Advertisement

A Study on Agent-Based Web Searching and Information Retrieval

  • Urvi MitraEmail author
  • Garima Srivastava
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 989)

Abstract

In this day and age of information overload, it becomes difficult to filter information that is relevant to our needs. World Wide Web is the largest database of information available to us. It stores information using the hypertext paradigm, i.e., interlinking web pages through hyperlinks, which users can click on to access related information. An agent acting on behalf of humans, can make the task of sifting through information to find what we need easier for us. This paper focuses on the application of intelligent agents in the field of web browsing and searching, mostly web spidering, indexing, and retrieval of information most relevant to us, based on keywords, from the vast database of knowledge available.

Keywords

Agents Information Intelligent Retrieval Searching Web 

Notes

Acknowledgments

I extend my heartfelt gratitude to my mentor, Ms. Garima Srivastava, Asst. Professor, Dept of Computer Science and Engineering, Amity University, Lucknow for her guidance and kind encouragement. I am thankful to my family and friends without whose support this paper would not have been possible.

References

  1. 1.
    Lalmas, M., van Rijsbergen, K.: A logical model of information retrieval based on situation theory. In: 14th Information Retrieval Colloquium. Springer, London (1993)Google Scholar
  2. 2.
    Koller, D., Sahami, M.: Hierarchically classifying documents using very few words. Stanford InfoLab (1997)Google Scholar
  3. 3.
    Anonymous.: The age of the intelligent agent. Insur. Syst. Bull. 9(10), 4–5 (1994)Google Scholar
  4. 4.
    Mansour, K., Hattab, E., Abuelrub, E:. Intelligent Agents Review. In: iiWAS. (2004)Google Scholar
  5. 5.
    Kolodner, J.: Case-Based Reasoning (Morgan Kaufmann Series in Representation and Reasoning). Morgan Kauffmann (1993)Google Scholar
  6. 6.
    Lenz, M., Hübner, A., Kunze, M.: Question answering with textual CBR. In: International Conference on Flexible Query Answering Systems. Springer, Berlin, Heidelberg (1998)CrossRefGoogle Scholar
  7. 7.
    Russell, S., Norvig, P.: Artificial Intelligence. A modern approach. Artificial Intelligence. Prentice-Hall, Englewood Cliffs 25.27: 79–80 (1995)Google Scholar
  8. 8.
    UMBC AgentNews Web Letter, Agents on the net, vol. 1, No. 17, December, 1996Google Scholar
  9. 9.
    Lieberman, H.: Letizia: An agent that assists web browsing. IJCAI (1) 924–929 (1995)Google Scholar
  10. 10.
    Jaczynski, M., Trousse, B.: Broadway: a world wide web browsing advisor reusing past navigations from a group of users. In: Proceedings of the Third UK Case-Based Reasoning Workshop (UKCBR3) (1997)Google Scholar
  11. 11.
    Aiken, M., Govindarajulu, C.: Knowledge-based information retrieval for group decision support systems. J. Database Manag. 5(1), 1–35 (1994)CrossRefGoogle Scholar
  12. 12.
    Beheshti, J. Browsing through public access catalogs. Inf. Technol. Libr. 11(3), 220–228 (1992)Google Scholar
  13. 13.
    Jansen, J.: Using an intelligent agent to enhance search engineer performance. Online 2(3) (1997)Google Scholar
  14. 14.
    Burke, R., Hammond, K., Kozlovsky, J.: Knowledge-based information retrieval from semi-structured text. Working Notes from AAAI Fall Symposium on AI Applications in Knowledge Navigation and Retrieval (1995)Google Scholar
  15. 15.
    Goldberg, D., Nichols, D., Oki, B.M., Terry, D.: Using collaborative filtering to weave an information tapestry. Commun. ACM 35(12), 61–70 (1992)CrossRefGoogle Scholar
  16. 16.
    Godoy, D., Analía, A.: Personal Searcher: an intelligent agent for searching web pages. In: Advances in Artificial Intelligence, pp. 43–52. Springer, Berlin, Heidelberg (2000)CrossRefGoogle Scholar
  17. 17.
    Pazzani, M., Billsus, D.: Learning and revising user profiles: the identification of interesting web sites. Mach. Learn. 27(3), 313–331 (1997)CrossRefGoogle Scholar
  18. 18.
    Papadimitriou, D., Koutrika, G., Velegrakis, Y., Mylopoulos, J.: Finding related forum posts through content similarity over intention-based segmentation. Knowl. Data Eng. IEEE Trans. 29(9), 1860–1873 (2017)CrossRefGoogle Scholar
  19. 19.
    Kobayashi, M., Takeda, K.: Information retrieval on the web. ACM Comput. Surv. (CSUR) 32(2), 144–173 (2000)CrossRefGoogle Scholar
  20. 20.
    Lashkari, Y., Metral, M. Maes, P.: Collaborative interface agents. In: Proceedings of AAAI ‘94 Conference, Seattle, Washington, August 1994Google Scholar
  21. 21.
    Bhute, A.N., Bhute, H.A., Meshram, B.B.: Intelligent web agent for search engines. In: International Conference on Trends and Advances in Computation and Engineering, TRACE (2010)Google Scholar
  22. 22.
    Joachims, T., Freitag, D., Mitchell, T.: Webwatcher: a tour guide for the world wide web. IJCAI 1 (1997)Google Scholar
  23. 23.
    Mladenic, D., Browsing Assistant Personal Webwatcher. Machine learning used by Personal WebWatcher (1999)Google Scholar
  24. 24.
    Mladenic, D.: Personal WebWatcher: Implementation and Design, Technical Report IJS-DP-7472, Carnegie Mellon University, Pittsburgh (1996)Google Scholar
  25. 25.
    Godoy, D., Analía, A.: PersonalSearcher: an intelligent agent for searching web pages. Advanc. Artif. Intell. Springer, Berlin, Heidelberg, pp. 43–52 (2000)CrossRefGoogle Scholar
  26. 26.
    Sebastiani, Fabrizio: Machine learning in automated text categorization. ACM Comput. Surv. (CSUR) 34(1), 1–47 (2002)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Smyth, B., Paul, C.: Surfing the digital wave. In: International Conference on Case-Based Reasoning. Springer, Berlin, Heidelberg (1999)CrossRefGoogle Scholar
  28. 28.
    Schwartz, Candy: Web search engines. J. Am. Soc. Informat. Sci. 49(11), 973–982 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Amity UniversityLucknowIndia

Personalised recommendations