Advertisement

Advances in Heavy Metal-Induced Stress Alleviation with Respect to Exogenous Amendments in Crop Plants

  • Bedabrata Saha
  • Bhaben Chowardhara
  • Saradia Kar
  • Sanjenbam Sanjibia Devi
  • Jay Prakash Awasthi
  • Debojyoti Moulick
  • Bhaben Tanti
  • Sanjib Kumar Panda
Chapter

Abstract

Heavy metal contamination of soil due to rapid industrialization and urbanization is an exponentially increasing menace, rendering hectares of arable land barren. Adding to the problem is the global climate change which sums up to the challenge of providing food security and meeting the global sustainability goals. Heavy metals like Cd, Pb, Hg, and As (non essential) and Fe, Mn, Zn, Cr, Cu, and Ni (essential) when present in abnormal amounts in the environment pose a serious threat to growth and yield of crop plants. Various stress factors including heavy metals result in exaggerated synthesis of reactive oxygen species (ROS) causing immense metabolic imbalance in plants. Plants possess both enzymatic and non-enzymatic processes to reduce the load of oxidative stress, but many times, it doesn’t suffice. The scope of this chapter centers around the recent strives made in the field of heavy metal-induced heavy metal stress mitigation in crop plants. This chapter specially focuses on exogenous amendments (organic, inorganic, and microbial) to induce stress adaptation in crop plants.

Keywords

Toxic metal Abiotic stress Cross tolerance Phytohormones Biostimulant 

References

  1. Abd_Allah EF, Hashem A, Alqarawi AA, Wirth S, Egamberdieva D (2017) Calcium application enhances growth and alleviates the damaging effects induced by Cd stress in sesame (Sesamum indicum L.). J Plant Interact 12(1):237–243CrossRefGoogle Scholar
  2. Adrees M, Ali S, Iqbal M, Bharwana SA, Siddiqi Z, Farid M, Rizwan M (2015) Mannitol alleviates chromium toxicity in wheat plants in relation to growth, yield, stimulation of anti-oxidative enzymes, oxidative stress and Cr uptake in sand and soil media. Ecotoxicol Environ Saf 122:1–8PubMedCrossRefGoogle Scholar
  3. Ahammed GJ, Choudhary SP, Chen S, Xia X, Shi K, Zhou Y, Yu J (2012) Role of brassinosteroids in alleviation of phenanthrene–cadmium co-contamination-induced photosynthetic inhibition and oxidative stress in tomato. J Exp Bot 64(1):199–213PubMedPubMedCentralCrossRefGoogle Scholar
  4. Ahammed GJ, Ruan YP, Zhou J, Xia XJ, Shi K, Zhou YH, Yu JQ (2013) Brassinosteroid alleviates polychlorinated biphenyls-induced oxidative stress by enhancing antioxidant enzymes activity in tomato. Chemosphere 90(11):2645–2653PubMedCrossRefGoogle Scholar
  5. Ahmad I, Akhtar MJ, Asghar HN, Ghafoor U, Shahid M (2016) Differential effects of plant growth-promoting rhizobacteria on maize growth and cadmium uptake. J Plant Growth Regul 35(2):303–315CrossRefGoogle Scholar
  6. Al Mahmud J, Hasanuzzaman M, Nahar K, Bhuyan MB, Fujita M (2018) Insights into citric acid-induced cadmium tolerance and phytoremediation in Brassica juncea L.: coordinated functions of metal chelation, antioxidant defense and glyoxalase systems. Ecotoxicol Environ Saf 147:990–1001PubMedCrossRefGoogle Scholar
  7. Ali B, Wang B, Ali S, Ghani MA, Hayat MT, Yang C, Zhou WJ (2013) 5-Aminolevulinic acid ameliorates the growth, photosynthetic gas exchange capacity, and ultrastructural changes under cadmium stress in Brassica napus L. J Plant Growth Regul 32(3):604–614CrossRefGoogle Scholar
  8. Ali B, Mwamba TM, Gill RA, Yang C, Ali S, Daud MK, Zhou W (2014a) Improvement of element uptake and antioxidative defense in Brassica napus under lead stress by application of hydrogen sulfide. Plant Growth Regul 74(3):261–273CrossRefGoogle Scholar
  9. Ali B, Song WJ, Hu WZ, Luo XN, Gill RA, Wang J, Zhou WJ (2014b) Hydrogen sulfide alleviates lead-induced photosynthetic and ultrastructural changes in oilseed rape. Ecotoxicol Environ Saf 102:25–33PubMedCrossRefGoogle Scholar
  10. Ali B, Xu X, Gill RA, Yang S, Ali S, Tahir M, Zhou W (2014c) Promotive role of 5-aminolevulinic acid on mineral nutrients and antioxidative defense system under lead toxicity in Brassica napus. Ind Crop Prod 52:617–626CrossRefGoogle Scholar
  11. Ali S, Chaudhary A, Rizwan M, Anwar HT, Adrees M, Farid M, Anjum SA (2015) Alleviation of chromium toxicity by glycinebetaine is related to elevated antioxidant enzymes and suppressed chromium uptake and oxidative stress in wheat (Triticum aestivum L.). Environ Sci Pollut Res 22(14):10669–10678CrossRefGoogle Scholar
  12. Amooaghaie R, Enteshari S (2017) Role of two-sided crosstalk between NO and H2S on improvement of mineral homeostasis and antioxidative defense in Sesamum indicum under lead stress. Ecotoxicol Environ Saf 139:210–218PubMedCrossRefGoogle Scholar
  13. Antoniou C, Savvides A, Christou A, Fotopoulos V (2016) Unravelling chemical priming machinery in plants: the role of reactive oxygen–nitrogen–sulfur species in abiotic stress tolerance enhancement. Curr Opin Plant Biol 33:101–107PubMedCrossRefGoogle Scholar
  14. Anwaar SA, Ali S, Ali S, Ishaque W, Farid M, Farooq MA, Najeeb U, Abbas F, Sharif M (2015) Silicon (Si) alleviates cotton (Gossypium hirsutum L.) from zinc (Zn) toxicity stress by limiting Zn uptake and oxidative damage. Environ Sci Pollut Res 22(5):3441–3450CrossRefGoogle Scholar
