D, Marais R (2004) Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116(6):855–867CrossRefGoogle Scholar
  56. 56.
    Panjarian S, Iacob RE, Chen S, Engen JR, Smithgall TE (2013) Structure and dynamic regulation of Abl kinases. J Biol Chem 288(8):5443–5450.  https://doi.org/10.1074/jbc.R112.438382CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Arencibia JM, Pastor-Flores D, Bauer AF, Schulze JO, Biondi RM (2013) AGC protein kinases: from structural mechanism of regulation to allosteric drug development for the treatment of human diseases. Biochim Biophys Acta 1834(7):1302–1321.  https://doi.org/10.1016/j.bbapap.2013.03.010CrossRefPubMedGoogle Scholar
  58. 58.
    Hindie V, Stroba A, Zhang H, Lopez-Garcia LA, Idrissova L, Zeuzem S, Hirschberg D, Schaeffer F, Jorgensen TJD, Engel M, Alzari PM, Biondi RM (2009) Structure and allosteric effects of low molecular weight activators on the protein kinase PDK1. Nat Chem Biol 5(10):758–764.  https://doi.org/10.1038/nchembio.208CrossRefPubMedGoogle Scholar
  59. 59.
    Hauge C, Antal TL, Hirschberg D, Doehn U, Thorup K, Idrissova L, Hansen K, Jensen ON, Jorgensen TJ, Biondi RM, Frodin M (2007) Mechanism for activation of the growth factor-activated AGC kinases by turn motif phosphorylation. EMBO J 26(9):2251–2261CrossRefGoogle Scholar
  60. 60.
    Zhang H, Neimanis S, Lopez-Garcia LA, Arencibia JM, Amon S, Stroba A, Zeuzem S, Proschak E, Stark H, Bauer AF, Busschots K, Jorgensen TJ, Engel M, Schulze JO, Biondi RM (2014) Molecular mechanism of regulation of the atypical protein kinase C by N-terminal domains and an allosteric small compound. Chem Biol 21(6):754–765.  https://doi.org/10.1016/j.chembiol.2014.04.007CrossRefPubMedGoogle Scholar
  61. 61.
    Balendran A, Casamayor A, Deak M, Paterson A, Gaffney P, Currie R, Downes CP, Alessi DR (1999) PDK1 acquires PDK2 activity in the presence of a synthetic peptide derived from the carboxyl terminus of PRK2. Curr Biol 9(8):393–404CrossRefGoogle Scholar
  62. 62.
    Biondi RM, Cheung PC, Casamayor A, Deak M, Currie RA, Alessi DR (2000) Identification of a pocket in the PDK1 kinase domain that interacts with PIF and the C-terminal residues of PKA. EMBO J 19(5):979–988CrossRefGoogle Scholar
  63. 63.
    Biondi RM, Kieloch A, Currie RA, Deak M, Alessi DR (2001) The PIF-binding pocket in PDK1 is essential for activation of S6K and SGK, but not PKB. EMBO J 20(16):4380–4390CrossRefGoogle Scholar
  64. 64.
    Engel M, Hindie V, Lopez-Garcia LA, Stroba A, Schaeffer F, Adrian I, Imig J, Idrissova L, Nastainczyk W, Zeuzem S, Alzari PM, Hartmann RW, Piiper A, Biondi RM (2006) Allosteric activation of the protein kinase PDK1 with low molecular weight compounds. EMBO J 25(23):5469–5480CrossRefGoogle Scholar
  65. 65.
    Busschots K, Lopez-Garcia LA, Lammi C, Stroba A, Zeuzem S, Piiper A, Alzari PM, Neimanis S, Arencibia JM, Engel M, Schulze JO, Biondi RM (2012) Substrate-selective inhibition of protein kinase PDK1 by small compounds that bind to the PIF-pocket allosteric docking site. Chem Biol 19(9):1152–1163.  https://doi.org/10.1016/j.chembiol.2012.07.017CrossRefPubMedGoogle Scholar
  66. 66.
