Advertisement

Dynamic Ripples in Graphene Monolayer

  • Xiaoyi LiuEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

The dynamic ripples in graphene monolayer are one of the important out-of-plane mechanical behaviors of graphene, which are generally motivated by out-of-plane loading. Their deformation mechanism and potential applications are discussed in this chapter.

References

  1. 1.
    Geim AK (2009) Science 324(5934):1530Google Scholar
  2. 2.
    Bunch JS, Van Der Zande AM, Verbridge SS, Frank IW, Tanenbaum DM, Parpia JM, Craighead HG, McEuen PL (2007) Science 315(5811):490Google Scholar
  3. 3.
    Robinson JT, Perkins FK, Snow ES, Wei Z, Sheehan PE (2008) Nano Lett 8(10):3137Google Scholar
  4. 4.
    Bunch JS, Verbridge SS, Alden JS, Van Der Zande AM, Parpia JM, Craighead HG, McEuen PL (2008) Nano Lett 8(8):2458Google Scholar
  5. 5.
    Rangel NL, Seminario JM (2008) J Phys Chem A 112(51):13699Google Scholar
  6. 6.
    Narendar S, Gopalakrishnan S (2010) Physica E Low Dimens Syst Nanostruct 43(1):423Google Scholar
  7. 7.
    Kim SY, Park HS (2011) J Appl Phys 110(5):054324Google Scholar
  8. 8.
    Shi JX, Ni QQ, Lei XW, Natsuki T (2011) J Appl Phys 110(8):084321Google Scholar
  9. 9.
    Han MY, Özyilmaz B, Zhang Y, Kim P (2007) Phys Rev Lett 98(20):206805Google Scholar
  10. 10.
    Barton RA, Ilic B, Van Der Zande AM, Whitney WS, McEuen PL, Parpia JM, Craighead HG (2011) Nano Lett 11(3):1232Google Scholar
  11. 11.
    Sensale-Rodriguez B, Yan R, Kelly MM, Fang T, Tahy K, Hwang WS, Jena D, Liu L, Xing HG (2012) Nat Commun 3:780Google Scholar
  12. 12.
    Chowdhury R, Adhikari S, Scarpa F, Friswell M (2011) J Phys D Appl Phys 44(20):205401Google Scholar
  13. 13.
    Narendar S, Mahapatra DR, Gopalakrishnan S (2010) Comput Mater Sci 49(4):734Google Scholar
  14. 14.
    Zhao H, Min K, Aluru N (2009) Nano Lett 9(8):3012Google Scholar
  15. 15.
    Ma T, Li B, Chang T (2011) Appl Phys Lett 99(20):201901Google Scholar
  16. 16.
    Kim SY, Park HS (2009) Nano Lett 9(3):969Google Scholar
  17. 17.
    Miranda R, de Parga ALV (2009) Nat Nanotechnol 4(9):549Google Scholar
  18. 18.
    Lin SY, Chang SL, Shyu FL, Lu JM, Lin MF (2015) Carbon 86:207Google Scholar
  19. 19.
    Kong EH, Joo SH, Park HJ, Song S, Chang YJ, Kim HS, Jang HM (2014) Small 10(18):3678Google Scholar
  20. 20.
    Barnard AS, Snook IK (2012) Nanoscale 4(4):1167Google Scholar
  21. 21.
    Güttinger J, Molitor F, Stampfer C, Schnez S, Jacobsen A, Dröscher S, Ihn T, Ensslin K (2012) Rep Prog Phys 75(12):126502Google Scholar
  22. 22.
    Simon P, Gogotsi Y (2010) Nanoscience and technology: a collection of reviews from nature journals. World Scientific, pp 320–329Google Scholar
  23. 23.
    Hu Y, Zhao Y, Lu G, Chen N, Zhang Z, Li H, Shao H, Qu L (2013) Nanotechnology 24(19):195401Google Scholar
  24. 24.
    Wolf S, Awschalom D, Buhrman R, Daughton J, Von Molnar S, Roukes M, Chtchelkanova AY, Treger D (2001) Science 294(5546):1488Google Scholar
  25. 25.
    Kim CO, Hwang SW, Kim S, Shin DH, Kang SS, Kim JM, Jang CW, Kim JH, Lee KW, Choi SH et al (2014) Sci Rep 4:5603Google Scholar
  26. 26.
    Miller JR, Simon P (2008) Sci Mag 321(5889):651Google Scholar
  27. 27.
    Smolyanitsky A, Tewary VK (2013) Nanotechnology 24(5):055701Google Scholar
  28. 28.
    Huang XMH, Zorman CA, Mehregany M, Roukes ML (2003) Nature 421(6922):496Google Scholar
  29. 29.
    He Y, Li H, Si P, Li Y, Yu H, Zhang X, Ding F, Liew KM, Liu X (2011) Appl Phys Lett 98(6):063101Google Scholar
  30. 30.
    Astley M, Kataoka M, Ford C, Barnes C, Anderson D, Jones G, Farrer I, Ritchie D, Pepper M (2007) Phys Rev Lett 99(15):156802Google Scholar
  31. 31.
    Yoshida K, Xudong Z, Bright AN, Saitoh K, Tanaka N (2013) Nanotechnology 24(6):065705Google Scholar
  32. 32.
    Zhang T, Li X, Gao H (2014) J Mech Phys Solids 67:2Google Scholar
  33. 33.
    Puddy RK, Chua C, Buitelaar M (2013) Appl Phys Lett 103(18):183117Google Scholar
  34. 34.