  15. Asgher M, Khan NA, Khan MI, Fatma M, Masood A (2014) Ethylene production is associated with alleviation of cadmium-induced oxidative stress by sulfur in mustard types differing in ethylene sensitivity. Ecotoxicol Environ Saf 106:54–61PubMedCrossRefGoogle Scholar
  16. Astolfi S, Zuchi S, Neumann G, Cesco S, di Toppi LS, Pinton R (2011) Response of barley plants to Fe deficiency and Cd contamination as affected by S starvation. J Exp Bot 63(3):1241–1250PubMedCrossRefGoogle Scholar
  17. Awasthi JP, Saha B, Regon P, Sahoo S, Chowra U, Pradhan A, Roy A, Panda SK (2017) Morpho-physiological analysis of tolerance to aluminum toxicity in rice varieties of North East India. PLoS One 12(4):e0176357PubMedPubMedCentralCrossRefGoogle Scholar
  18. Bashir S, Hussain Q, Shaaban M, Hu H (2018a) Efficiency and surface characterization of different plant derived biochar for cadmium (Cd) mobility, bioaccessibility and bioavailability to Chinese cabbage in highly contaminated soil. Chemosphere 211:632–639PubMedCrossRefGoogle Scholar
  19. Bashir S, Zhu J, Fu Q, Hu H (2018b) Cadmium mobility, uptake and anti-oxidative response of water spinach (Ipomoea aquatic) under rice straw biochar, zeolite and rock phosphate as amendments. Chemosphere 194:579–587PubMedCrossRefGoogle Scholar
  20. Belkadhi A, De Haro A, Soengas P, Obregon S, Cartea ME, Chaibi W, Djebali W (2014) Salicylic acid increases tolerance to oxidative stress induced by hydrogen peroxide accumulation in leaves of cadmium-exposed flax (Linum usitatissimum L.). J Plant Interact 9(1):647–654CrossRefGoogle Scholar
  21. Benavides MP, Groppa MD, Recalde L, Verstraeten SV (2018) Effects of polyamines on cadmium-and copper-mediated alterations in wheat (Triticum aestivum L) and sunflower (Helianthus annuus L) seedling membrane fluidity. Arch Biochem Biophys 654:27–39PubMedCrossRefGoogle Scholar
  22. Blaylock MJ, Salt DE, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y, Ensley BD, Raskin I (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci Technol 31(3):860–865CrossRefGoogle Scholar
  23. Bogdan K, Schenk MK (2008) Arsenic in rice (Oryza sativa L.) related to dynamics of arsenic and silicic acid in paddy soils. Environ Sci Technol 42:7885–7890PubMedCrossRefGoogle Scholar
  24. Cao X, Jia J, Zhang C, Li H, Liu T, Jiang X, Polle A, Peng C, Luo ZB (2014) Anatomical, physiological and transcriptional responses of two contrasting poplar genotypes to drought and re-watering. Physiol Plant 151(4):480–494PubMedCrossRefGoogle Scholar
  25. Caverzan A, Passaia G, Rosa SB, Ribeiro CW, Lazzarotto F, Margis-Pinheiro M (2012) Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Genet Mol Biol 35(4):1011–1019PubMedPubMedCentralCrossRefGoogle Scholar
  26. Charlatchka R, Cambier P (2000) Influence of reducing conditions on solubility of trace metals in contaminated soils. Water Air Soil Pollut 118(1–2):143–168CrossRefGoogle Scholar
  27. Chen X, Li H, Chan WF, Wu C, Wu F, Wu S, Wong MH (2012) Arsenite transporters expression in rice (Oryza sativa L.) associated with arbuscular mycorrhizal fungi (AMF) colonization under different levels of arsenite stress. Chemosphere 89(10):1248–1254PubMedCrossRefGoogle Scholar
  28. Chen J, Wang W-H, Wu F-H, You C-Y, Liu T-W, Dong X-J, He J-X, Zheng H-L (2013) Hydrogen sulfide alleviates aluminum toxicity in barley seedlings. Plant Soil 362(1–2):301–318Google Scholar
  29. Chen J, Liu X, Wang C, Yin SS, Li XL, Hu WJ, Simon M, Shen ZJ, Xiao Q, Chu CC, Peng XX (2015) Nitric oxide ameliorates zinc oxide nanoparticles-induced phytotoxicity in rice seedlings. J Hazard Mater 297:173–182PubMedCrossRefGoogle Scholar
  30. Chen Q, Zhang X, Liu Y, Wei J, Shen W, Shen Z, Cui J (2017) Hemin-mediated alleviation of zinc, lead and chromium toxicity is associated with elevated photosynthesis, antioxidative capacity; suppressed metal uptake and oxidative stress in rice seedlings. Plant Growth Regul 81(2):253–264CrossRefGoogle Scholar
  31. Chen Q, Gong C, Ju X, Zhu Z, Shen W, Shen Z, Cui J (2018a) Hemin through the heme oxygenase 1/ferrous iron, carbon monoxide system involved in zinc tolerance in Oryza sativa L. J Plant Growth Regul 1–11Google Scholar
  32. Chen Z, Yang B, Hao Z, Zhu J, Zhang Y, Xu T (2018b) Exogenous hydrogen sulfide ameliorates seed germination and seedling growth of cauliflower under lead stress and its antioxidant role. J Plant Growth Regul 37(1):5–15CrossRefGoogle Scholar
  33. Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123(3):825–832PubMedPubMedCentralCrossRefGoogle Scholar
  34. Davies PJ (2010) The plant hormones: their nature, occurrence, and functions. In: Plant hormones. Springer, Dordrecht, pp 1–15CrossRefGoogle Scholar
  35. Dennehy C, Lawlor PG, Jiang Y, Gardiner GE, Xie S, Nghiem LD, Zhan X (2017) Greenhouse gas emissions from different pig manure management techniques: a critical analysis. Front Environ Sci Eng 11:11CrossRefGoogle Scholar
  36. Detmann KC, Araújo WL, Martins SC, Sanglard LM, Reis JV, Detmann E, Rodrigues FÁ, Nunes-Nesi A, Fernie AR, DaMatta FM (2012) Silicon nutrition increases grain yield, which, in turn, exerts a feed-forward stimulation of photosynthetic rates via enhanced mesophyll conductance and alters primary metabolism in rice. New Phytol 1196(3):752–762CrossRefGoogle Scholar
