Significance of Process Parameters on Fungal Cellulase Production

  • Srilakshmi Akula
  • Narasimha Golla
Part of the Clean Energy Production Technologies book series (CEPT)


The biotechnological production of enzymes from microorganisms was proved to generate enormous wealth that influences significant sectors of the world’s economy. Among the microbial enzymes, the potentiality of cellulases in different manufactories including food, paper, biofuel, animal feed, drug, brewery, textile, agriculture and recycling of waste materials has been the compelling factor for the intense limelight on cellulases for the past several decades. Extensive studies were carried out on aerobic fungi producing cellulases and are considered as the leading workhorses in industrial processes. The enzyme production usually depends on distinct governing parameters essentially inoculum size, pH value, temperature, growth, time, aeration, inducers and medium supplements. Therefore, choosing optimum pivotal factors that throw impact on biomass of various microorganisms and build-up of the target product becomes the preliminary criteria for any profitable recovery process. Often the optimisation of multifarious criterions is a laborious and tedious chore. Hence, this chapter highlights the diverse physical and chemical parameters that immensely influence fungal cellulase production.


Cellulase Cellulose Waste biomass Renewable energy Biofuels Fungal microorganisms 


  1. Adeleke AJ (2013) Endoglucanase production by Penicillium atrovenetum using plantain peels as substrate. Assumpt Univ J Technol 16(3):140–146Google Scholar
  2. Ahmed S, Bashir A, Saleem H, Saadia M, Jamil A (2009) Production and purification of cellulose degrading enzymes from a filamentous fungus Trichoderma harzianum. Pak J Bot 41(3):1411–1419Google Scholar
  3. Akinyele JB, Olaniyi OO (2013) Investigation of the cellulase production by Aspergillus niger nspr 002 in different cultivation conditions. Innov Rom Food Biotechnol 13:71–79Google Scholar
  4. Akinyele B, Fabunmi AO, Olaniyi OO (2013) Effect of variations in growth parameters on cellulase activity of Trichoderma viride NSPR006 cultured on different wood – dusts. Malays J Microbiol 9(3):193–200Google Scholar
  5. Alam (2011) Factors affecting endoglucanase production by Trichoderma reesei RUT C-30 from solid state fermentation of oil palm empty fruit bunches using Plackett-Burman design. Afr J Biotechnol 10(46):9402–9409CrossRefGoogle Scholar
  6. Alam MZ, Muhammad N, Mahmat ME (2005) Production of cellulase from oil palm biomass as substrate by solid state bioconversion. Am J Appl Sci 2(2):569–572CrossRefGoogle Scholar
  7. Alberton LR, Vandenberghe LPDS, Assmann R, Fendrich RC, Rodriguez-Leon J, Soccol CR (2009) Xylanase production by Streptomyces viridosporus T7a in submerged and solid state fermentation using agro-industrial residues. Braz Arch Biol Technol 52:171–180CrossRefGoogle Scholar
  8. Amir I, Zahid A, Yusuf Z, Igbal H, Aish M, Mohammed I, Sajid M (2011) Optimization of cellulase enzyme production from corn cobs using Alternaria alternata by solid state fermentation. J Cell Mol Biol 9(2):51–56Google Scholar
  9. Andersen N (2007) Enzymatic hydrolysis of cellulose. PhD dissertation, Department of Chemical Engineering, Technical University of Denmark, Copenhagen, DenmarkGoogle Scholar
  10. Araugo A, Souza JD (1986) Characterization of cellulolytic enzyme components from Aspergillus terreus and its mutant derivatives. J Ferment Technol 64:463–467CrossRefGoogle Scholar
  11. Azzaz HH, Murad HA, Kholif AM, Hanfy MM, Abdel Gawad MH (2012) Optimization of culture conditions affecting fungal cellulase production. Res J Microbiol 7(1):23–31CrossRefGoogle Scholar
  12. Baig MMV (2005) Cellulolytic enzymes of Trichoderma lignorum produced on banana agro-waste: optimisation of the culture medium and conditions. J Sci Ind Res 64:57–60Google Scholar
  13. Balaji BK, Sharma P (2011) An –alkalithermotolerant extracellular protease from newly isolated Streptomyces sp.DD2. New Biotechnol 28:725–732CrossRefGoogle Scholar
  14. Baysol Z, Uyar F, Aytekin C (2003) Solid state fermentation for production of alpha amylase by a thermotolerant Bacillus subtilis from hot spring water. Process Biochem 38:1665–1668CrossRefGoogle Scholar
  15. Beguin P, Aubert J-P (1994) The biological degradation of cellulose. FEMS Microbiol Rev 13(1):25–58CrossRefGoogle Scholar
  16. Bharathi K, Ravindra P (2006) Pretreatment studies of rice bran for the effective production of cellulase. EJEAF Che 5(2):1253–1264Google Scholar
