Defect-Induced Discontinuous Effects in Graphene Nanoribbon Under Torsion Loading

  • Xiaoyi LiuEmail author
Part of the Springer Theses book series (Springer Theses)


Defects are ubiquitous in graphene monolayer, which are considered as the foundation of the design of graphene and graphene composites. In addition, defects may induce discontinuous effects for the mechanical behaviors of graphene. In this chapter, the defect technology of graphene is reviewed and discussed. The mechanical behaviors of graphene nanoribbon under torsion loading, which is a representative case including both the static and dynamic out-of-plane deformation, is analyzed to reveal the discontinuous effects induced by defects.


  1. 1.
    Ferreira A, Xu X, Tan CL, Bae SK, Peres N, Hong BH, Özyilmaz B, Neto AC (2011) Europhys Lett 94(2):28003CrossRefGoogle Scholar
  2. 2.
    Grantab R, Shenoy VB, Ruoff RS (2010) Science 330(6006):946CrossRefGoogle Scholar
  3. 3.
    Carlsson JM, Scheffler M (2006) Phys Rev Lett 96(4):046806CrossRefGoogle Scholar
  4. 4.
    Santos EJ, Sánchez-Portal D, Ayuela A (2010) Phys Rev B 81(12):125433CrossRefGoogle Scholar
  5. 5.
    Khurana G, Kumar N, Kotnala R, Nautiyal T, Katiyar R (2013) Nanoscale 5(8):3346CrossRefGoogle Scholar
  6. 6.
    Bell DC, Lemme MC, Stern LA, Williams JR, Marcus CM (2009) Nanotechnology 20(45):455301CrossRefGoogle Scholar
  7. 7.
    Fischbein MD, Drndić M (2008) Appl Phys Lett 93(11):113107CrossRefGoogle Scholar
  8. 8.
    Zhu W, Wang H, Yang W (2012) Nanoscale 4(15):4555CrossRefGoogle Scholar
  9. 9.
    Lemme MC, Bell DC, Williams JR, Stern LA, Baugher BW, Jarillo-Herrero P, Marcus CM (2009) ACS Nano 3(9):2674CrossRefGoogle Scholar
  10. 10.
    Wang H, Wang Q, Cheng Y, Li K, Yao Y, Zhang Q, Dong C, Wang P, Schwingenschlogl U, Yang W et al (2011) Nano Lett 12(1):141CrossRefGoogle Scholar
  11. 11.
    Åhlgren E, Kotakoski J, Krasheninnikov A (2011) Phys Rev B 83(11):115424CrossRefGoogle Scholar
  12. 12.
    Krasheninnikov A, Nordlund K (2010) J Appl Phys 107(7):3CrossRefGoogle Scholar
  13. 13.
    Lehtinen O, Kotakoski J, Krasheninnikov A, Tolvanen A, Nordlund K, Keinonen J (2010) Phys Rev B 81(15):153401CrossRefGoogle Scholar
  14. 14.
    Bubin S, Wang B, Pantelides S, Varga K (2012) Phys Rev B 85(23):235435CrossRefGoogle Scholar
  15. 15.
    Gottstein G (2013) Physical foundations of materials science. Springer Science & Business MediaGoogle Scholar
  16. 16.
    Wei Y, Wu J, Yin H, Shi X, Yang R, Dresselhaus M (2012) Nat Mater 11(9):759CrossRefGoogle Scholar
  17. 17.
    Van Duin AC, Dasgupta S, Lorant F, Goddard WA (2001) J Phys Chem A 105(41):9396CrossRefGoogle Scholar
  18. 18.
    Han SS, Kang JK, Lee HM, van Duin AC, Goddard WA III (2005) J Chem Phys 123(11):114703CrossRefGoogle Scholar
  19. 19.
    Nielson KD, van Duin AC, Oxgaard J, Deng WQ, Goddard WA (2005) J Phys Chem A 109(3):493CrossRefGoogle Scholar
  20. 20.