  37. Disante KB, Cortina J, Vilagrosa A, Fuentes D, Hernández EI, Ljung K (2014) Alleviation of Zn toxicity by low water availability. Physiol Plant 150(3):412–424PubMedCrossRefGoogle Scholar
  38. Dixit G, Singh AP, Kumar A, Singh PK, Kumar S, Dwivedi S, Trivedi PK, Pandey V, Norton GJ, Dhankher OP, Tripathi RD (2015) Sulfur mediated reduction of arsenic toxicity involves efficient thiol metabolism and the antioxidant defense system in rice. J Hazard Mater 298:241–251PubMedCrossRefGoogle Scholar
  39. Dixit G, Singh AP, Kumar A, Mishra S, Dwivedi S, Kumar S, Trivedi PK, Pandey V, Tripathi RD (2016) Reduced arsenic accumulation in rice (Oryza sativa L.) shoot involves sulfur mediated improved thiol metabolism, antioxidant system and altered arsenic transporters. Plant Physiol. Biochemist 99:86–96Google Scholar
  40. Dorneles AO, Pereira AS, Rossato LV, Possebom G, Sasso VM, Bernardy K, Sandri RD, Nicoloso FT, Ferreira PA, Tabaldi LA (2016) Silicon reduces aluminum content in tissues and ameliorates its toxic effects on potato plant growth. Ciência Rural 46(3):506–512CrossRefGoogle Scholar
  41. Duan GL, Hu Y, Liu WJ, Kneer R, Zhao FJ, Zhu YG (2011) Evidence for a role of phytochelatins in regulating arsenic accumulation in rice grain. Environ Exp Bot 71:416–421Google Scholar
  42. Dudhane M, Borde M, Jite PK (2012) Effect of aluminium toxicity on growth responses and antioxidant activities in Gmelina arborea Roxb. Inoculated with AM fungi. Inter J Phytoremed 14(7):643–655CrossRefGoogle Scholar
  43. Emamverdian A, Ding Y, Xie Y, Sangari S (2018) Silicon mechanisms to ameliorate heavy metal stress in plants. Bio Med Res Inter 2018:1–10Google Scholar
  44. Fan JL, Hu ZY, Ziadi N, Xia X (2010) Excessive sulfur supply reduces cadmium accumulation in brown rice (Oryza sativa L.). Environ Pollut 158(2):409–415PubMedCrossRefGoogle Scholar
  45. Farooq MA, Ali S, Hameed A, Bharwana SA, Rizwan M, Ishaque W, Farid M, Mahmood K, Iqbal Z (2016) Cadmium stress in cotton seedlings: physiological, photosynthesis and oxidative damages alleviated by glycinebetaine. South Afr J Bot 104:61–68CrossRefGoogle Scholar
  46. Farzadfar S, Zarinkamar F, Modarres-Sanavy SA, Hojati M (2013) Exogenously applied calcium alleviates cadmium toxicity in Matricaria chamomilla L. plants. Environ Sci Pollut Res 20(3):1413–1422CrossRefGoogle Scholar
  47. Feng Z, Zhu L (2017) Sorption of phenanthrene to biochar modifyed by base. Front Environ Sci Eng 12:1CrossRefGoogle Scholar
  48. Finnegan PM, Chen W (2012) Arsenic toxicity: the effects on plant metabolism. Front Physiol 3:1–18CrossRefGoogle Scholar
  49. Fleck AT, Mattusch J, Schenk MK (2013) Silicon decreases the arsenic level in rice grain by limiting arsenite transport. J Plant Nutr Soil Sci 176:785–794Google Scholar
  50. Fleck AT, Schulze S, Hinrichs M, Specht A, Waßmann F, Schreiber L, Schenk MK (2015) Silicon promotes exodermal Casparian band formation in Si-accumulating and Si-excluding species by forming phenol complexes. PLoS One 10(9):e0138555PubMedPubMedCentralCrossRefGoogle Scholar
  51. Gao Y, Miao C, Mao L, Zhou P, Jin Z, Shi W (2010) Improvement of phytoextraction and antioxidative defense in Solanum nigrum L. under cadmium stress by application of cadmium-resistant strain and citric acid. J Hazard Mater 181(1–3):771–777PubMedCrossRefGoogle Scholar
  52. Garg N, Singh S (2018) Arbuscular mycorrhiza Rhizophagus irregularis and silicon modulate growth, proline biosynthesis and yield in Cajanus cajan L. Millsp.(pigeonpea) genotypes under cadmium and zinc stress. J Plant Growth Regul 37(1):46–63CrossRefGoogle Scholar
  53. Graziano M, Lamattina L (2005) Nitic oxide and Iron in plants, an emerging and converging story. Trends Plant Sci 10:4–8PubMedCrossRefPubMedCentralGoogle Scholar
  54. Gu HH, Zhan SS, Wang SZ, Tang YT, Chaney RL, Fang XH, Cai XD, Qiu RL (2012) Silicon-mediated amelioration of zinc toxicity in rice (Oryza sativa L.) seedlings. Plant Soil 350(1–2):193–204CrossRefGoogle Scholar
  55. Habiba U, Ali S, Farid M, Shakoor MB, Rizwan M, Ibrahim M, Abbasi GH, Hayat T, Ali B (2015) EDTA enhanced plant growth, antioxidant defense system, and phytoextraction of copper by Brassica napus L. Environ Sci Pollut Res 22(2):1534–1544CrossRefGoogle Scholar
  56. Hadi F, Ali N, Ahmad A (2014) Enhanced phytoremediation of cadmium-contaminated soil by Parthenium hysterophorus plant: effect of gibberellic acid (GA3) and synthetic chelator, alone and in combinations. Biorem J 18(1):46–55CrossRefGoogle Scholar
  57. Hajiboland R, Barcelo J, Poschenrieder C, Tolra R (2013) Amelioration of iron toxicity: a mechanism for aluminum –induced growth stimulation in tea plants. J Inorg Biochem 128:183–187PubMedCrossRefPubMedCentralGoogle Scholar
  58. Hasan SA, Hayat S, Ali B, Ahmad A (2008) 28-Homobrassinolide protects chickpea (Cicer arietinum) from cadmium toxicity by stimulating antioxidants. Environ Pollut 151(1):60–66PubMedCrossRefPubMedCentralGoogle Scholar
  59. Hasan SA, Hayat S, Ahmad A (2011) Brassinosteroids protect photosynthetic machinery against the cadmium induced oxidative stress in two tomato cultivars. Chemosphere 84(10):1446–1451PubMedCrossRefPubMedCentralGoogle Scholar
  60. Hindt MN, Guerinot ML (2012) Getting a sense for signals: regulation of the plant iron deficiency response. Biochim Biophys Acta (BBA)-Mol Cell Res 1823(9):1521–1530CrossRefGoogle Scholar
  61. Houben D, Evrard L, Sonnet P (2013) Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed (Brassica napus L.). Biomass Bioenergy 57:196–204CrossRefGoogle Scholar
  62. Huang JH (2014) Impact of microorganisms on arsenic biogeochemistry: a review. Water Air Soil Pollut 1848:2–25Google Scholar
  63. Ibiang YB, Innami H, Sakamoto K (2018) Effect of excess zinc and arbuscular mycorrhizal fungus on bioproduction and trace element nutrition of tomato (Solanum lycopersicum L. cv. Micro-Tom). Soil Sci Plant Nut 1–10Google Scholar
  64. Jan S, Alyemeni MN, Wijaya L, Alam P, Siddique KH, Ahmad P (2018) Interactive effect of 24-epibrassinolide and silicon alleviates cadmium stress via the modulation of antioxidant defense and glyoxalase systems and macronutrient content in Pisum sativum L. seedlings. BMC Plant Biol 18(1):146PubMedPubMedCentralCrossRefGoogle Scholar
  65. Kambhampati MS (2013) EDTA enhanced phytoremediation of copper contaminated soils using chickpea (Cicer aeritinum L.). Bullet Environ Contam tox 91(3):310–313CrossRefGoogle Scholar
  66. Kar S, Panda SK (2018) Iron homeostasis in Rice: deficit and excess. Proc Nat Acad Sci India Sect B Biol Sci:1–9Google Scholar
  67. Keramat B, Kalantari KM, Arvin MJ (2009) Effects of methyl jasmonate in regulating cadmium induced oxidative stress in soybean plant (Glycine max L.). Afr J Microbiol Res 3:240–244Google Scholar
  68. Khan NA, Khan MI, Asgher M, Fatma M, Masood A, Syeed S (2014) Salinity tolerance in plants: revisiting the role of sulfur metabolites. J Plant Biochem Physiol 2(120):2Google Scholar
  69. Khan MI, Nazir F, Asgher M, Per TS, Khan NA (2015) Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat. J Plant Physiol 173:9–18PubMedCrossRefGoogle Scholar
  70. Kohli SK, Handa N, Sharma A, Gautam V, Arora S, Bhardwaj R, Alyemeni MN, Wijaya L, Ahmad P (2018) Combined effect of 24-epibrassinolide and salicylic acid mitigates lead (Pb) toxicity by modulating various metabolites in Brassica juncea L. seedlings. Protoplasma 255(1):11–24PubMedCrossRefGoogle Scholar
  71. Lee CH, Wu CH, Syu CH, Jiang PY, Huang CC, Lee DY (2016) Effects of phosphorous application on arsenic toxicity to and uptake by rice seedlings in As-contaminated paddy soils. Geoderma 270:60–67CrossRefGoogle Scholar
  72. Li X, Zhang L, Li Y (2011) Preconditioning alters antioxidative enzyme responses in rice seedlings to water stress. Procedia Environ Sci 11:1346–1351CrossRefGoogle Scholar
  73. Li L, Zheng C, Fu Y, Wu D, Yang X, Shen H (2012) Silicate-mediated alleviation of Pb toxicity in banana grown in Pb-contaminated soil. Biol Trace Elem Res 145(1):101–108PubMedCrossRefGoogle Scholar
  74. Li H, Liu Y, Zeng G, Zhou L, Wang X, Wang Y, Wang C, Hu X, Xu W (2014) Enhanced efficiency of cadmium removal by Boehmeria nivea (L.) Gaud. In the presence of exogenous citric and oxalic acids. J Environ Sci 26(12):2508–2516CrossRefGoogle Scholar
  75. Li M, Ahammed GJ, Li C, Bao X, Yu J, Huang C, Yin H, Zhou J (2016a) Brassinosteroid ameliorates zinc oxide nanoparticles-induced oxidative stress by improving antioxidant potential and redox homeostasis in tomato seedling. Front Plant Sci 7:615PubMedPubMedCentralGoogle Scholar
  76. Li P, Zhao C, Zhang Y, Wang X, Wang X, Wang J, Wang F, Bi Y (2016b) Calcium alleviates cadmium-induced inhibition on root growth by maintaining auxin homeostasis in Arabidopsis seedlings. Protoplasma 253(1):185–200PubMedCrossRefGoogle Scholar
  77. Li N, Meng H, Xing H, Liang L, Zhao X, Luo K (2017) Genome-wide analysis of MATE transporters and molecular characterization of aluminum resistance in Populus. J Exp Bot 68(20):5669–5683PubMedPubMedCentralCrossRefGoogle Scholar
  78. Li H, Yu Y, Chen Y, Li Y, Wang M, Wang G (2018a) Biochar reduced soil extractable Cd but increased its accumulation in rice (Oryza sativa L.) cultivated on contaminated soils. J Soils Sed 1–10Google Scholar
  79. Li X, Li YL, Mai J, Tao L, Qu M, Liu JY, Shen RF, Xu GL, Feng YM, Xiao HD, Wu LS (2018b) B alleviates Al toxicity by promoting alkalization in root transition zone via polar auxin transport. Plant physiol pp-00188Google Scholar
  80. Lin Q, Xu X, Wang L, Chen Q, Fang J, Shen X, Lou L, Tian G (2017) The speciation, leachability and bioaccessibility of Cu and Zn in animal manure-derived biochar: effect of feedstock and pyrolysis temperature. Front Environ Sci Eng 11:1–12CrossRefGoogle Scholar
  81. Liu WJ, Zhu YG, Smith FA, Smith SE (2004a) Do iron plaque and genotypes affect arsenate uptake and translocation by rice seedlings (Oryza sativa L.) grown in solution culture? J Exp Bot 55:1707–1713PubMedCrossRefGoogle Scholar
  82. Liu ZJ, Boles E, Rosen BP (2004b) Arsenic trioxide uptake by hexosepermeases in Saccharomyces cerevisiae. J Biol Chem 279:17312–17318PubMedCrossRefGoogle Scholar
  83. Liu J, Zhang H, Zhang Y, Chai T (2013) Silicon attenuates cadmium toxicity in Solanum nigrum L. by reducing cadmium uptake and oxidative stress. Plant Physiol Biochem 68:1–7PubMedCrossRefGoogle Scholar
  84. Liu S-L, Yang R-J, Ma M-D, Dan F, Zhao Y, Jiang P, Wang M-H (2015) Effects of exogenous NO on the growth, mineral nutrient content, antioxidant system, and ATPase activities of Trifolium repens L. plants under cadmium stress. Acta Physiol Plant 37(1)Google Scholar