  17. Bhat MK (2000) Cellulases and related enzymes in biotechnology. J Biotechnol Advances 18:355–383CrossRefGoogle Scholar
  18. Bhat M, Bhat S (1997) Cellulose degrading enzymes and their potential industrial applications. Biotechnol Adv 15:583–620CrossRefGoogle Scholar
  19. Bhat MK, Hazlewood GP (2003) Enzymology and other characteristics of cellulases and xylanases. In: Bedford MR, Partridge GG (eds) Enzymes in farm animal nutrition. CAB International, Cambridge, pp 11–60Google Scholar
  20. Bon EPS, Ferrara MA, Corvo ML (2008) Enzymes in biotechnology: production, applications and market. Rio de Janeiro. Interciencia; UFRJ: CAPES: FAPERJ: FCT (Portugal), Rio de JaneiroGoogle Scholar
  21. Borjesson J, Engqvist M, Sipos B, Tjerneld F (2007) Effect of poly(ethylene glycol) on enzymatic hydrolysis and adsorption of cellulase enzymes to pre-treated lignocellulose. Enzyme Microbial Technol 41(1–2):186–195CrossRefGoogle Scholar
  22. Botella I, De Ory I, Webb C, Cantero D, Blandino A (2005) Hydrolytic enzyme production by Aspergillus awamori on grape pomace. Biochem Eng J 26:100–106CrossRefGoogle Scholar
  23. Bozell JJ, Petersen GR (2010) Technology development for the production of bio- based products from biorefinery carbohydrates-The US Department of Energy’s “Top10” revisited. Green Chem 12(4):525–728CrossRefGoogle Scholar
  24. Chandel AK, Chandrasekhar G, Silva MB, da Silva SS (2012) The realm of cellulases in biorefinery development. Crit Rev Biotechmol 32(3):187–202CrossRefGoogle Scholar
  25. Chang X, Minnan L, Xiaobing W, Huijuan X, Zhongan C, Fengzhang Z, Liangshu X (2006) Screening and characterization of the high cellulase producing strain Aspergillus glaucus XC9. Front Biol China 1:35–40CrossRefGoogle Scholar
  26. Chellapandi P, Abha AJ (2009) Enhanced endoglucanase production by soil isolates of Fusarium sp. and Aspergillus sp. through submerged fermentation process. Turk J Biochem 34(4):209–214Google Scholar
  27. Chin TC, Cole Anthony LJ (1982) Cellulase production by the thermophilic fungus, Thermoascus aurantiacus. Pertanika 5(2):255–262Google Scholar
  28. Chinedu NS, Okachi VJ, Smith HA, Okafor UA, Onyegema Okerenta BM, Omidiji O (2007) Effect of carbon sources on cellulase production by Penicillium chrysogenum PCL 501.Afr. J Biochem Res 1(1):006–010Google Scholar
  29. Chinedu SN, Okochi VI, Omidiji O (2011) Cellulase Production by wild strains of Aspergillus niger, Penicillium chrysogenum and Trichoderma harzianum grown on waste cellulosic materials. IFE J Sci 13(1):57–62Google Scholar
  30. Coelho MAZ, Leite SGF, Rosa MF, Furtado AAL (2001) Utilization of agro-industrial residues: production of enzymes from the green coconut shell. CEPPA News lett 19:33–42Google Scholar
  31. Coral G, Arikan B, Unaldi MN, Guvenmes H (2002) Some properties of crude carboxy-methyl cellulase of Aspergillus niger Z10 wild-type strain. Turk J Biol 26:209–213Google Scholar
  32. Couto SR, Sanromán MA (2006) Application of solid-state fermentation to food industry-a review. J Food Eng 76:291–302CrossRefGoogle Scholar
  33. Cunha FM, Esperanca MN, Zangirolami TC, Badino AC, Farinas CS (2012) Sequential solid-state and submerged cultivation of Aspergillus niger on sugarcane bagasse for the production of cellulase. Bioresour Technol 112:270–274CrossRefGoogle Scholar
  34. Daroit DJ, Silveira ST, Hertz PF, Brandelli A (2007) Production of extracellular β-glucosidase by Monascus purpureus on different growth substrates. Process Biochem 42:904–908CrossRefGoogle Scholar
  35. Dashtban M, Schraft H, Qin W (2009) Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. Int J Biol Sci 5(6):578–595CrossRefGoogle Scholar
  36. Davidson A, Blaxter M (2005) Ancient origin of glycosyl hydrolase family 9 cellulase genes. Mol Biol Evol 22(5):1273–1284CrossRefGoogle Scholar
  37. Davies GJ, Wilson KS, Henrissat B (1997) Nomenclature for sugar-binding sub-sites in glycosyl hydrolases. Biochem J 321:557–559CrossRefGoogle Scholar
  38. Davies GJ, Gloster TM, Henrissat B (2005) Recent structural insights into the expanding world of carbohydrate-active enzymes. Curr Opin Struct Biol 15(6):637–645CrossRefGoogle Scholar
  39. Delabona PS, Farinas CS, Silva MR, Azzoni SF, Pradella JGC (2012) Use of a new Trichoderma harzianum strain isolated from the Amazon rainforest with pre-treated sugar cane bagasse for on-site cellulase production. Bioresour Technol 107:517–521CrossRefGoogle Scholar
