Efficiency Analysis of Crude Versus Pure Cellulase in Industry

  • Mohammad Shahed Hasan Khan Tushar
  • Animesh Dutta
Part of the Clean Energy Production Technologies book series (CEPT)


Many industries including fermentation, pulp and paper industry, brewing sector, fermentation, food and animal feed industry, and detergent and textile use cellulases due to its environment benign and sustainable process. Academic and industrial researches are being done and still ongoing on cellulases due to its enormous industrial application and make these processes green. In this article, extensive review is performed on the use of cellulases in the industrial sector in both crude and pure form. It has been observed that crude cellulases are preferred in the industrial sector due to its low cost and stimulate the process using impurities present in enzymes. Pure cellulases are mainly used in laboratories and are case specific as they are costly to use in industries.


Biomass Bioconversion Cellulase enzymes Enzyme stability Fungi 


  1. Acharya S, Chaudhary A (2012) Bioprospecting thermophiles for cellulase production: a review. Braz J Microbiol 43(3):844–856CrossRefGoogle Scholar
  2. Albrecht S, van Muiswinkel GC, Schols HA, Voragen AG, Gruppen H (2009) Introducing capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) for the characterization of konjac glucomannan oligosaccharides and their in vitro fermentation behavior. J Agric Food Chem 57(9):3867–3876CrossRefGoogle Scholar
  3. Al-Ghazzewi FH, Tester RF (2012) Efficacy of cellulase and mannanase hydrolysates of konjac glucomannan to promote the growth of lactic acid bacteria. J Sci Food Agric 92(11):2394–2396CrossRefGoogle Scholar
  4. Al-Ghazzewi FH, Khanna S, Tester RF, Piggott J (2007) The potential use of hydrolysed konjac glucomannan as a prebiotic. J Sci Food Agric 87(9):1758–1766CrossRefGoogle Scholar
  5. Alonso DM, Wettstein SG, Dumesic JA (2012) Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chem Soc Rev 41(24):8075–8098CrossRefGoogle Scholar
  6. Alvaro A, Sola R, Rosales R, Ribalta J, Anguera A, Masana L, Vallvé JC (2008) Gene expression analysis of a human enterocyte cell line reveals downregulation of cholesterol biosynthesis in response to short-chain fatty acids. IUBMB Life 60(11):757–764CrossRefGoogle Scholar
  7. Annamalai N, Rajeswari MV, Elayaraja S, Balasubramanian T (2013) Thermostable, haloalkaline cellulase from Bacillus halodurans CAS 1 by conversion of lignocellulosic wastes. Carbohydr Polym 94(1):409–415CrossRefGoogle Scholar
  8. Baker JO, McCarley JR, Lovett R, Yu CH, Adney WS, Rignall TR et al (2005) Catalytically enhanced endocellulase Cel5A from Acidothermus cellulolyticus. Appl Biochem Biotechnol 121(1-3):129–148CrossRefGoogle Scholar
  9. Bernardez TD, Lyford K, Hogsett DA, Lynd LR (1993) Adsorption of Clostridium thermocellum cellulases onto pretreated mixed hardwood, Avicel, and lignin. Biotechnol Bioeng 42(7):899–907CrossRefGoogle Scholar
  10. Bhanja T, Kumari A, Banerjee R (2009) Enrichment of phenolics and free radical scavenging property of wheat koji prepared with two filamentous fungi. Bioresour Technol 100(11):2861–2866CrossRefGoogle Scholar
  11. Bhat MK (2000) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18(5):355–383CrossRefGoogle Scholar
  12. Brodeur G, Yau E, Badal K, Collier J, Ramachandran KB, Ramakrishnan S (2011) Chemical and physicochemical pretreatment of lignocellulosic biomass: a review. Enzyme Res:1–17Google Scholar
  13. Canales AM, Garza R, Sierra JA, Arnold R (1988) The application of a beta-glucanase with additional side activities in brewing. Tech Quar Mast Brewers Assoc Am (USA) 25:27–31Google Scholar
  14. Chalal D (1985) Solid state fermentation with Trichoderma reesei for cellulase production. Appl Environ Microbiol 49(1):205–210CrossRefGoogle Scholar
  15. Chen HL, Fan YH, Chen ME, Chan Y (2005) Unhydrolyzed and hydrolyzed konjac glucomannans modulated cecal and fecal microflora in Balb/c mice. Nutrition 21(10):1059–1064CrossRefGoogle Scholar
  16. Connolly ML, Lovegrove JA, Tuohy KM (2010) Konjac glucomannan hydrolysate beneficially modulates bacterial composition and activity within the faecal microbiota. J Funct Foods 2(3):219–224CrossRefGoogle Scholar
  17. Cortez JM, Ellis J, Bishop DP (2002) Using cellulases to improve the dimensional stability of cellulosic fabrics. Text Res J 72(8):673–680CrossRefGoogle Scholar
  18. Cowan WD (1996) Animal feed. In: Godfrey T, West S (eds) Industrial enzymology, 2nd edn. Macmillan Press, London, pp 360–371Google Scholar
  19. De Carvalho LMJ, De Castro IM, Da Silva CAB (2008) A study of retention of sugars in the process of clarification of pineapple juice (Ananas comosus, L. Merril) by micro-and ultra-filtration. J Food Eng 87(4):447–454CrossRefGoogle Scholar
  20. De Faveri D, Aliakbarian B, Avogadro M, Perego P, Converti A (2008) Improvement of olive oil phenolics content by means of enzyme formulations: Effect of different enzyme activities and levels. Biochem Eng J 41(2):149–156CrossRefGoogle Scholar
  21. Desvaux M (2005) Clostridium cellulolyticum: model organism of mesophilic cellulolytic clostridia. FEMS Microbiol Rev 29(4):741–764CrossRefGoogle Scholar
  22. Dhillon GS, Kaur S, Brar SK, Verma M (2012) Potential of apple pomace as a solid substrate for fungal cellulase and hemicellulase bioproduction through solid-state fermentation. Ind Crop Prod 38:6–13CrossRefGoogle Scholar
  23. Dienes D, Egyhazi A, Reczey K (2004) Treatment of recycled fiber with Trichoderma cellulases. Ind Crop Prod 20(1):11–21CrossRefGoogle Scholar
  24. Do YK, Kim JM, Chang SM, Hwang JH, Kim WS (2009) Enhancement of polyphenol bio-activities by enzyme reaction. J Mol Catal B Enzym 56(2-3):173–178CrossRefGoogle Scholar
  25. Dogaris I, Karapati S, Mamma D, Kalogeris E, Kekos D (2009) Hydrothermal processing and enzymatic hydrolysis of sorghum bagasse for fermentable carbohydrates production. Bioresour Technol 100(24):6543–6549CrossRefGoogle Scholar
  26. Doi RH, Kosugi A (2004) Cellulosomes: plant-cell-wall-degrading enzyme complexes. Nat Rev Microbiol 2(7):541–551CrossRefGoogle Scholar
  27. Dourado F, Bastos M, Mota M, Gama FM (2002) Studies on the properties of Celluclast/Eudragit L-100 conjugate. J Biotechnol 99(2):121–131CrossRefGoogle Scholar
  28. Escobar MO, Hue NV (2008) Temporal changes of selected chemical properties in three manure–Amended soils of Hawaii. Bioresour Technol 99(18):8649–8654CrossRefGoogle Scholar
  29. Fantozzi P, Petruccioli G, Montedoro G (1977) Trattamenti con additivi enzimatici alle paste di oliva sottoposte ad estrazione per pressione unica: influenze delle cultivars, dell’epoca di raccolta e della conservazione. Grasse 54:381–388Google Scholar
  30. Fontaine S, Bardoux G, Benest D, Verdier B, Mariotti A, Abbadie L (2004) Mechanisms of the priming effect in a savannah soil amended with cellulose. Soil Sci Soc Am J 68(1):125–131CrossRefGoogle Scholar
  31. Fortun-Lamothe L, Gidenne T, Debray L, Chalaye F. (2001). Intake regulation, performances and health status according to feeding strategy around weaning. In Proceendings of the 2nd Meeting of COST (Vol. 848, pp. 40–41).Google Scholar
  32. Galante YM, DeConti A, Monteverdi R (1998) Application of trichoderma enzymes in food and feed industries. In: Harman GF, Kubicek CP (eds) Trichoderma and gliocladium—enzymes, vol. 2 of Biological control and commercial applications. Taylor & Francis, London, pp 311–326Google Scholar
  33. Ghosh P, Singh A (1993) Physicochemical and biological treatments for enzymatic/microbial conversion of lignocellulosic biomass. In: Advances in applied microbiology, vol 39. Academic Press, New York, pp 295–333Google Scholar
  34. Godfrey T, West S (1996) Textiles. Indus Enzymol:360–371Google Scholar
  35. Graham H, Balnave D (1995) Dietary enzymes for increasing energy availability. In: Wallace RJ, Chesson A (eds) Biotechnology in animal feeds and animal feedings. VHC, Weinheim, pp 296–309Google Scholar
  36. Gupta R, Khasa YP, Kuhad RC (2011) Evaluation of pretreatment methods in improving the enzymatic saccharification of cellulosic materials. Carbohydr Polym 84(3):1103–1109CrossRefGoogle Scholar
  37. Han W, He M (2010) The application of exogenous cellulase to improve soil fertility and plant growth due to acceleration of straw decomposition. Bioresour Technol 101(10):3724–3731CrossRefGoogle Scholar
  38. Harrison MJ, Nouwens AS, Jardine DR, Zachara NE, Gooley AA, Nevalainen H, Packer NH (1998) Modified glycosylation of cellobiohydrolase I from a high cellulase-producing mutant strain of Trichoderma reesei. Eur J Biochem 256(1):119–127CrossRefGoogle Scholar
  39. Headon DR, Walsh G (1994) The industrial production of enzymes. Biotechnol Adv 12(4):635–646CrossRefGoogle Scholar
  40. Hebeish A, Ibrahim NA (2007) The impact of frontier sciences on textile industry. Colourage 54(4):41–55Google Scholar
  41. Henrissat B, Davies G (1997) Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol 7(5):637–644CrossRefGoogle Scholar
  42. Huang W, Niu H, Li Z, He Y, Gong W, Gong G (2008) Optimization of ellagic acid production from ellagitannins by co-culture and correlation between its yield and activities of relevant enzymes. Bioresour Technol 99(4):769–775CrossRefGoogle Scholar
  43. Ibrahim NA, El-Badry K, Eid BM, Hassan TM (2011) A new approach for biofinishing of cellulose-containing fabrics using acid cellulases. Carbohydr Polym 83(1):116–121CrossRefGoogle Scholar
  44. Juturu V, Wu JC (2014) Microbial cellulases: engineering, production and applications. Renew Sust Energ Rev 33:188–203CrossRefGoogle Scholar
  45. Kanmani R, Vijayabaskar P, Jayalakshmi S (2011) Saccharification of banana-agro waste and clarification of apple juice by cellulase enzyme produced from Bacillus pumilis. World Appl Sci J 12(11):2120–2128Google Scholar
  46. Karmakar M, Ray RR (2011) Current trends in research and application of microbial cellulases. Res J Microbiol 6(1):41CrossRefGoogle Scholar
  47. Kotaka A, Bando H, Kaya M, Kato-Murai M, Kuroda K, Sahara H et al (2008) Direct ethanol production from barley β-glucan by sake yeast displaying Aspergillus oryzae β-glucosidase and endoglucanase. J Biosci Bioeng 105(6):622–627CrossRefGoogle Scholar
  48. Kuhad RC, Singh A (1993) Lignocellulose biotechnology: current and future prospects. Crit Rev Biotechnol 13(2):151–172CrossRefGoogle Scholar
  49. Kuhad RC, Singh A, Eriksson KEL (1997) Microorganisms and enzymes involved in the degradation of plant fiber cell walls. In: Biotechnology in the pulp and paper industry. Springer, Berlin/Heidelberg, pp 45–125CrossRefGoogle Scholar
  50. Kuhad RC, Manchanda M, Singh A (1999) Hydrolytic potential of extracellular enzymes from a mutant strain of Fusarium oxysporum. Bioprocess Eng 20(2):133–135Google Scholar
  51. Kuhad RC, Mehta G, Gupta R, Sharma KK (2010a) Fed batch enzymatic saccharification of newspaper cellulosics improves the sugar content in the hydrolysates and eventually the ethanol fermentation by Saccharomyces cerevisiae. Biomass Bioenergy 34(8):1189–1194CrossRefGoogle Scholar
  52. Kuhad RC, Gupta R, Khasa YP (2010b) Bioethanol production from lignocellulosic biomass: an overview. In: Lal B (ed) Wealth from waste. Teri Press, New Delhi, IndiaGoogle Scholar
  53. Kumar R, Wyman CE (2009) Effect of additives on the digestibility of corn stover solids following pretreatment by leading technologies. Biotechnol Bioeng 102(6):1544–1557CrossRefGoogle Scholar
  54. Lee D, Yu AH, Saddler JN (1995) Evaluation of cellulase recycling strategies for the hydrolysis of lignocellulosic substrates. Biotechnol Bioeng 45(4):328–336CrossRefGoogle Scholar
  55. Lewis GE, Hunt CW, Sanchez WK, Treacher R, Pritchard GT, Feng P (1996) Effect of direct-fed fibrolytic enzymes on the digestive characteristics of a forage-based diet fed to beef steers. J Anim Sci 74(12):3020–3028CrossRefGoogle Scholar
  56. Licht FO (2006) World ethanol markets: the outlook to 2015, Tunbridge Wells, Agra Europe Special Report, UKGoogle Scholar
  57. Lloyd TA, Wyman CE (2005) Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresour Technol 96(18):1967–1977CrossRefGoogle Scholar
  58. Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506–577CrossRefGoogle Scholar
  59. Lynd LR, Van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16(5):577–583CrossRefGoogle Scholar
  60. Mai C, Kües U, Militz H (2004) Biotechnology in the wood industry. Appl Microbiol Biotechnol 63(5):477–494CrossRefGoogle Scholar
  61. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686CrossRefGoogle Scholar
  62. Oksanen J, Ahvenainen J, Home S (1985) Microbial cellulase for improving filterability of wort and beer. J Inst Brew 91(3):130–130Google Scholar
  63. Pascual JJ (2001) Recent advances on early weaning and nutrition around weaning. In Proceedings of the 2nd Meeting of COST (Vol. 848, pp. 31–36).Google Scholar
  64. Pere J, Siika-aho M, Buchert J, Viikari L (1995) Effects of purified T. reesei cellulases on the fiber properties of kraft pulp. TAPPI J 78(6):71–78Google Scholar
  65. Rai P, Majumdar GC, Gupta SD, De S (2007) Effect of various pretreatment methods on permeate flux and quality during ultrafiltration of mosambi juice. J Food Eng 78(2):561–568CrossRefGoogle Scholar
  66. Rodrigues AL, Cavalett A, Lima AO (2010) Enhancement of Escherichia coli cellulolytic activity by co-production of beta-glucosidase and endoglucanase enzymes. Electron J Biotechnol 13(5):5–6Google Scholar
  67. Sakai S, Tsuchida Y, Okino S, Ichihashi O, Kawaguchi H, Watanabe T, Inui M, Yukawa H (2007) Effect of lignocellulose-derived inhibitors on growth of and ethanol production by growth-arrested Corynebacterium glutamicum R. Appl Environ Microbiol 73(7):2349–2353CrossRefGoogle Scholar
  68. Sánchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27(2):185–194CrossRefGoogle Scholar
  69. Sheehan J, Himmel M (1999) Enzymes, energy, and the environment: a strategic perspective on the US Department of Energy’s research and development activities for bioethanol. Biotechnol Prog 15(5):817–827CrossRefGoogle Scholar
  70. Shrivastava B, Thakur S, Khasa YP, Gupte A, Puniya AK, Kuhad RC (2011) White-rot fungal conversion of wheat straw to energy rich cattle feed. Biodegradation 22(4):823–831CrossRefGoogle Scholar
  71. Singh A, Kumar PKR, Schügerl K (1991) Adsorption and reuse of cellulases during saccharification of cellulosic materials. J Biotechnol 18(3):205–212CrossRefGoogle Scholar
  72. Singh A, Kuhad RC, Ward OP (2007) Industrial application of microbial cellulases. In: Kuhad RC, Singh A (eds) Lignocellulose biotechnology: future prospects. I. K. International Publishing House, New Delhi, pp 345–358Google Scholar
  73. Sohail M, Siddiqi R, Ahmad A, Khan SA (2009) Cellulase production from Aspergillus niger MS82: effect of temperature and pH. New Biotechnol 25(6):437–441CrossRefGoogle Scholar
  74. Sreenath HK, Shah AB, Yang VW, Gharia MM, Jeffries TW (1996) Enzymatic polishing of jute/cotton blended fabrics. J Ferment Bioeng 81(1):18–20CrossRefGoogle Scholar
  75. Srivastava N, Srivastava M, Mishra PK, Singh P, Ramteke PW (2015) Application of cellulases in biofuels industries: an overview. J Biofuels Bioenergy 1(1):55–63CrossRefGoogle Scholar
  76. Stork G, Puls J (1996) Change in properties of different recycled pulps by endoglucanase treatment. In: Proceedings of the international conference on biotechnology in the pulp and paper industry: recent advances in applied and fundamental research (Vol. 1, pp. 145–150). Facultas-UniversitatsverlagGoogle Scholar
  77. Sukumaran RK, Singhania RR, Pandey A (2005) Microbial cellulases-production, applications and challenges. J Sci Ind Res 64(11):832–844Google Scholar
  78. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11CrossRefGoogle Scholar
  79. Tejada M, Gonzalez JL, García-Martínez AM, Parrado J (2008) Application of a green manure and green manure composted with beet vinasse on soil restoration: effects on soil properties. Bioresour Technol 99(11):4949–4957CrossRefGoogle Scholar
  80. Tu M, Chandra RP, Saddler JN (2007) Evaluating the distribution of cellulases and the recycling of free cellulases during the hydrolysis of lignocellulosic substrates. Biotechnol Prog 23(2):398–406CrossRefGoogle Scholar
  81. Uhlig H (1998) Industrial enzymes and their applications. Wiley, ChicesterGoogle Scholar
  82. Walsh G, Headon D (1994) Protein biotechnology. Wiley, ChicesterGoogle Scholar
  83. Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY (2005) Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 96(18):1959–1966CrossRefGoogle Scholar
  84. Yang B, Wyman CE (2004) Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnol Bioeng 86(1):88–98CrossRefGoogle Scholar
  85. Yang B, Wyman CE (2006) BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Biotechnol Bioeng 94(4):611–617CrossRefGoogle Scholar
  86. Zhang YHP, Himmel M, Mielenz JR (2006) Outlook for cellulase improvement: Screening and selection strategies. Biotechnol Adv 24:452–481CrossRefGoogle Scholar
  87. Zhu Z, Sathitsuksanoh N, Zhang YHP (2009) Direct quantitative determination of adsorbed cellulase on lignocellulosic biomass with its application to study cellulase desorption for potential recycling. Analyst 134:2267–2272CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Mohammad Shahed Hasan Khan Tushar
    • 1
  • Animesh Dutta
    • 2
  1. 1.Department of Mechanical EngineeringRajshahi University of Engineering & TechnologyRajshahiBangladesh
  2. 2.Mechanical Engineering Program, School of EngineeringUniversity of GuelphGuelphCanada

Personalised recommendations