  85. Liu X, Chen J, Wang GH, Wang WH, Shen ZJ, Luo MR, Gao GF, Simon M, Ghoto K, Zheng HL (2016) Hydrogen sulfide alleviates zinc toxicity by reducing zinc uptake and regulating genes expression of antioxidative enzymes and metallothioneins in roots of the cadmium/zinc hyperaccumulator Solanum nigrum L. Plant Soil 400(1–2):177–192CrossRefGoogle Scholar
  86. Lu Y, Dong F, Deacon C, Chen HJ, Raab A, Meharg AA (2010) Arsenic accumulation and phosphorus status in two rice (Oryza sativa L.) cultivars surveyed from fields in South China. Environ Pollut 158(5):1536–1541PubMedCrossRefGoogle Scholar
  87. Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11:392–397PubMedCrossRefGoogle Scholar
  88. Ma J, Cai H, He C, Zhang W, Wang L (2015) A hemicellulose-bound form of silicon inhibits cadmium ion uptake in rice (Oryza sativa) cells. New Phytol 206(3):1063–1074PubMedCrossRefGoogle Scholar
  89. Mandal A, Purakayastha TJ, Patra AK (2014) Phytoextraction of arsenic contaminated soil by Chinese brake fern (Pteris vittata): effect on soil microbiological activities. Biol Fertil Soils 50(8):1247–1252CrossRefGoogle Scholar
  90. Masood A, Iqbal N, Khan NA (2012) Role of ethylene in alleviation of cadmium-induced photosynthetic capacity inhibition by sulphur in mustard. Plant Cell Environ 35(3):524–533PubMedCrossRefGoogle Scholar
  91. Matsumoto S, Kasuga J, Taiki N, Makino T, Arao T (2015) Inhibition of arsenic accumulation in Japanese rice by the application of iron and silicate materials. Catena 135:328–335CrossRefGoogle Scholar
  92. Meriño-Gergichevich C, Alberdi M, Ivanov AG, Reyes-Díaz M (2010) Al 3+-Ca2+ interaction in plants growing in acid soils: al-phytotoxicity response to calcareous amendments. J Soil Sci Plant Nutr 10(3):217–243Google Scholar
  93. Mir BA, Khan TA, Fariduddin Q (2015) 24-epibrassinolide and spermidine modulate photosynthesis and antioxidant systems in Vigna radiata under salt and zinc stress. Int J Adv Res 3:592–608Google Scholar
  94. Morita A, Yanagisawa O, Maeda S, Takatsu S, Ikka T (2011) Tea plant (Camellia sinensis L.) roots secrete oxalic acid and caffeine into medium containing aluminum. Soil Sci Plant Nutr 57(6):796–802CrossRefGoogle Scholar
  95. Mostofa MG, Fujita M (2013) Salicylic acid alleviates copper toxicity in rice (Oryza sativa L.) seedlings by up-regulating antioxidative and glyoxalase systems. Ecotoxicology 22(6):959–973PubMedCrossRefGoogle Scholar
  96. Mostofa MG, Rahman A, Ansary MM, Watanabe A, Fujita M, Tran LS (2015) Hydrogen sulfide modulates cadmium-induced physiological and biochemical responses to alleviate cadmium toxicity in rice. Sci Rep 5:14078PubMedPubMedCentralCrossRefGoogle Scholar
  97. Moulick D, Ghosh D, Santra SC (2016) Evaluation of effectiveness of seed priming with selenium in rice during germination under arsenic stress. Plant Physiol Biochem 109:571–578CrossRefGoogle Scholar
  98. Moulick D, Santra SC, Ghosh D (2017) Seed priming with Se alleviate As induced phytotoxicity during germination and seedling growth by restricting As translocation in rice (Oryza sativa L. cv IET-4094). Ecotoxicol Environ Saf 145:449–456PubMedPubMedCentralCrossRefGoogle Scholar
  99. Moulick D, Santra SC, Ghosh D (2018a) Effect of selenium induced seed priming on arsenic accumulation in rice plant and subsequent transmission in human food chain. Ecotoxicol Environ Saf 152:67–77PubMedPubMedCentralCrossRefGoogle Scholar
  100. Moulick D, Santra SC, Ghosh D (2018b) Rice seed priming with se: a novel approach to mitigate as induced adverse consequences on growth, yield and as load in brown rice. J Hazard Mater 355:187–196CrossRefGoogle Scholar
  101. Moulick D, Santra SC, Ghosh D (2018c) Seed priming with se mitigates as-induced phytotoxicity in rice seedlings by enhancing essential micronutrient uptake and translocation and reducing as translocation. Environ Sci Pollut Res.  https://doi.org/10.1007/s11356-018-2711-xPubMedPubMedCentralCrossRefGoogle Scholar
  102. Mukhopadyay M, Bantawa P, Das A, Sarkar B, Bera B, Ghosh P, Mondal TK (2012) Changes of growth, photosynthesis and alteration of leaf antioxidative defence system of tea [Camellia sinensis (L.) O. Kuntze] seedlings under aluminum stress. Biometals 25(6):1141–1154PubMedCrossRefGoogle Scholar
  103. Munoz-Bertomeu J, Cascales-Miñana B, Mulet JM, Baroja-Fernández E, Pozueta-Romero J, Kuhn JM, Segura J, Ros R (2009) Plastidial glyceraldehyde-3-phosphate dehydrogenase deficiency leads to altered root development and affects the sugar and amino acid balance in Arabidopsis. Plant Physiol 151(2):541–558PubMedPubMedCentralCrossRefGoogle Scholar
  104. Nahar K, Hasanuzzaman M, Alam MM, Rahman A, Suzuki T, Fujita M (2016) Polyamine and nitric oxide crosstalk: antagonistic effects on cadmium toxicity in mung bean plants through upregulating the metal detoxification, antioxidant defense and methylglyoxal detoxification systems. Ecotoxicol Environ Saf 126:245–255PubMedCrossRefGoogle Scholar
  105. Nakagawa T, Mori S, Yoshimura E (2003) Amelioration of aluminum toxicity by pretreatment with phosphate in aluminum-tolerant rice cultivar. J Plant Nutr 26(3):619–628CrossRefGoogle Scholar