    Bao W, Miao F, Chen Z, Zhang H, Jang W, Dames C, Lau CN (2009) Nat Nanotechnol 4(9):562Google Scholar
  35. 35.
    Osváth Z, Gergely-Fülöp E, Nagy N, Deák A, Nemes-Incze P, Jin X, Hwang C, Biró LP (2014) Nanoscale 6(11):6030Google Scholar
  36. 36.
    Ding Y, Cheng H, Zhou C, Fan Y, Zhu J, Shao H, Qu L (2012) Nanotechnology 23(25):255605Google Scholar
  37. 37.
    Alivisatos AP (1996) Science 271(5251):933Google Scholar
  38. 38.
    Politano A, Chiarello G (2014) Nanoscale 6(19):10927Google Scholar
  39. 39.
    Kim S, Hee Shin D, Oh Kim C, Seok Kang S, Min Kim J, Choi SH, Jin LH, Cho YH, Won Hwang S, Sone C (2012) Appl Phys Lett 101(16):163103Google Scholar
  40. 40.
    Antonova IV, Nebogatikova NA, Prinz VY (2014) Appl Phys Lett 104(19):193108Google Scholar
  41. 41.
    Bonfanti M, Casolo S, Tantardini GF, Ponti A, Martinazzo R (2011) J Chem Phys 135(16):164701Google Scholar
  42. 42.
    Bonilla L, Carpio A (2012) Phys Rev B 86(19):195402Google Scholar
  43. 43.
    Fricke L, Wulf M, Kaestner B, Kashcheyevs V, Timoshenko J, Nazarov P, Hohls F, Mirovsky P, Mackrodt B, Dolata R et al (2013) Phys Rev Lett 110(12):126803Google Scholar
  44. 44.
    Jin SH, Kim DH, Jun GH, Hong SH, Jeon S (2013) ACS Nano 7(2):1239Google Scholar
  45. 45.
    Liang G, Dupont E, Fathololoumi S, Wasilewski ZR, Ban D, Liang HK, Zhang Y, Yu SF, Li LH, Davies AG et al (2014) Sci Rep 4:7083Google Scholar
  46. 46.
    Singh AK, Penev ES, Yakobson BI (2010) ACS Nano 4(6):3510Google Scholar
  47. 47.
    Osvath Z, Lefloch F, Bouchiat V, Chapelier C (2013) Nanoscale 5(22):10996Google Scholar
  48. 48.
    Zhang T, Gao H (2015) J Appl Mech 82(5):051001Google Scholar
  49. 49.
    Capasso A, Placidi E, Zhan H, Perfetto E, Bell JM, Gu Y, Motta N (2014) Carbon 68:330Google Scholar
  50. 50.
    Qi Z, Park HS (2012) Nanoscale 4(11):3460Google Scholar
  51. 51.
    Yi L, Yin Z, Zhang Y, Chang T (2013) Carbon 51:373Google Scholar
  52. 52.
    Fuhrmann DA, Thon SM, Kim H, Bouwmeester D, Petroff PM, Wixforth A, Krenner HJ (2011) Nat Photonics 5(10):605Google Scholar
  53. 53.
    Wang C, Liu Y, Lan L, Tan H (2013) Nanoscale 5(10):4454Google Scholar
  54. 54.
    Dong Y, He Y, Wang Y, Li H (2014) Carbon 68:742Google Scholar
  55. 55.
    Plimpton S (1995) J Comput Phys 117(1):1Google Scholar
  56. 56.
    Stuart SJ, Tutein AB, Harrison JA (2000) J Chem Phys 112(14):6472Google Scholar
  57. 57.
    Graff KF (2012) Wave motion in elastic solids. Courier CorporationGoogle Scholar
  58. 58.
    Giannopoulos GI (2012) Comput Mater Sci 53(1):388Google Scholar
  59. 59.
    Lovat G, Burghignoli P, Araneo R (2013) IEEE Trans Electromagn Compat 55(2):328Google Scholar
  60. 60.
    Hunter I (2001) Theory and design of microwave filters, vol 48. IetGoogle Scholar
  61. 61.
    Das S, Lahiri D, Agarwal A, Choi W (2014) Nanotechnology 25(4):045707Google Scholar
  62. 62.
    Stotz JA, Hey R, Santos PV, Ploog KH (2005) Nat Mater 4(8):585Google Scholar
  63. 63.
    Li J (2003) Modell Simul Mater Sci Eng 11(2):173Google Scholar
  64. 64.
    Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I et al (2009) J Phys Condens Matter 21(39):395502Google Scholar
  65. 65.
    Cao C, Wu M, Jiang J, Cheng HP (2010) Phys Rev B 81(20):205424Google Scholar
  66. 66.
    Breitwieser R, Hu YC, Chao YC, Li RJ, Tzeng YR, Li LJ, Liou SC, Lin KC, Chen CW, Pai WW (2014) Carbon 77:236Google Scholar
  67. 67.
    Kashcheyevs V, Kaestner B (2010) Phys Rev Lett 104(18):186805Google Scholar
  68. 68.
    Vallabhaneni AK, Rhoads JF, Murthy JY, Ruan X (2011) J Appl Phys 110(3):034312Google Scholar
  69. 69.
    Kataoka M, Fletcher J, See P, Giblin S, Janssen T, Griffiths J, Jones G, Farrer I, Ritchie D (2011) Phys Rev Lett 106(12):126801Google Scholar
  70. 70.
    Ni ZH, Yu T, Lu YH, Wang YY, Feng YP, Shen ZX (2008) ACS Nano 2(11):2301Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Modern MechanicsUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations