Advertisement

Top-k% Concept Stratagem for Classifying Semantic Web Services

  • Aradhana NegiEmail author
  • Parminder Kaur
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 989)

Abstract

Top-k processing methodology is very popular among query processing in relational databases. The high influence of Top-k processing has been manifested in numerous application domains and database-related research areas. In this paper, the Top-k processing methodology has been adopted for the classification of Semantic Web Services (SWSs). It introduces the definition of the foundational unit of the Concept-sense Knowledge Base (CSKb) and Top-k% concept stratagem for classifying services to predefined categories in CSKb. The Top-k% concept scheme is implemented on OWLS-TC V4 dataset. The outcomes of various performed experiments not only justify the implications of the introduced notion but also reveal the efficacy of classification time.

Keywords

Concept-sense knowledge base (CSKB) Service classification Service discovery Top-k% Semantic web services (SWSs) 

References

  1. 1.
    Büttcher, S., Clarke, C., Cormack, G.V.: Information Retrieval: Implementing and Evaluating Search Engines. MIT Press, Cambridge (2010)Google Scholar
  2. 2.
    Ilyas, F., Beskales, G., Soliman, M.A.: A survey of top-k query processing techniques in relational database systems. ACM Comput. Surv. 40(4), 11:1–11:58 (2008)CrossRefGoogle Scholar
  3. 3.
    Chen, L.J., Papakonstantinou, Y.: Supporting top-K keyword search in XML databases. In: Proceedings of International Conference on Data Engineering, pp. 689–700 (2010)Google Scholar
  4. 4.
    Jemima, D.D., Karpagam, G.R.: Conceptual framework for semantic web service composition. In: 2016 International Conference on Recent Trends in Information Technology (ICRTIT), pp. 1–6 (2016)Google Scholar
  5. 5.
    Otero-Cerdeira, L., Rodríguez-Martínez, F.J., Gómez-Rodríguez, A.: Ontology matching: a literature review. Expert Syst. Appl. 42(2), 949–971 (2015)CrossRefGoogle Scholar
  6. 6.
    Yang, J., Zhou, X.: Semi-automatic web service classification using machine learning. Int. J. Sci. Technol. 8(4), 339–348 (2015)Google Scholar
  7. 7.
    Corella, M., Castells, P.: A heuristic approach to semantic web services classification. Knowl.-Based Intell. Inf. Eng. Syst. 4253, 598–605 (2006)Google Scholar
  8. 8.
    Negi, A., Kaur, P.: Examination of sense significance in semantic web services discovery 771 (2019)Google Scholar
  9. 9.
    Wang, B., Yang, X.-C., Wang, G.-R.: Top-K keyword search for supporting semantics in relational databases. Ruan Jian Xue Bao/J. Softw. 19(9), 2362–2375 (2008)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Xu, Y., Ishikawa, Y., Guan, J.: Effective Top-k keyword search in relational databases considering query semantics. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 5731, 172–184 (2009)Google Scholar
  11. 11.
    Yang, Y., Tang, M., Zhong, Y., Zhang, Z., Guo, L.: An Effective top-k keyword search algorithm based on classified steiner tree. Web-Age Inf. Manag., 276–288 (2012)Google Scholar
  12. 12.
    Xu, Y., Guan, J., Li, F., Zhou, S.: Scalable continual top-k keyword search in relational databases. Data Knowl. Eng. 86, 206–223 (2013)CrossRefGoogle Scholar
  13. 13.
    Liu, D., Liu, G., Zhao, W., Hou, Y.: Top-k keyword search with recursive semantics in relational databases. Int. J. Comput. Sci. Eng. 14(4), 359 (2017)Google Scholar
  14. 14.
    Mavridou, E., Giannoutakis, K.M., Kehagias, D., Tzovaras, D., Hassapis, G.: Automatic categorization of web service elements. Int. J. Web Inf. Syst. 14(2), 233–258 (2018)Google Scholar
  15. 15.
    Liu, J., Tian, Z., Liu, P., Jiang, J., Li, Z.: An approach of semantic web service classification based on naive bayes. In: 2016 IEEE International Conference on Services Computing (SCC), pp. 356–362 ( 2016)Google Scholar
  16. 16.
    Liu, X., Agarwal, S., Ding, C., Yu, Q.: An LDA-SVM active learning framework for web service classification. In: 2016 IEEE International Conference on Web Services (ICWS), pp. 49–56 (2016)Google Scholar
  17. 17.
    Sharma, S., Lather, J.S., Dave, M., Sharma, B.S.: Semantic approach for web service classification using machine learning and measures of semantic relatedness. Serv. Oriented Comput. Appl. 10(3), 221–231 (2016)CrossRefGoogle Scholar
  18. 18.
    Kamath, S.S., Ananthanarayana, V.S.: Semantics-based web service classification using morphological analysis and ensemble learning techniques. Int. J. Data Sci. Anal. 2(1–2), 61–74 (2016)CrossRefGoogle Scholar
  19. 19.
    Nisa, R., Qamar, U.: A text mining based approach for web service classification. Inf. Syst. E-bus. Manag. 13(4), 751–768 (2015)CrossRefGoogle Scholar
  20. 20.
    Yuan-jie, L., Jian, C.: Web service classification based on automatic semantic annotation and ensemble learning. In: 2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops and PhD Forum, pp. 2274–2279 (2012)Google Scholar
  21. 21.
    Mohanty, R.: Classification of web services using bayesian network. J. Softw. Eng. Appl. 05(04), 291–296 (2012)CrossRefGoogle Scholar
  22. 22.
    Bennaceur, A., Johansson, R., Moschitti, A., Sykes, D., Spalazzese, R.: Machine learning for automatic classification of web service interface descriptions. Leveraging Appl. Form. Methods, Verif. Valid., 220–231 (2012)Google Scholar
  23. 23.
    Heß, A., Kushmerick, N.: Learning to Attach Semantic Metadata to Web Services, pp. 258–273. Springer, Berlin (2003)Google Scholar
  24. 24.
    Wu, H., Guo, C.: The research and implementation of web service classification and discovery based on semantic. Int. Conf. Comput. Support. Coop. Work Des., 381–385 (2011)Google Scholar
  25. 25.
    Farrag, T.A., Saleh, A.I., Ali, H.A.: ASWSC: automatic semantic web services classifier based on semantic relations. Int. Conf. Comput. Eng. Syst., 283–288 (2011)Google Scholar
  26. 26.
    Wang, Z., Xue, X.: Multi-class support vector machine. Support Vector Machines Applications, pp. 23–48. Springer International Publishing, Cham (2014)CrossRefGoogle Scholar
  27. 27.
    Sangers, J., Frasincar, F., Hogenboom, F., Chepegin, V.: Semantic Web service discovery using natural language processing techniques. Expert Syst. Appl. 40(11), 4660–4671 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Computer ScienceGuru Nanak Dev UniversityAmritsarIndia

Personalised recommendations