  106. Namdjoyan S, Kermanian H, Soorki AA, Tabatabaei SM, Elyasi N (2017) Interactive effects of salicylic acid and nitric oxide in alleviating zinc toxicity of Safflower (Carthamus tinctorius L.). Ecotoxicology 26(6):752–761PubMedCrossRefGoogle Scholar
  107. Namgay T, Singh B, Singh BP (2010) Influence of biochar application to soil on the availability of As, Cd, Cu, Pb, and Zn to maize (Zea mays L.). Soil Res 48(7):638–647CrossRefGoogle Scholar
  108. Nath S, Panda P, Mishra S, Dey M, Choudhury S, Sahoo L, Panda SK (2014) Arsenic stress in rice: redox consequences and regulation by iron. Plant Physiol Biochem 80:203–210PubMedCrossRefGoogle Scholar
  109. Nazar R, Iqbal N, Syeed S, Khan NA (2015) Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. J Plant Physiol 168(8):807–815CrossRefGoogle Scholar
  110. Neupane G, Donahoe RJ (2013) Calcium-phosphate treatment of contaminated soil for arsenic immobilization. Appl Geochem 28:145–154CrossRefGoogle Scholar
  111. Noriega G, Caggiano E, Lecube ML, Santa Cruz D, Batlle A, Tomaro M, Balestrasse KB (2012) The role of salicylic acid in the prevention of oxidative stress elicited by cadmium in soybean plants. Biometals 25(6):1155–1165PubMedCrossRefGoogle Scholar
  112. Ou-yang C, Gao S, Mei LJ, Chung TW, Tang L, Wang SH, Chen F (2014) Effects of aluminum toxicity on the growth and antioxidant status in Jatropha curcas seedlings. J Med Plant Res 8(3):178–185CrossRefGoogle Scholar
  113. Pál M, Csávás G, Szalai G, Oláh T, Khalil R, Yordanova R, Gell G, Birinyi Z, Németh E, Janda T (2017) Polyamines may influence phytochelatin synthesis during Cd stress in rice. J Hazard Mater 340:272–280PubMedCrossRefGoogle Scholar
  114. Panda SK, Patra HK (2007) Effect of salicylic acid potentiates cadmium-induced oxidative damage in Oryza sativa L. leaves. Acta Physiol Plant 29(6):567–575CrossRefGoogle Scholar
  115. Pandey P, Srivastava RK, Dubey RS (2013a) Salicylic acid alleviates aluminum toxicity in rice seedlings better than magnesium and calcium by reducing aluminum uptake, suppressing oxidative damage and increasing antioxidative defense. Ecotoxicology 22(4):656–670PubMedCrossRefGoogle Scholar
  116. Pandey S, Ghosh PK, Ghosh S, De TK, Maiti TK (2013b) Role of heavy metal resistant Ochrobactrum sp. and Bacillus spp. strains in bioremediation of a rice cultivar and their PGPR like activities. J Microbiol 51(1):11–17PubMedCrossRefGoogle Scholar
  117. Pena-Fernandez A, Gonzalez-Munoz MJ, Lobo-Bedmar MC (2014) Establishing the importance of human health risk assessment for ena metals and metalloids in urban environments. Environ Int 72:176–185PubMedCrossRefGoogle Scholar
  118. Pereira SI, Barbosa L, Castro PM (2015) Rhizobacteria isolated from a metal-polluted area enhance plant growth in zinc and cadmium-contaminated soil. Int J Environ Sci Technol 12(7):2127–2142CrossRefGoogle Scholar
  119. Piotrowska A, Bajguz A, Godlewska-Żyłkiewicz B, Czerpak R, Kamińska M (2009) Jasmonic acid as modulator of lead toxicity in aquatic plant Wolffia arrhiza (Lemnaceae). Environ Exp Bot 66:507–513CrossRefGoogle Scholar
  120. Prabagar S, Hodson MJ, Evans DE (2011) Silicon amelioration of aluminium toxicity and cell death in suspension cultures of Norway spruce (Picea abies (L.) Karst.). Environ Exp Bot 70(2–3):266–276CrossRefGoogle Scholar
  121. Raab A, Williams PN, Meharg A, Feldmann J (2007) Uptake and translocation of inorganic and methylated arsenic species by plants. Environ Chem 4:197–203CrossRefGoogle Scholar
  122. Rady MM, Hemida KA (2015) Modulation of cadmium toxicity and enhancing cadmium-tolerance in wheat seedlings by exogenous application of polyamines. Ecotoxicol Environ Saf 119:178–185PubMedCrossRefGoogle Scholar
  123. Ramakrishna B, Rao SS (2012) 24-Epibrassinolide alleviated zinc-induced oxidative stress in radish (Raphanus sativus L.) seedlings by enhancing antioxidative system. Plant Growth Regul 68(2):249–259CrossRefGoogle Scholar
  124. Rehman u, Zia M, Rizwan M, Hussain A, Saqib M, Ali S, Sohail MI, Shafiq M, Hafeez F (2018) Alleviation of cadmium (Cd) toxicity and minimizing its uptake in wheat (Triticum aestivum) by using organic carbon sources in Cd-spiked soil. Environ Pollut 241:557–565PubMedCrossRefGoogle Scholar
  125. Reyes-Díaz M, Meriño-Gergichevich C, Alarcón E, Alberdi M, Horst WJ (2011) Calcium sulfate ameliorates the effect of aluminum toxicity differentially in genotypes of highbush blueberry (Vaccinium corymbosum L.). J Soil Sci Plant Nutr 11(4):59–78CrossRefGoogle Scholar
  126. Ribeiro C, Cambraia J, Peixoto PH, Fonseca Júnior ÉM (2012) Antioxidant system response induced by aluminum in two rice cultivars. Braz J Plant Physiol 24(2):107–116CrossRefGoogle Scholar
  127. Rizwan M, Ali S, Abbas T, Adrees M, Zia-ur-Rehman M, Ibrahim M, Abbas F, Qayyum MF, Nawaz R (2018) Residual effects of biochar on growth, photosynthesis and cadmium uptake in rice (Oryza sativa L.) under Cd stress with different water conditions. J Environ Manag 206:676–683CrossRefGoogle Scholar
  128. Saidi I, Ayouni M, Dhieb A, Chtourou Y, Chaïbi W, Djebali W (2013) Oxidative damages induced by short-term exposure to cadmium in bean plants: protective role of salicylic acid. South Afr J Bot 85:32–38CrossRefGoogle Scholar