    Rettenmaier TJ, Sadowsky JD, Thomsen ND, Chen SC, Doak AK, Arkin MR, Wells JA (2014) A small-molecule mimic of a peptide docking motif inhibits the protein kinase PDK1. Proc Natl Acad Sci U S A 111(52):18590–18595.  https://doi.org/10.1073/pnas.1415365112CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Frodin M, Jensen CJ, Merienne K, Gammeltoft S (2000) A phosphoserine-regulated docking site in the protein kinase RSK2 that recruits and activates PDK1. EMBO J 19(12):2924–2934CrossRefGoogle Scholar
  68. 68.
    Dettori R, Sonzogni S, Meyer L, Lopez-Garcia LA, Morrice NA, Zeuzem S, Engel M, Piiper A, Neimanis S, Frodin M, Biondi RM (2009) Regulation of the interaction between protein kinase C-related protein kinase 2 (PRK2) and its upstream kinase, 3-phosphoinositide-dependent protein kinase 1 (PDK1). J Biol Chem 284(44):30318–30327.  https://doi.org/10.1074/jbc.M109.051151CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Biondi RM, Komander D, Thomas CC, Lizcano JM, Deak M, Alessi DR, van Aalten DM (2002) High resolution crystal structure of the human PDK1 catalytic domain defines the regulatory phosphopeptide docking site. EMBO J 21(16):4219–4228CrossRefGoogle Scholar
  70. 70.
    Frodin M, Antal TL, Dummler BA, Jensen CJ, Deak M, Gammeltoft S, Biondi RM (2002) A phosphoserine/threonine-binding pocket in AGC kinases and PDK1 mediates activation by hydrophobic motif phosphorylation. EMBO J 21(20):5396–5407CrossRefGoogle Scholar
  71. 71.
    Yang J, Cron P, Thompson V, Good VM, Hess D, Hemmings BA, Barford D (2002) Molecular mechanism for the regulation of protein kinase B/Akt by hydrophobic motif phosphorylation. Mol Cell 9(6):1227–1240CrossRefGoogle Scholar
  72. 72.
    Chu N, Salguero AL, Liu AZ, Chen Z, Dempsey DR, Ficarro SB, Alexander WM, Marto JA, Li Y, Amzel LM, Gabelli SB, Cole PA (2018) Akt Kinase Activation Mechanisms Revealed Using Protein Semisynthesis. Cell 174(4):897–907.e814.  https://doi.org/10.1016/j.cell.2018.07.003CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Lin K, Lin J, Wu WI, Ballard J, Lee BB, Gloor SL, Vigers GP, Morales TH, Friedman LS, Skelton N, Brandhuber BJ (2012) An ATP-site on-off switch that restricts phosphatase accessibility of Akt. Sci Signal 5(223):ra37.  https://doi.org/10.1126/scisignal.2002618CrossRefPubMedGoogle Scholar
  74. 74.
    Grodsky N, Li Y, Bouzida D, Love R, Jensen J, Nodes B, Nonomiya J, Grant S (2006) Structure of the catalytic domain of human protein kinase C beta II complexed with a bisindolylmaleimide inhibitor. Biochemistry 45(47):13970–13981.  https://doi.org/10.1021/bi061128hCrossRefPubMedGoogle Scholar
  75. 75.
    Boguth CA, Singh P, Huang CC, Tesmer JJG (2010) Molecular basis for activation of G protein-coupled receptor kinases. EMBO J 29(19):3249–3259.  https://doi.org/10.1038/emboj.2010.206CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Bayliss R, Sardon T, Vernos I, Conti E (2003) Structural basis of Aurora-A activation by TPX2 at the mitotic spindle. Mol Cell 12(4):851–862CrossRefGoogle Scholar
  77. 77.
    Schulze JO, Saladino G, Busschots K, Neimanis S, Suss E, Odadzic D, Zeuzem S, Hindie V, Herbrand AK, Lisa MN, Alzari PM, Gervasio FL, Biondi RM (2016) Bidirectional allosteric communication between the ATP-binding site and the regulatory PIF pocket in PDK1 protein kinase. Cell Chem Biol 23(10):1193–1205.  https://doi.org/10.1016/j.chembiol.2016.06.017CrossRefPubMedGoogle Scholar
  78. 78.
    Stegert MR, Tamaskovic R, Bichsel SJ, Hergovich A, Hemmings BA (2004) Regulation of NDR2 protein kinase by multi-site phosphorylation and the S100B calcium-binding protein. J Biol Chem 279(22):23806–23812.  https://doi.org/10.1074/jbc.M402472200CrossRefPubMedGoogle Scholar
  79. 79.