  40. Diaz AB, De Ory I, Caro I, Blandino A (2012) Enhance hydrolytic enzymes production by Aspergillus awamori on supplemented grape pomace. Food Bioprod Process 90(1):72–78CrossRefGoogle Scholar
  41. Dincer A, Telefoncu A (2006) Improving the stability of cellulase by immobilization on modified polyvinyl alcohol coated chitosan beads. J Mol Catal B Enzyme 45:10–14CrossRefGoogle Scholar
  42. Divne C, Stahlberg J, Reinikainen T, Ruohonen L, Pettersson G, Knowles JKC, Teeri TT, Jones TA (1994) The three-dimensional crystal structure of the catalytic core of cellobiohydrolase I from Trichoderma reesei. Science 265:524–528CrossRefGoogle Scholar
  43. El-Hadi A, Abu S, El-Nour B, Ali Hammad B, Zeinat Kamel C, Mai Anwar B (2014) Optimization of cultural and nutritional conditions for carboxymethylcellulase production by Aspergillus hortai. J Radiat Res Appl Sci 7(1):23–28CrossRefGoogle Scholar
  44. Elzaher AFH, Fadel M (2010) Production of bio-ethanol via enzymatic saccharification of rice straw by cellulase produced by Trichoderma reesei under solid state fermentation. Int J Appl Microbiol Biotechnol Res 43(3):72–78. New York ScienceGoogle Scholar
  45. Fang X, Yano S, Inoue H, Sawayama S (2009) Strain improvement of Acremonium cellulolyticus for cellulase production by mutation. J Biosci Bioeng 107(3):256–261CrossRefGoogle Scholar
  46. Galante YM, DeConti A, Monteverdi R (1998) Application of Trichoderma enzymes in food and feed industries. In: Harman GF, Kubicek CP (eds) Trichoderma and Gliocladium—Enzymes, vol. 2 of Biological control and commercial applications. Taylor & Francis, London, pp. 311–326Google Scholar
  47. Gautam SP, Bundela PS, Pandey AK, Awasthi MK, Sarsaiya S (2010) Screening of cellulolytic fungi for management of municipal solid waste. J Appl Sci Environ Sanit 5(4):391–395Google Scholar
  48. Gilkes NR, Henrissat B, Kilburn DG, Miller RC, Warren RAJ (1991) Domains in microbial β-1,4-glycanases: sequence conservation, function, and enzyme families. Microbiol Rev 55(2):303–315CrossRefGoogle Scholar
  49. Gilna VV, Khaleel KM (2011) Biochemistry of cellulase enzyme activity of Aspergillus fumigatus from mangrove soil on lignocellulosics substrate. Recent Res Sci Technol 3(1):132–134Google Scholar
  50. Goldschmidt F (2008) From cellulose to ethanol: engineering microorganisms to produce biofuel. Institute of Biogeochemistry and Pollutant Dynamics, pp 1–17Google Scholar
  51. Gomes I, Gomes J, Gomes DJ, Steiner W (2000) Simultaneous production of high activities of thermostable endoglucanase and beta-glucosidase by the wild thermophilic fungus Thermoascus aurantiacus. Appl Microbiol Biotechnol 53(4):461–468CrossRefGoogle Scholar
  52. Gupta RP, Gigras H, Mahopatra VK, Goswani, Chauhan B (2003) Microbial α-amylase. A biotechnological perspective. Process Biochem 38:1599–1616CrossRefGoogle Scholar
  53. Haltrich D, Nidetzky B, Kulbe KD, Steiner W, Zupaneie S (1996) Production of fungal xylanases. Bioresour Technol 58(2):137–161CrossRefGoogle Scholar
  54. Hanif A, Yasmeen A, Rajoka MI (2004) Induction, production, repression, and de-repression of exoglucanase synthesis in Aspergillus niger. Bioresour Technol 94(3):311–319CrossRefGoogle Scholar
  55. Haq I, Ali S, Qadeer MA, Iqbal J (2003) The kinetics basis of the Ca+2 ions for the yield of citric acid in a repeated batch cultivation system. World J Microbiol Biotechnol 19(8):817–823CrossRefGoogle Scholar
  56. Haq I, Shahzadi K, Hameed U, Javed MM, Qadeer MA (2006) Solid state fermentation of cellulases by locally isolated Trichoderma harzianum for the exploitation of agricultural byproducts. Pak J Biol Sci 9(9):1779–1782CrossRefGoogle Scholar
  57. Hari Krishna S, Sekhar Rao KC, Suresh Babu J, Srirami Reddy D (2000) Studies on the production and application of cellulase from Trichoderma reesei QM-9414. Bioprocess Biosyst Eng 22(5):467–470CrossRefGoogle Scholar
  58. Hartree MM, Hogan CM, Saddler JN (1988) Influence of growth substrate on production of cellulase enzymes by Trichoderma harzianum E-58. Biotechnol Bioeng 31(7):725–729CrossRefGoogle Scholar
  59. Heptinstall J, John C, Stewart MS (1986) Fluorimetric estimation of exo-cellobiohydrolase and β-D- glucosidase activities in cellulase from Aspergillus fumigates Fresenius. Enzym Microb Technol 8(2):70–74CrossRefGoogle Scholar
  60. Hilden L, Johansson G (2004) Recent developments on cellulases and carbohydrate-binding modules with cellulose affinity. Biotechnol Lett 26(22):1683–1693CrossRefGoogle Scholar
  61. Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for bio fuels production. Science 315:804–807CrossRefGoogle Scholar