    Järrvi TT, van Duin AC, Nordlund K, Goddard WA III (2011) J Phys Chem A 115(37):10315CrossRefGoogle Scholar
  21. 21.
    Keith JA, Fantauzzi D, Jacob T, van Duin AC (2010) Phys Rev B 81(23):235404CrossRefGoogle Scholar
  22. 22.
    Aryanpour M, van Duin AC, Kubicki JD (2010) J Phys Chem A 114(21):6298CrossRefGoogle Scholar
  23. 23.
    Chenoweth K, Van Duin AC, Goddard WA (2008) J Phys Chem A 112(5):1040CrossRefGoogle Scholar
  24. 24.
    Plimpton S (1995) J Comput Phys 117(1):1CrossRefGoogle Scholar
  25. 25.
    Li J (2003) Modell Simul Mater Sci Eng 11(2):173CrossRefGoogle Scholar
  26. 26.
    Krasheninnikov A, Lehtinen P, Foster AS, Pyykkö P, Nieminen RM (2009) Phys Rev Lett 102(12):126807CrossRefGoogle Scholar
  27. 27.
    Gunlycke D, Li J, Mintmire JW, White CT (2010) Nano Lett 10(9):3638CrossRefGoogle Scholar
  28. 28.
    Li Y, Jiang X, Liu Z, Liu Z (2010) Nano Res 3(8):545CrossRefGoogle Scholar
  29. 29.
    Stuart SJ, Tutein AB, Harrison JA (2000) J Chem Phys 112(14):6472CrossRefGoogle Scholar
  30. 30.
    Jia J, Shi D, Feng X, Chen G (2014) Carbon 76:54CrossRefGoogle Scholar
  31. 31.
    Humphrey W, Dalke A, Schulten K (1996) J Mol Gr 14(1):33CrossRefGoogle Scholar
  32. 32.
    Boker S, Neale M, Maes H, Wilde M, Spiegel M, Brick T, Spies J, Estabrook R, Kenny S, Bates T et al (2011) Psychometrika 76(2):306CrossRefGoogle Scholar
  33. 33.
    Caroli C, Combescot R, Nozieres P, Saint-James D (1971) J Phys C: Solid State Phys 4(8):916CrossRefGoogle Scholar
  34. 34.
    Ceperley DM, Alder B (1980) Phys Rev Lett 45(7):566CrossRefGoogle Scholar
  35. 35.
    Ozaki T (2003) Phys Rev B 67(15):155108CrossRefGoogle Scholar
  36. 36.
    Cranford S, Buehler MJ (2011) Modell Simul Mater Sci Eng 19(5):054003CrossRefGoogle Scholar
  37. 37.
    Kit O, Tallinen T, Mahadevan L, Timonen J, Koskinen P (2012) Phys Rev B 85(8):085428CrossRefGoogle Scholar
  38. 38.
    Son YW, Cohen ML, Louie SG (2006) Phys Rev Lett 97(21):216803CrossRefGoogle Scholar
  39. 39.
    Sadrzadeh A, Hua M, Yakobson BI (2011) Appl Phys Lett 99(1):013102CrossRefGoogle Scholar
  40. 40.
    Cerda E, Ravi-Chandar K, Mahadevan L (2002) Nature 419(6907):579CrossRefGoogle Scholar
  41. 41.
    Zhao H, Min K, Aluru N (2009) Nano Lett 9(8):3012CrossRefGoogle Scholar
  42. 42.
    Yi L, Yin Z, Zhang Y, Chang T (2013) Carbon 51:373CrossRefGoogle Scholar
  43. 43.
    Mucciolo ER, Neto AC, Lewenkopf CH (2009) Phys Rev B 79(7):075407CrossRefGoogle Scholar
  44. 44.
    Zou D, Cui B, Kong X, Zhao W, Zhao J, Liu D (2015) Phys Chem Chem Phys 17(17):11292CrossRefGoogle Scholar
  45. 45.
    Motta C, Sánchez-Portal D, Trioni M (2012) Phys Chem Chem Phys 14(30):10683CrossRefGoogle Scholar
  46. 46.
    Moraes Diniz E (2014) Appl Phys Lett 104(8):083119CrossRefGoogle Scholar
  47. 47.
    Lin YT, Chung HC, Yang PH, Lin SY, Lin MF (2015) Phys Chem Chem Phys 17(25):16545CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Modern MechanicsUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations