Advertisement

A Comparative Analysis of Transforms for Infrared and Visible Image Fusion

  • Apoorav Maulik SharmaEmail author
  • Renu Vig
  • Ayush Dogra
  • Bhawna Goyal
  • Sunil Agrawal
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 989)

Abstract

Image fusion is the art of combining two different images which are either captured on different times, using different sensors, from different focal points or from different modalities to fuse the best available within two into single one. The fusion of infrared and visible images has a widespread application in the field of military surveillance and night vision imaging technologies. The era of evolution of various transforms has led to the documentation of various efficient representational algorithms in literature, for instance, Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) for the fusion of images. It is clearly stated in the field of image fusion that high quality of source images largely affects the image fusion rate. Therefore, in this paper, we explore and compare various transform-based image fusion techniques for noisy visible and infrared images.

Keywords

Infrared Visible Multi-scale decomposition DCT Wavelet transform 

References

  1. 1.
    Ma, J., Ma, Y., Li, C.: Infrared and visible image fusion methods and applications: a survey. Inf. Fusion 45, 153–178 (2019)CrossRefGoogle Scholar
  2. 2.
    Li, S., Kang, X., Fang, L., Hu, J., Yin, H.: Pixel-level image fusion: A survey of the state of the art. Inf. Fusion 33, 100–112 (2017)CrossRefGoogle Scholar
  3. 3.
    James, A.P., Dasarathy, B.V.: Medical image fusion: A survey of the state of the art. Inf. Fusion 19, 4–19 (2014)CrossRefGoogle Scholar
  4. 4.
    Dogra, A., Goyal, B., Agrawal, S.: From multi-scale decomposition to non-multi-scale decomposition methods: a comprehensive survey of image fusion techniques and its applications. IEEE Access 5, 16040–16067 (2017)CrossRefGoogle Scholar
  5. 5.
    Waxman, A.M., Gove, A.N., Fay, D.A., Racamato, J.P., Carrick, J.E., Seibert, M.C., Savoye, E.D.: Color night vision: opponent processing in the fusion of visible and IR imagery. Neural Netw. 10(1), 1–6 (1997)Google Scholar
  6. 6.
    Toet, A.: Iterative guided image fusion. Peer J.Comput. Sci. 2, e80 (2016)CrossRefGoogle Scholar
  7. 7.
    Kumar, B.S.: Image fusion based on pixel significance using cross bilateral filter. SIViP 9(5), 1193–1204 (2014)CrossRefGoogle Scholar
  8. 8.
    Ghassemian, H.: A review of remote sensing image fusion methods, Inf. Fusion 32, 75–89 (2016)CrossRefGoogle Scholar
  9. 9.
    Dogra, A., Goyal, B., Agrawal, S., Ahuja, C.: K: Efficient fusion of osseous and vascular details in wavelet domain. Pattern Recogn. Lett. 94, 189–193 (2017)CrossRefGoogle Scholar
  10. 10.
    Dogra, A., Agrawal, S., Goyal, B., Khandelwal, N., Ahuja, C.K.: Color and grey scale fusion of osseous and vascular information. J. Comput. Sci. 17, 103–114 (2016)CrossRefGoogle Scholar
  11. 11.
    Dogra, A., Goyal, B., Agrawal, S.: Current and future orientation of anatomical and functional imaging modality fusion. Biomed. Pharmacol. J. 10(4), 1661–1663 (2017)CrossRefGoogle Scholar
  12. 12.
    Zheng, Y.: Image Fusion and its applications (2011)Google Scholar
  13. 13.
    Misiti, M., Misiti, Y., Oppenheim, G., Michel, J.P.: Wavelet toolbox: for use with MATLAB (1996)Google Scholar
  14. 14.
    Naidu, V.P.S.: Discrete cosine transform-based image fusion. Def. Sci. J. 60(1), 48–54 (2010)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kumar, B.S.: Multifocus and multispectral image fusion based on pixel significance using discrete cosine harmonic wavelet transform. SIViP 7(6), 1125–1143 (2013)CrossRefGoogle Scholar
  16. 16.
    Paramanandham, N., Rajendiran, K.: Infrared and visible image fusion using discrete cosine transform and swarm intelligence for surveillance applications. Infrared Phys. Technol. 88, 13–22 (2018)CrossRefGoogle Scholar
  17. 17.
    Jin, X., Jiang, Q., Yao, S., Zhou, D., Nie, R., Lee, S.J., He, K.: Infrared and visual image fusion method based on discrete cosine transform and local spatial frequency in discrete stationary wavelet transform domain. Infrared Phys. Technol. 88, 1–12 (2018)CrossRefGoogle Scholar
  18. 18.
    Kingsbury, N.: Rotation-invariant local feature matching with complex wavelets. In: 2006 14th European Signal Processing Conference, pp 1–5. IEEE (2006)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Apoorav Maulik Sharma
    • 1
    Email author
  • Renu Vig
    • 1
  • Ayush Dogra
    • 1
  • Bhawna Goyal
    • 1
  • Sunil Agrawal
    • 1
  1. 1.UIETPanjab UniversityChandigarhIndia

Personalised recommendations