  62. Howard RL, Abotsi E, Jansen van Rensburg EL, Howard S (2003) Lignocellulose biotechnology: issues of bioconversion and enzyme production. Afr J Biotechnol 2(12):602–619CrossRefGoogle Scholar
  63. Ikeda Y, Hayashi H, Okuda N, Park EY (2007) Efficient Cellulase Production by the filamentous fungus Acremonium cellulolyticus. Biotechnol Prog 23(2):333–338CrossRefGoogle Scholar
  64. Ilyas U, Ahmed S, Majeed A, Nadeem M (2012) Bihydrolysis of Saccharum Spontaneum for cellulase production by Aspergillus terreus. Afr J Biotechnol 11:4914–4920Google Scholar
  65. Iqbal HMN, Asgher M, Ahmed I, Hussain S (2010) Media optimization for hyper-production of carboxymethyl cellulase using proximally analyzed agro-industrial residue with Trichoderma harzianum under SSF. Int J Agro Vet Med Sci 4:47–55Google Scholar
  66. Jagtap S, Rao M (2005) Purification and properties of a low molecular weight 1,4-beta-d-glucan glucohydrolase having one active site for carboxymethyl cellulose and xylan from an alkalothermophilic Thermomonospora sp. Biochem Biophys Res Commun 329(1):111–116CrossRefGoogle Scholar
  67. Jahangeer S, Khan Jahangeer NS, Sohail M, Shahzad S, Ahmad A, Khan SA (2005) Screening and characterization of fungal cellulases isolated from the native environmental source. Pak J Bot 37(3):739–748Google Scholar
  68. Javed MM, Khan TS, Ul-Haq I (2007) Sugar cane bagasse pretreatment: an attempt to enhance the production potential of cellulose by Humicola insolens TAS-13. Elec J Environ Agric Food Chem 6:2290–2296Google Scholar
  69. Joshi V, Pandey A (1999) Biotechnology: food fermentation: microbiology, biochemistry, and technology. Educational Publishers & Distributors, New DelhiGoogle Scholar
  70. Jyostna PK, Ramakrishna Rao A, Devaki K (2015) Effect of nutritional factors on cellulase production by Streptomyces albaduncus from the gut of earthworm, Eisenia foetida. Pest Manag Hortic Ecosyst 21(1):75–80Google Scholar
  71. Kang SW, Park YS, Lee JS, Hong SI, Kim SW (2004) Production of cellulases and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass. Bioresour Technol 91(2):153–156CrossRefGoogle Scholar
  72. Kathiresan K, Manivannan S (2006) Cellulase production by Penicillium fellutanum isolated from coastal mangrove rhizosphere soil. Res J Microbiol 1(5):438–442CrossRefGoogle Scholar
  73. Kawamori M, Takayama K-i, Takasawa S (1987) Production of cellulases by a thermophilic fungus, Thermoascus aurantiacus A- 131+. Agric Biol Chem 51(3):647–654Google Scholar
  74. Kendry Mc P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83:37–46CrossRefGoogle Scholar
  75. Khan MMH, Ali S, Fakhrul-razi A, Alam MD (2007) Use of fungi for the bioconversion of rice straw into cellulase enzyme. J Environ Sci Health Part B 42(4):381–386CrossRefGoogle Scholar
  76. Khare A, Upadhyay RS (2011) Influence of some cultural factors on production of cellulase and β-1, 3-glucanase by the mutant strains of Trichoderma viride 1433. J Agric Technol 7(2):403–412Google Scholar
  77. Kim KC, Seung-Soo Y, Oh Young A, Seong-Jun K (2003) Isolation and characterization of Trichoderma harzianum FJ1 producing cellulase and xylanase. J Microbiol Biotechnol 13(1):1–8CrossRefGoogle Scholar
  78. Kleman-Leyer K, Agosin E, Conner AH, Kirk TK (1992) Changes in molecular size distribution of cellulose during attack by white rot and brown rot fungi. Appl Environ Microbiol 58:1266–1270CrossRefGoogle Scholar
  79. Kotchoni OS, Shonukan OO (2002) Regulatory mutations affecting the synthesis of cellulase in B. Pumilus. World J Microbiol Biotechnol 18(5):487–491CrossRefGoogle Scholar
  80. Kraulis J, Clore GM, Nilges M, Jones TA, Pettersson G, Knowles J, Gronenborn AM (1989) Determination of the three-dimensional solution structure of the C-terminal domain of cellobiohydrolase I from Trichoderma reesei. A study using nuclear magnetic resonance and hybrid. Biochemistry 28(18):7241–7257CrossRefGoogle Scholar
  81. Latifian M, Esfahani ZH, Barzegar M (2007) Evaluation of culture conditions for cellulase production by two Trichoderma reesei mutants under solid state fermentation conditions. Bioresour Technol 98:3634–3637CrossRefGoogle Scholar
  82. Lekh R, Kuar K, Sharma S (2014) Screening isolation and characterization of cellulase producing microorganisms from soil. Int J Pharm Sci Invent 3(3):12–18Google Scholar
  83. Liming X, Xueliang S (2004) High-yield cellulase production by Trichoderma reesei ZU-02 on corn cob residue. Bioresour Technol 91:259–262CrossRefGoogle Scholar