  129. Saini R, Saini HS, Dahiya A (2017) Iron treatment enhances the levels of reduced glutathione, oxidized glutathione and glutathione reductase activity in Rice (Oryza sativa L.). J Pharmaco Phytochem 6(4):1321–1328Google Scholar
  130. Savvides A, Ali S, Tester M, Fotopoulos V (2016) Chemical priming of plants against multiple abiotic stresses: mission possible? Trends Plant Sci 21(4):329–340PubMedPubMedCentralCrossRefGoogle Scholar
  131. Saxena I, Shekhawat GS (2013) Nitric oxide (NO) in alleviation of heavy metal induced phytotoxicity and its role in protein nitration. Nitric Oxide 32:13–20PubMedCrossRefGoogle Scholar
  132. Shahid M, Dumat C, Pourrut B, Silvestre J, Laplanche C, Pinelli E (2014) Influence of EDTA and citric acid on lead-induced oxidative stress to Vicia faba roots. J Soils Sediments 14(4):835–843CrossRefGoogle Scholar
  133. Shahnaz G, Shekoofeh E, Kourosh D, Moohamadbagher B (2011) Interactive effects of silicon and aluminum on the malondialdehyde (MDA), proline, protein and phenolic compounds in Borago officinalis L. J Med Plant Res 5(24):5818–5827Google Scholar
  134. Shakirova FM, Allagulova CR, Maslennikova DR, Klyuchnikova EO, Avalbaev AM, Bezrukova MV (2016) Salicylic acid-induced protection against cadmium toxicity in wheat plants. Environ Exp Bot 122:19–28CrossRefGoogle Scholar
  135. Sharma P, Kumar A, Bhardwaj R (2016) Plant steroidal hormone epibrassinolide regulate–heavy metal stress tolerance in Oryza sativa L. by modulating antioxidant defense expression. Environ Exp Bot 122:1–9CrossRefGoogle Scholar
  136. SHI WG, Li H, LIU TX, Polle A, PENG CH, LUO ZB (2015) Exogenous abscisic acid alleviates zinc uptake and accumulation in P opulus× canescens exposed to excess zinc. Plant Cell Environ 38(1):207–223PubMedCrossRefGoogle Scholar
  137. Siddiqui MH, Al-Whaibi MH, Sakran AM, Basalah MO, Ali HM (2012) Effect of calcium and potassium on antioxidant system of Vicia faba L. under cadmium stress. Int J Mol Sci 13(6):6604–6619PubMedPubMedCentralCrossRefGoogle Scholar
  138. Singh S, Prasad SM (2014) Growth, photosynthesis and oxidative responses of Solanum melongena L. seedlings to cadmium stress: mechanism of toxicity amelioration by kinetin. Scien Hort 176:1–10CrossRefGoogle Scholar
  139. Singh S, Tripathi DK, Singh S, Sharma S, Dubey NK, Chauhan DK, Vaculík M (2017) Toxicity of aluminium on various levels of plant cells and organism: a review. Environ Exp Bot 137:177–193CrossRefGoogle Scholar
  140. Song WY, Park J, Mendoza-Cózatl DG, Suter-Grotemeyer M, Shim D, Hörtensteiner S, Geisler M, Weder B, Rea PA, Rentsch D (2010) Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proc Natl Acad Sci U S A 107:21187–21192PubMedPubMedCentralCrossRefGoogle Scholar
  141. Song A, Li P, Fan F, Li Z, Liang Y (2014) The effect of silicon on photosynthesis and expression of its relevant genes in rice (Oryza sativa L.) under high-zinc stress. PLoS One 9(11):e113782PubMedPubMedCentralCrossRefGoogle Scholar
  142. Souza R, Ambrosini A, Passaglia LMP (2015) Plant growth promoting bacteria as inoculants in agricultural soils. Genet Mol Biol 38(4):401–419PubMedPubMedCentralCrossRefGoogle Scholar
  143. Srivastava RK, Pandey P, Rajpoot R, Rani A, Gautam A, Dubey RS (2015) Exogenous application of calcium and silica alleviates cadmium toxicity by suppressing oxidative damage in rice seedlings. Protoplasma 252(4):959–975PubMedCrossRefGoogle Scholar
  144. Stein RJ, Ricachenevsky FK, Fett JP (2009) Differential regulation of the two rice ferritin genes (OsFER1 and OsFER2). Plant Sci 177:563–569CrossRefGoogle Scholar
  145. Szalai G, Krantev A, Yordanova R, Popova LP, Janda T (2013) Influence of salicylic acid on phytochelatin synthesis in Zea mays during Cd stress. Turk J Bot 37(4):708–714Google Scholar
  146. Tajti J, Janda T, Majláth I, Szalai G, Pál M (2018) Comparative study on the effects of putrescine and spermidine pre-treatment on cadmium stress in wheat. Ecotoxicol Environ Saf 148:546–554PubMedCrossRefGoogle Scholar
  147. Talukdar D (2012) Exogenous calcium alleviates the impact of cadmium-induced oxidative stress in Lens culinaris Medic. Seedlings through modulation of antioxidant enzyme activities. J Crop Sci Biotechnol 15(4):325–334CrossRefGoogle Scholar
  148. Tripathi DK, Singh VP, Prasad SM, Dubey NK, Chauhan DK, Rai AK (2016) LIB spectroscopic and biochemical analysis to characterize lead toxicity alleviative nature of silicon in wheat (Triticum aestivum L.) seedlings. J Photochem Photobiol B. Biologicals 154:89–98Google Scholar
  149. Tripathi DK, Mishra RK, Singh S, Singh S, Singh VP, Singh PK et al (2017) Nitric oxide ameliorates zinc oxide nanoparticles phytotoxicity in wheat seedlings: implication of the ascorbate-glutathione cycle. Front Plant Sci 8:1PubMedPubMedCentralCrossRefGoogle Scholar
  150. Vegan P, Abdullah R, Khadiran T, Ismail H, Boyce AN (2016) Role of plant growth promoting Rhizobacteria in agricultural sustainability – a review. Molecules 21(573):1–17Google Scholar
  151. Verma L, Pandey N (2016) Effect of iron stress on oxidative metabolism in wheat plants (Triticum aestivum L). Int J Appl Pure Sci Agri 2(12):24–32Google Scholar