    Ultanir SK, Hertz NT, Li G, Ge WP, Burlingame AL, Pleasure SJ, Shokat KM, Jan LY, Jan YN (2012) Chemical genetic identification of NDR1/2 kinase substrates AAK1 and Rabin8 Uncovers their roles in dendrite arborization and spine development. Neuron 73(6):1127–1142.  https://doi.org/10.1016/j.neuron.2012.01.019CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Cook D, Hoa LY, Gomez V, Gomez M, Hergovich A (2014) Constitutively active NDR1-PIF kinase functions independent of MST1 and hMOB1 signalling. Cell Signal 26(8):1657–1667.  https://doi.org/10.1016/j.cellsig.2014.04.011CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Lopez-Garcia LA, Schulze JO, Frohner W, Zhang H, Suss E, Weber N, Navratil J, Amon S, Hindie V, Zeuzem S, Jorgensen TJ, Alzari PM, Neimanis S, Engel M, Biondi RM (2011) Allosteric regulation of protein kinase PKCzeta by the N-terminal C1 domain and small compounds to the PIF-pocket. Chem Biol 18(11):1463–1473.  https://doi.org/10.1016/j.chembiol.2011.08.010CrossRefPubMedGoogle Scholar
  82. 82.
    Wu WI, Voegtli WC, Sturgis HL, Dizon FP, Vigers GP, Brandhuber BJ (2010) Crystal structure of human AKT1 with an allosteric inhibitor reveals a new mode of kinase inhibition. PLoS One 5(9):e12913.  https://doi.org/10.1371/journal.pone.0012913CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Hirai H, Sootome H, Nakatsuru Y, Miyama K, Taguchi S, Tsujioka K, Ueno Y, Hatch H, Majumder PK, Pan BS, Kotani H (2010) MK-2206, an allosteric Akt inhibitor, enhances antitumor efficacy by standard chemotherapeutic agents or molecular targeted drugs in vitro and in vivo. Mol Cancer Ther 9(7):1956–1967.  https://doi.org/10.1158/1535-7163.MCT-09-1012CrossRefPubMedGoogle Scholar
  84. 84.
    Politz O, Siegel F, Barfacker L, Bomer U, Hagebarth A, Scott WJ, Michels M, Ince S, Neuhaus R, Meyer K, Fernandez-Montalvan AE, Liu N, von Nussbaum F, Mumberg D, Ziegelbauer K (2017) BAY 1125976, a selective allosteric AKT1/2 inhibitor, exhibits high efficacy on AKT signaling-dependent tumor growth in mouse models. Int J Cancer 140(2):449–459.  https://doi.org/10.1002/ijc.30457CrossRefPubMedGoogle Scholar
  85. 85.
    Ebner M, Lucic I, Leonard TA, Yudushkin I (2017) PI(3,4,5)P3 engagement restricts Akt activity to cellular membranes. Mol Cell 65(3):416–431.e416.  https://doi.org/10.1016/j.molcel.2016.12.028CrossRefPubMedGoogle Scholar
  86. 86.
    Liu P, Wang Z, Wei W (2014) Phosphorylation of Akt at the C-terminal tail triggers Akt activation. Cell Cycle 13(14):2162–2164.  https://doi.org/10.4161/cc.29584CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Clement E, Inuzuka H, Nihira NT, Wei W, Toker A (2018) Skp2-dependent reactivation of AKT drives resistance to PI3K inhibitors. Sci Signal 11(521).  https://doi.org/10.1126/scisignal.aao3810CrossRefGoogle Scholar
  88. 88.
    Stroba A, Schaeffer F, Hindie V, Lopez-Garcia L, Adrian I, Frohner W, Hartmann RW, Biondi RM, Engel M (2009) 3,5-Diphenylpent-2-enoic acids as allosteric activators of the protein kinase PDK1: structure-activity relationships and thermodynamic characterization of binding as paradigms for PIF-binding pocket-targeting compounds. J Med Chem 52(15):4683–4693.  https://doi.org/10.1021/jm9001499CrossRefPubMedGoogle Scholar
  89. 89.