  84. Liu W, Zhu WM (2000) Production and regeneration of Trichosporon cutaneum protoplasts. Process Biochem 35:659–664CrossRefGoogle Scholar
  85. Liu J, Yuan X, Zeng G, Shi J, Chen S (2006) Effect of biosurfactants on cellulase and xylanase production by Trichoderma viride in solid substrate fermentation. Process Biochem 41(11):2347–2351CrossRefGoogle Scholar
  86. Lynd LR, Laser MS, Bransby D, Dale BE, Davison B, Hamilton R, Himmel M, Keller M, McMillan JD, Sheehan J, Wyman CE (2008) How biotech can transform biofuels. Nat Biotechnol 26:169–172CrossRefGoogle Scholar
  87. Macris BJ (1984) Enhanced cellulases and β-glucosidases production by a mutant of Aspergillus alternate. Biotechnol Bioeng 26:194–196CrossRefGoogle Scholar
  88. Macris BJ (1986) Enhanced cellobiohydrolase production from Aspergillus ustus and Trichoderma harzianum. Enzym Microb Technol 68(3):141–144CrossRefGoogle Scholar
  89. Maeda RN, Serpa VI, Rocha VA, Mesquita RAA, Santa Anna IMM, Castro AM, Driemeier DE, Pereira N, Polikarpov I (2011) Enzymatic hydrolysis of pretreated sugar cane bagasse using Penicillium funiculosum and Trichoderma harzianum cellulases. Process Biochem 46(5):1196–1201CrossRefGoogle Scholar
  90. Mandels M (1975) Microbial source of cellulase. Biotechnol Bioeng 5:81–105Google Scholar
  91. Massadeh MI, Yusoff WMW, Omar O, Kader J (2001) Synergism of cellulase enzymes in mixed culture solid substrate fermentation. Biotechnol Lett 23:1771–1774CrossRefGoogle Scholar
  92. Micales JA (1991) Increased recovery of β-D-glucosidase from Postia placenta in presence of tween surfactants. Special print from: material and organisms 26. Heft Verlag Duncker and Humblot, 1000 Berlin, p.41. Microbiol Rev 13(1):25–58Google Scholar
  93. Milala MA, Shugaba A, Gidado A, Ene AC, Wafar JA (2005) Studies on the use of agricultural wastes for cellulase enzyme production by Aspergillus niger. Res J Agric Biol Sci 1(4):325–328Google Scholar
  94. Milala MA, Shehu BB, Zanna H, Omosioda VO (2009) Degradation of agro-waste by cellulase from Aspergillus candidus. Asian J Biotechnol 1(2):51–56CrossRefGoogle Scholar
  95. Murao S, Sakamoto R, Arai M (1988) Cellulases of Aspergillus aculeatus. Methods Enzymol 160:274–299CrossRefGoogle Scholar
  96. Mussatto I, Fernandes M, Ines Roberto C (2007) Lignin recovery from brewer’s spent grain black liquor Solange. Carbohydr Poly 70(2):218–223CrossRefGoogle Scholar
  97. Mussatto S, Fernandes M, Milagres A, Roberto I (2008) Effect of hemicellulose and lignin on enzymatic hydrolysis of cellulose from brewer’s spent grain. Enzym Microb Technol 43:124–129CrossRefGoogle Scholar
  98. Muthuvelayudham R, Viruthagiri T, Deiveegan S (2004) Enhanced cellulase production using mutant strain Trichoderma reesei growing on lactose in batch culture. CHEMCON, Ind Chem Engr Congress, pp 15–18Google Scholar
  99. Narasimha G, Sridevi A, Viswanath B, Subhosh Chandra M, Rajasekhar Reddy B (2006) Nutrient effects on production of cellulolytic enzymes by Aspergillus niger. Afr J Biotechnol 5(5):472–476Google Scholar
  100. Nasab MM, Nasab MM (2007) Cellulase Production by Trichoderma reesei using sugar Beet Pulp. Iran Agric Res 25(1–2):107–116Google Scholar
  101. Nathan VK, Rani ME, Rathinasamy G, Dhiraviam KN, Jayavel S (2014) Process optimization and production kinetics for cellulase production by Trichoderma viride KF3. Springer Plus 3:92CrossRefGoogle Scholar
  102. Nipa MN, Sultana S, Hakim MA (2006) Induction of cellulase biosynthesis by cellobiose octaacetate in Aspergillus humicola. Banglad J Microbiol 23(2):174–176CrossRefGoogle Scholar
  103. Nutor JRK, Converse AO (1991) The effect of enzyme and substrate levels on the specific hydrolysis rate of pretreated poplar wood. Appl Biochem Biotechnol 28:757CrossRefGoogle Scholar
  104. Ojumu TV, Solomon BO, Betiku E, Layokun SK, Amigun B (2003) Cellulase production by Aspergillus flavus Linn isolate NSPR 101 fermented in saw dust, bagasse and cornconb. Afr J Biotechnol 2(6):150–152CrossRefGoogle Scholar
  105. Okino S, Ikeo M, Ueno Y, Taneda D (2013) Effects of Tween-80 on cellulase stability under agitated conditions. Bioresour Technol 142:535–539CrossRefGoogle Scholar
  106. Omojasola PF, Jilani OP, Ibiyemi SA (2008) Cellulase production by some fungi cultured on pineapple waste. Nat Sci 6(2):64–79Google Scholar
  107. Othman MF, Kalil MS, Sahri MM (2013) Solid State fermentation of Palm Kernel Cake (Pkc) by newly isolated Rhizopus oryzae Me01. Asian J Exp Biol Sci 4(1):84–88Google Scholar
  108. Ozioko PC, Ikeyi AP, Ugwu OPC (2013) Cellulases, their substrates, activity and assay methods. The Experiment 12:778–785Google Scholar