  152. Vitti A, Nuzzaci M, Scopa A, Tataranni G, Remans T, Vangronsveld J, Sofo A (2013) Auxin and Cytokinin metabolism and root morphological modifications in Arabidopsis thaliana seedlings infected with cucumber mosaic virus (CMV) or exposed to cadmium. Int J Mol Sci 14(4):6889–6902PubMedPubMedCentralCrossRefGoogle Scholar
  153. Wang F, Zeng B, Sun Z, Zhu C (2009) Relationship between proline and Hg2+−induced oxidative stress in a tolerant rice mutant. Arch Environ Contam Toxicol 56(4):723PubMedCrossRefGoogle Scholar
  154. Wang Q, Liang X, Dong Y, Xu L, Zhang X, Kong J, Liu S (2013) Effects of exogenous salicylic acid and nitric oxide on physiological characteristics of perennial ryegrass under cadmium stress. J Plant Growth Regul 32(4):721–731CrossRefGoogle Scholar
  155. Wang J, Chen J, Pan K (2014) Effect of exogenous abscisic acid on the level of antioxidants in Atractylodes macrocephala Koidz under lead stress. Environ Sci Pollut Res 20(3):1441–1449CrossRefGoogle Scholar
  156. Wang F, Liu X, Shi Z, Tong R, Adams CA, Shi X (2016) Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants–a soil microcosm experiment. Chemosphere 147:88–97PubMedCrossRefGoogle Scholar
  157. Wang F, Jing X, Adams CA, Shi Z, Sun Y (2018a) Decreased ZnO nanoparticle phytotoxicity to maize by arbuscular mycorrhizal fungus and organic phosphorus. Environ Sci Pollut Res 25:1–12Google Scholar
  158. Wang F, Adams CA, Shi Z, Sun Y (2018b) Combined effects of ZnO NPs and Cd on sweet sorghum as influenced by an arbuscular mycorrhizal fungus. Chemosphere 209:421–429PubMedCrossRefGoogle Scholar
  159. Williams GP, Gnanadesigan M, Ravikumar S (2013) Biosorption and biokinetic properties of solar Saltern Halobacterial strains for managing Zn2+, As2+ and Cd2+ metals. Geomicrobiol J 30:497–500CrossRefGoogle Scholar
  160. Wu XX, Chen JL, Xu S, Zhu ZW, Zha DS (2016) Exogenous 24-epibrassinolide alleviates zinc-induced toxicity in eggplant (Solanum melongena L.) seedlings by regulating the glutathione-ascorbate-dependent detoxification pathway. J Hortic Sci Biotechnol 91(4):412–420CrossRefGoogle Scholar
  161. Wu Z, Xu S, Shi H, Zhao P, Liu X, Li F, Deng T, Du R, Wang X, Wang F (2018) Comparison of foliar silicon and selenium on cadmium absorption, compartmentation, translocation and the antioxidant system in Chinese flowering cabbage. Ecotoxicol Environ Saf 166:157–164PubMedCrossRefPubMedCentralGoogle Scholar
  162. Yang H, Shi G, Wang H, Xu Q (2010) Involvement of polyamines in adaptation of Potamogeton crispus L. to cadmium stress. Aquat Toxicol 100(3):282–288PubMedCrossRefGoogle Scholar
  163. Yang T, Chen ML, Liu LH, Wang JH, Dasgupta PK (2012) Iron (III) modification of Bacillus subtilis membranes provides record sorption capacity for arsenic and endows unusual selectivity for As(V). Environ Sci Technol 46:2251–2256PubMedCrossRefPubMedCentralGoogle Scholar
  164. Yingang LU, Jun MA, Ying TENG, Junyu HE, Christie P, Lingjia ZHU, Shiping DENG (2018) Effect of silicon on growth, physiology, and cadmium translocation of tobacco (Nicotiana tabacum L.) in cadmium-contaminated soil. Pedosphere 28(4):680–689CrossRefGoogle Scholar
  165. You J, Chan Z (2015) ROS regulation during abiotic stress response s in crop plants. Front Plant Sci 6:1–15CrossRefGoogle Scholar
  166. You-Qiang FU, Hong SHEN, Dao-Ming WU, Kun-Zheng CAI (2012) Silicon-mediated amelioration of Fe2+ toxicity in Rice (Oryza sativa L.) roots. Pedosphere 22(6):795–802CrossRefGoogle Scholar
  167. Zaheer MM, Yasin NA, Ahmad SR, Khan WU, Ahmad A, Ali A, Rehman SU (2018) Amelioration of cadmium stress in gladiolus (Gladiolus grandiflora L.) by application of potassium and silicon. J Plant Nutr 41(4):461–476CrossRefGoogle Scholar
  168. Zanganeh R, Jamei R, Rahmani F (2018) Impacts of seed priming with salicylic acid and sodium hydrosulfide on possible metabolic pathway of two amino acids in maize plant under lead stress. Mol Biol Res Comm 7:83–88Google Scholar
  169. Zhang H, Hu LY, Hu KD, He YD, Wang SH, Luo JP (2008) Hydrogen sulfide promotes wheat seed germination and alleviates oxidative damage against copper stress. J Integr Plant Biol 50(12):1518–1529PubMedCrossRefGoogle Scholar
  170. Zhang J, Zhao QZ, Duan GL, Huang YC (2011a) Influence of Sulphur on arsenic accumulation and metabolism in rice seedlings. Environ Exp Bot 72:34–40CrossRefGoogle Scholar
  171. Zhang W, Gao S, Zhou X, Chellappan P, Chen Z, Zhou X, Zhang X, Fromuth N, Coutino G, Coffey M, Jin H (2011b) Bacteria-responsive microRNAs regulate plant innate immunity by modulating plant hormone networks. Plant Mol Biol 75(1–2):93–105PubMedCrossRefGoogle Scholar
  172. Zheng R-L, Cai C, Liang J-H, Huang Q, Chen Z, Huang Y-Z, Arp HPH, Sun G-X (2012) The effects of biochars from rice residue on the formation of iron plaque and the accumulation of Cd, Zn, Pb, As in rice (Oryza sativa L.) seedlings. Chemosphere 89(7):856–862PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Bedabrata Saha
    • 1
  • Bhaben Chowardhara
    • 1
  • Saradia Kar
    • 1
  • Sanjenbam Sanjibia Devi
    • 1
  • Jay Prakash Awasthi
    • 1
  • Debojyoti Moulick
    • 1
  • Bhaben Tanti
    • 2
  • Sanjib Kumar Panda
    • 1
  1. 1.Plant Molecular Biotechnology Laboratory, Department of Life Science and BioinformaticsAssam UniversitySilcharIndia
  2. 2.Department of BotanyGauhati UniversityGuwahatiIndia

Personalised recommendations