    Frohner W, Lopez-Garcia LA, Neimanis S, Weber N, Navratil J, Maurer F, Stroba A, Zhang H, Biondi RM, Engel M (2011) 4-benzimidazolyl-3-phenylbutanoic acids as novel Pif-Pocket-targeting allosteric inhibitors of protein kinase PKCzeta. J Med Chem 54(19):6714–6723.  https://doi.org/10.1021/jm2005892CrossRefPubMedGoogle Scholar
  90. 90.
    Wilhelm A, Lopez-Garcia LA, Busschots K, Frohner W, Maurer F, Boettcher S, Zhang H, Schulze JO, Biondi RM, Engel M (2012) 2-(3-Oxo-1,3-diphenylpropyl)malonic acids as potent allosteric ligands of the PIF pocket of phosphoinositide-dependent kinase-1: development and prodrug concept. J Med Chem 55(22):9817–9830.  https://doi.org/10.1021/jm3010477CrossRefPubMedGoogle Scholar
  91. 91.
    Sugita Y, Okamoto Y (1999) Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett 314(1–2):141–151.  https://doi.org/10.1016/S0009-2614(99)01123-9CrossRefGoogle Scholar
  92. 92.
    Bonomi M, Parrinello M (2010) Enhanced Sampling in the well-tempered ensemble. Phys Rev Lett 104(19).  https://doi.org/10.1103/Physrevlett.104.190601
  93. 93.
    Abdel-Halim M, Abadi AH, Engel M (2018) Design and synthesis of novel 1,3,5-triphenyl pyrazolines as potential anti-inflammatory agents through allosteric inhibition of protein kinase Czeta (PKCzeta). MedChemComm 9(6):1076–1082.  https://doi.org/10.1039/c8md00100fCrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Abdel-Halim M, Diesel B, Kiemer AK, Abadi AH, Hartmann RW, Engel M (2014) Discovery and optimization of 1,3,5-trisubstituted pyrazolines as potent and highly selective allosteric inhibitors of protein kinase C-zeta. J Med Chem 57(15):6513–6530.  https://doi.org/10.1021/jm500521nCrossRefPubMedGoogle Scholar
  95. 95.
    Arencibia JM, Frohner W, Krupa M, Pastor-Flores D, Merker P, Oellerich T, Neimanis S, Schmithals C, Koberle V, Suss E, Zeuzem S, Stark H, Piiper A, Odadzic D, Schulze JO, Biondi RM (2017) An allosteric inhibitor scaffold targeting the PIF-pocket of atypical protein kinase C isoforms. ACS Chem Biol 12(2):564–573.  https://doi.org/10.1021/acschembio.6b00827CrossRefPubMedGoogle Scholar
  96. 96.
    Eyers PA, Erikson E, Chen LG, Maller JL (2003) A novel mechanism for activation of the protein kinase Aurora A. Curr Biol 13(8):691–697.  https://doi.org/10.1016/S0960-9822(03)00166-0CrossRefPubMedGoogle Scholar
  97. 97.
    Janecek M, Rossmann M, Sharma P, Emery A, Huggins DJ, Stockwell SR, Stokes JE, Tan YS, Almeida EG, Hardwick B, Narvaez AJ, Hyvonen M, Spring DR, McKenzie GJ, Venkitaraman AR (2016) Allosteric modulation of AURKA kinase activity by a small-molecule inhibitor of its protein-protein interaction with TPX2. Sci Rep 6:28528.  https://doi.org/10.1038/srep28528CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Asteriti IA, Daidone F, Colotti G, Rinaldo S, Lavia P, Guarguaglini G, Paiardini A (2017) Identification of small molecule inhibitors of the Aurora-A/TPX2 complex. Oncotarget 8(19):32117–32133.  https://doi.org/10.18632/oncotarget.16738CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Bayliss R, Burgess SG, McIntyre PJ (2017) Switching Aurora-A kinase on and off at an allosteric site. FEBS J 284(18):2947–2954.  https://doi.org/10.1111/febs.14069CrossRefPubMedGoogle Scholar
  100. 100.
    Panicker RC, Coyne AG, Srinivasan R (2017) Allosteric targeting of Aurora A kinase using small molecules: a step forward towards next generation medicines? Curr Med Chem.  https://doi.org/10.2174/0929867324666170727120315CrossRefGoogle Scholar
  101. 101.