  109. Padmavathi T, Nandy V, Agarwal P (2012) Optimization of the medium for the production of cellulases by Aspergillus terreus and Mucor plumbeu. Eur J Exp Biol 2(4):1161–1170Google Scholar
  110. Panda T, Bisaria VS, Ghose TK (1987) Effect of culture phasing and a polysaccharide on production of xylanase by mixed culture of Trichoderma reesei D1-6 and Aspergillus wentii Pt 2804. Biotechnol Bioeng 30(7):868–874CrossRefGoogle Scholar
  111. Pandey A (2003) Solid-state fermentation. Biochem Eng J 13:81–84CrossRefGoogle Scholar
  112. Papagianni M (1995) Morphology and citric acid production of Aspergillus niger in submerged culture. PhD thesis, University of StrathclydeGoogle Scholar
  113. Papagianni M (2004) Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol Adv 22(3):189–259CrossRefGoogle Scholar
  114. Park EY, Naruse K, Kato T (2011) Improvement of cellulase production in cultures of Acremonium cellulolyticus using pretreated waste milk pack with cellulase targeting for biorefinery. Bioresour Technol 102(10):6120–6127CrossRefGoogle Scholar
  115. Polyanna NH, Porto TS, Moreira KA, Pinto GAS, Cristina MSM, Ana LFP (2011) Cellulase production by Aspergillus japonicus URM5620 using waste from castor bean (Ricinus communis L.) under solid state fermentation. Appl Biochem Biotechnol 165:1057–1067CrossRefGoogle Scholar
  116. Portjanskaja E, Preis S, Kallas J (2006) Aqueous photocatalytic oxidation of lignin and humic acids with supported TiO2. Int J Photoene 8:1–7CrossRefGoogle Scholar
  117. Prasanna HN, Ramanjaneyulu G, Rajasekhar Reddy B (2016) Optimization of cellulase production by Penicillium sp. 3. Biotech 6(2):162Google Scholar
  118. Praveen Kumar Reddy G, Narasimha G, Kanderi Dileep Kumar G, Ramanjaneyulu A, Ramya B, Shanti Kumari S, Rajasekhar Reddy B (2015) Cellulase production by Aspergillus niger on different natural lignocellulosic substrates. Int J Curr Microbiol Appl Sci 4(4):835–845Google Scholar
  119. Purwadaria T, Agnes Kumalasari T, Tutiharyati, Pius Ketaren P, Arnold Sinurat P (2004) Optimization of cellulase production with Penicillium nalgiovense all grown on pretreated wheat pollard. Biotropia 23:1–12Google Scholar
  120. Qi BC, Aldrich C, Lorenzen L, Wolfaardt GW (2005) Acidogenic fermentation of lignocellulosic substrate with activated sludge. Chem Eng Commun 192(9):1221–1242CrossRefGoogle Scholar
  121. Qin C, Zhou B, Zeng L, Zhang Z, Liu Y et al (2004) The physicochemical properties and antitumor activity of cellulase-treated chitosan. Food Chem 1:107–115CrossRefGoogle Scholar
  122. Rajagopalan G, Krishnan C (2008) α-Amylase production from catabolite depressed Bacillus subtilis KCC103 utilizing sugarcane bagasse hydrolysate. Bioresour Technol 99(8):3044–3050CrossRefGoogle Scholar
  123. Rashid SS, Alam MZ, Karim MIA, Sallah MH (2009) Optimization of the nutrient supplements for cellulose production with the basal medium palm oil mill effluent. World Acad Sci Eng Technol 60:809–815FGoogle Scholar
  124. Riaz H, Jabbar A, Rashid MH, Riaz S, Latif F (2014) Endoglucanase production by Humicola insolens: effect of physiochemical factors on growth kinetics and thermodynamics. Int J Agric Biol 16:1141–1146Google Scholar
  125. Robinson T, Singh D, Nigam P (2001) Solid-state fermentation: a promising microbial technology for secondary metabolite production. Appl Microbiol Biotechnol 55:284–289CrossRefGoogle Scholar
  126. Sachslehner A, Nidetzky B, Kulbe KD, Haltrich D (1998) Induction of Mannanase, Xylanase, and Endoglucanase activities in Sclerotium rolfsii. Appl Environ Microbiol 64(2):594–600CrossRefGoogle Scholar
  127. Sajith S, Priji P, Sreedevi S, Benjamin S (2016) An overview on fungal cellulases with an industrial perspective. J Nutr Food Sci 6(13):1–13Google Scholar
  128. Sanyal A, Kanda RK, Sinha SN, Dube DK (1988) Extracellular cellulolytic enzyme system of Aspergillus japonicus. ibid 10(2):85–90Google Scholar
  129. Sarkar N, Aikat K (2014) Aspergillus fumigates NITDGPKA3 provides for increased cellulase production. Int J Chem Eng 5:1–9CrossRefGoogle Scholar
  130. Shafique S, Bajwa R, Shafique S (2009) Cellulase biosynthesis by selected Trichoderma species. Pak J Bot 41(2):907–916Google Scholar
  131. Shahriarinour M, Wahab MNA, Mohamad R, Mustafa S, Ariff AB (2011) Effect of medium composition and cultural condition on cellulase production by Aspergillus terreus. Afr J Biotechnol 10(38):7459–7467Google Scholar