    Carlino L, Christodoulou MS, Restelli V, Caporuscio F, Foschi F, Semrau MS, Costanzi E, Tinivella A, Pinzi L, Lo Presti L, Battistutta R, Storici P, Broggini M, Passarella D, Rastelli G (2018) Structure-activity relationships of hexahydrocyclopenta[c]quinoline derivatives as allosteric inhibitors of CDK2 and EGFR. ChemMedChem 13(24):2627–2634.  https://doi.org/10.1002/cmdc.201800687CrossRefPubMedGoogle Scholar
  102. 102.
    Komander D, Kular GS, Bain J, Elliott M, Alessi DR, Van Aalten DM (2003) Structural basis for UCN-01 (7-hydroxystaurosporine) specificity and PDK1 (3-phosphoinositide-dependent protein kinase-1) inhibition. Biochem J 375(Pt 2):255–262CrossRefGoogle Scholar
  103. 103.
    Axten JM, Blackledge CW, Brady GP, Feng Y, Grant SW, Medina JR, Milller WH, Romeril SP (2010) Preparation of 6-(4-pyrimidinyl)-1H-indazole derivatives as PDK1 inhibitors. PCT Int Appl WO 2010059658Google Scholar
  104. 104.
    Najafov A, Sommer EM, Axten JM, Deyoung MP, Alessi DR (2011) Characterization of GSK2334470, a novel and highly specific inhibitor of PDK1. Biochem J 433(2):357–369.  https://doi.org/10.1042/BJ20101732CrossRefPubMedGoogle Scholar
  105. 105.
    Richards MW, Burgess SG, Poon E, Carstensen A, Eilers M, Chesler L, Bayliss R (2016) Structural basis of N-Myc binding by Aurora-A and its destabilization by kinase inhibitors. Proc Natl Acad Sci U S A 113(48):13726–13731.  https://doi.org/10.1073/pnas.1610626113CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Gustafson WC, Meyerowitz JG, Nekritz EA, Chen J, Benes C, Charron E, Simonds EF, Seeger R, Matthay KK, Hertz NT, Eilers M, Shokat KM, Weiss WA (2014) Drugging MYCN through an allosteric transition in Aurora kinase A. Cancer Cell 26(3):414–427.  https://doi.org/10.1016/j.ccr.2014.07.015CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Poulikakos PI, Zhang C, Bollag G, Shokat KM, Rosen N (2010) RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 464(7287):427–430.  https://doi.org/10.1038/nature08902CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Hatzivassiliou G, Song K, Yen I, Brandhuber BJ, Anderson DJ, Alvarado R, Ludlam MJ, Stokoe D, Gloor SL, Vigers G, Morales T, Aliagas I, Liu B, Sideris S, Hoeflich KP, Jaiswal BS, Seshagiri S, Koeppen H, Belvin M, Friedman LS et al (2010) RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature 464(7287):431–435.  https://doi.org/10.1038/nature08833CrossRefGoogle Scholar
  109. 109.
    Wang L, Perera BG, Hari SB, Bhhatarai B, Backes BJ, Seeliger MA, Schurer SC, Oakes SA, Papa FR, Maly DJ (2012) Divergent allosteric control of the IRE1alpha endoribonuclease using kinase inhibitors. Nat Chem Biol 8(12):982–989.  https://doi.org/10.1038/nchembio.1094CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Lombard CK, Davis AL, Inukai T, Maly DJ (2018) Allosteric Modulation of JNK Docking Site Interactions with ATP-Competitive Inhibitors. Biochemistry 57(40):5897–5909.  https://doi.org/10.1021/acs.biochem.8b00776CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Alejandro E. Leroux
    • 1
  • Lissy Z. F. Gross
    • 1
  • Mariana Sacerdoti
    • 1
  • Ricardo M. Biondi
    • 1
    • 2
    • 3
    • 4
    Email author
  1. 1.Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) – CONICET – Partner Institute of the Max Planck SocietyBuenos AiresArgentina
  2. 2.Department of Internal Medicine IUniversitätsklinikum FrankfurtFrankfurtGermany
  3. 3.DKTK German Cancer Consortium (DKTK)FrankfurtGermany
  4. 4.German Cancer Research Center (DKFZ)HeidelbergGermany

Personalised recommendations