  132. Shanmugam P, Mani M, Narayanasamy M (2008) Biosynthesis of cellulolytic enzymes by Trichothecium roseum with citric acid mediated induction. Afr J Biotechnol 7(21):3917–3921Google Scholar
  133. Sharada R, Venkateswarlu G, Narsi Reddy M, Venkateshwar S, Anand Rao M (2012) Production of cellulase by solid state fermentation. Int J Pharm Res Dev 4(1):224–230Google Scholar
  134. Sharma A, Milstein O, Vered Y, Gressel J, Flowers HM (1985) Effects of aromatic compounds on hemicellulose-degrading enzymes in Aspergillus japonicas. Biotechnol Bioeng 27(8):1095–1101CrossRefGoogle Scholar
  135. Sharma DK, Tiwari M, Behere BK (1996) Solid state fermentation of new substrates for production of cellulase and other biopolymer hydrolyzing enzymes. Appl Biochem Biotechnol 15:495–500Google Scholar
  136. Shazia KM, Hamid M, Ammad AF, Ikram UH (2010) Optimization of process parameters for the biosynthesis of cellulose by Trichoderma viride. Pak J Bot 6(42):4243–4251Google Scholar
  137. Silva LAD (2008) Production and characterization of cellulolytic enzymes by Aspergillus pheonicis. Master’s thesis, Federal University of Rio Grande do SulGoogle Scholar
  138. Silveira ST, Daroit DJ, Brandelli (2008) Pigment production by Monascus purpureus in grape waste using factorial design. Food Sci Technol 41(1):170–174Google Scholar
  139. Singh BK, Kuhad RC, Singh A, Lal R, Triapthi KK (1999) Biochemical and molecular basis of pesticide degradation by microorganisms. Crit Rev Biotechnol 19:197–225CrossRefGoogle Scholar
  140. Singh R, Singh N, Parkash A, Poonia S (2006) Saccharification studies by a thermophilic fungus Sporotricum thermophile isolated from agriculture waste of Bhopal. Ind J Environ Ecoplan 12(1):97–104Google Scholar
  141. Singh A, Van Hamme J, Ward O (2007) Surfactants in microbiology and biotechnology. Appl Aspects Biotechnol Adv 25(1):99–121CrossRefGoogle Scholar
  142. Singh A, Singh N, Narsi R, Bishnoi LI (2009) Production of cellulases by Aspergillus heteromorphus from wheat straw under submerged fermentation. Int J Civil Environ Eng 1:1Google Scholar
  143. Singhania RR, Sukumaran RK, Patel AK, Larroche C, Pandey A (2010) Advancement and comparative profiles in the production technologies using solid state and submerged fermentation for microbial cellulases. Enz Microbial Technol 46(7):541–549CrossRefGoogle Scholar
  144. Smitt JP, Rinzema A, Tramper J, Van HM, Knol W (1996) Solid state fermentation of wheat bran by Trichoderma reesei QMQ 414. Appl Microbiol Biotechnol 46(5–6):489–496CrossRefGoogle Scholar
  145. Sohail M, Siddiqi R, Ahmad A, Khan SA (2009) Cellulase production from Aspergillus niger MS82: effect of temperature and pH. New Biotechnol 25(6):6437–6441CrossRefGoogle Scholar
  146. Solomon BO, Amigun B, Betiku E, Ojumu TV, Layokun SK (1999) Optimization of cellulase production by Aspergillus flavus Linn Isolate NSPR101 grown on bagasse. JNSChE 16:61–68Google Scholar
  147. Sonjoy S, Bill BEX, Houston KH (1995) Cellulase activity of Trichoderma reesei (RUT-C30) on municipal solid waste. Appl Biochem Biotechol 51-52(1):145–153CrossRefGoogle Scholar
  148. Sreenath HK, Shah AB, Yang VW, Gharia MM, Jeffries TW (1996) Enzymatic polishing of jute/cotton blended fabrics. J Ferment Bioeng 81(1):18–20CrossRefGoogle Scholar
  149. Sridevi A, Narasimha G, Rajasekhar RB (2008) Production of cellulase by Aspergillus niger on natural and pretreated lignocellulosic wastes. Internet J Microbiol 7(1):1–8Google Scholar
  150. Srilakshmi A, Saigopal DVR, Narasimha G (2017) Impact of bioprocess parameters on cellulase production by purpureocillium lilacinum isolated from forest soil. Int J Pharm Bio Sci 8(1):B157–B165Google Scholar
  151. Srivastava SK, Gopal KS, Ramachandran KB (1984) Kinetic characterization of crude-β-D-glucosidase from Aspergillus wentii Pt. 2804. Enzym Microb Technol 6:508–512CrossRefGoogle Scholar
  152. Stoilova IS, Gargova SA, Krastanov AI (2005) Production of enzymes by mixed culture from mycelial fungi in solid-state fermentation. Biotechnol Biotechnol Equip 19(1):103–108CrossRefGoogle Scholar
  153. Sukumaran KR, Singhania RR, Pandey A (2005) Microbial cellulases production, applications and challenges. J Sci Ind Res 64:832–844Google Scholar
  154. Sun H, Ge X, Hao Z, Peng M (2010) Cellulase production by Trichoderma sp. on apple pomace under solid state fermentation. Afr J Biotechnol 9(2):163–166Google Scholar
  155. Szakacs G, Tengerdy RT, Nagy V (2006) Cellulases. In: Pandey A, Colin W, Soccoi CR, Lorroche C (eds) Enzyme technology. Spring Science Business Media, Inc. and Asia TechGoogle Scholar
  156. Thirumade SD, Rani K, Anand K (2001) Control of cellulose formation by trehalose in Clostridium papyrosolvens CFR-703. Process Biochem 37(3):241–245CrossRefGoogle Scholar
  157. Tomme P, Van Tilbeurgh H, Pettersson G, Van Damme J, Vandekerckhove J, Knowles J, Teeri T, Claeyssens M (1988) Studies of the cellulolytic system of Trichoderma reesei QM 9414. Eur J Biochem 170(3):575–581CrossRefGoogle Scholar
  158. Tomme P, Warren RA, Gilkes NR (1995) Cellulose hydrolysis by bacteria and fungi. Adv Microb Physiol 37:1–81CrossRefGoogle Scholar
  159. Tormo J, Lamed R, Chirino AJ, Morag E, Bayer EA, Shoham Y, Steitz TA (1996) Crystal structure of a bacterial family-III cellulose-binding domain: a general mechanism for attachment to cellulose. EMBO J 15(21):5739–5751CrossRefGoogle Scholar
  160. Van Hanh V, Pham T, Kim K (2011) Improvement of fungal cellulase production by mutation and optimization of solid state fermentation. Mycobiology 39(1):20–25CrossRefGoogle Scholar
  161. Vega K, Villena GK, Sarmiento VH, Ludena Y, Vera N, Gutierrez-Correa M (2012) Production of alkaline cellulase by fungi isolated from an undisturbed rain forest of Peru. Biotechnol Res Int 2012:1–7Google Scholar
  162. Vintila T, Croitoriu V, Dragomirescu M, Nica D (2010) The effects of bioprocess parameters on cellulase production with Trichoderma viride CMIT35. Anim Sci Biotechnol 43(1):337–340Google Scholar
  163. Vyas A, Vyas D (2005) Production of fungal cellulases by solid state bioprocessing of groundnut shell Wastes. J Sci Ind Res 64:767–770Google Scholar
  164. Wang SS, Converse AO (1992) On the use of enzyme adsorption and specific hydrolysis rate to characterize thermal-chemical pretreatment. Appl Biochem Biotechnol 34-35:61–74CrossRefGoogle Scholar
  165. Wang JSH, Wang J, Gulfraz M (2006) Efficient cellulase production from corn straw by Trichoderma reesei LW 1 through solid state fermentation process. Ethnobot Leafl 2005(1):Article 7Google Scholar
  166. Watanabe H, Tokuda G (2001) Animal cellulases. Cell Mol Life Sci 58(9):1167–1178CrossRefGoogle Scholar
  167. Wen Z, Liao W, Chen S (2005) Production of cellulase/β-glucosidase by the mixed fungi culture of Trichoderma reesei and Aspergillus phoenicis on dairy manure. Appl Biochem Biotechnol 121-124:93–104CrossRefGoogle Scholar
  168. Wiatr CL (1990) Application of cellulase to control industrial slime: Google PatentsGoogle Scholar
  169. Wood TM (1988) Preparation of crystalline, amorphous and dyed cellulose substrates. Methods Enzmol 166:19–45CrossRefGoogle Scholar
  170. Wood TM, Mecrac I (1986) The cellulase of Penicillium pinophilum. Synergism between enzyme components in solubilizing cellulose with special reference to the involvement of two immunologically distinct cellobiohydrolases. Biochem J 234:93–99CrossRefGoogle Scholar
  171. Wood TM, Mecrae SI (1982) Purification of some properties of a 1,4-β-D-glucan glucohydrolase associated with the cellulase from the fungus Penicillium funiculosum. Carbohydr Res 110(2):291–303CrossRefGoogle Scholar
  172. Wu Z, Lee YY (1997) Inhibition of the enzymatic hydrolysis of cellulose by ethanol. Biotechnol Lett 19(10):977–979CrossRefGoogle Scholar
  173. Wu GJ, Tsai GJ (2004) Cellulase degradation of shrimp chitosan for the preparation of a water-soluble hydrolysate with immunoactivity. Fish Sci 70:1113–1120CrossRefGoogle Scholar
  174. Xu F, Wang J, Chen S, Qin W, Yu Z, Zhao H, Xing X, Li H (2011) Strain Improvement for Enhanced Production of Cellulase in Trichoderma viride. Appl Biochem Microbiol 47(1):53–58CrossRefGoogle Scholar
  175. Yamada M, Amano Y, Horikawa E, Kanda T (2005) Mode of action of cellulases on dyed cotton with a reactive dye. Biosci Biotechnol Biochem 69(1):45–50CrossRefGoogle Scholar
  176. Zaldivar M, Velasquez JC, Contreras I, Perez LM (2001) Trichoderma aureoviride 7-121, a mutant with enhanced production of lytic enzymes: its potential use in waste cellulose degradation and/or biocontrol. Electron J Biotechnol 4(3):13–14CrossRefGoogle Scholar
  177. Zhang YHP (2008) Reviving the carbohydrate economy via multi-product biorefineries. J Ind Microbiol Biotech 35(5):367–375CrossRefGoogle Scholar
  178. Zhang PYH, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24(5):452–481CrossRefGoogle Scholar
  179. Zhang Y-HP, Hong J, Ye X (2009) Cellulase assays. Methods Mol Biol 581:213–231CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Srilakshmi Akula
    • 1
  • Narasimha Golla
    • 1
  1. 1.Applied Microbiology Laboratory, Department of VirologySri Venkateswara UniversityTirupatiIndia

Personalised recommendations