Advertisement

Arsenic in Latin America: Part II

  • Marta I. Litter
  • María A. Armienta
  • Ruth E. Villanueva Estrada
  • Edda C. Villaamil Lepori
  • Valentina Olmos
Chapter

Abstract

Long-term exposure to As through drinking water is an important health problem in Latin America (LA), causing both carcinogenic and non-carcinogenic effects (McClintock TR, Chen Y, Bundschuh J, Oliver JT, Navoni J, Olmos V, Villaamil Lepori E, Ahsan H, Parvez F (2012) Arsenic exposure in latinamerica: biomarkers, risk assessments and related health effects. Sci Total Environ 429:76–91). This chapter reviews information on health effects conducted in LA. It is estimated that, in this region, 14 million people are chronically exposed to As through drinking water and food. Lung cancer is the most studied adverse effect of As exposure in LA, followed by skin lesions, bladder cancer, and the effects of early exposure to As. Studies on As exposure and cancer development are well described in Chile, Mexico, and Argentina. According to studies conducted mainly in Mexico, an association between As exposure and diabetes is reported.

Arsenic removal technologies investigated in LA over the last few decades rely on adaptation and improvement of methods involving simple physicochemical processes like adsorption, coagulation/precipitation, or ion exchange, all of them being more suitable for As(V) than for As(III) removal, which usually implies a preliminary oxidation step. However, new technologies are constantly under investigation, and several of them have been reported. For rural communities in LA, small-scale and household level, As removal systems are the only feasible short-term solution. Natural geological materials like iron oxides and hydroxides, calcite, clays, etc. can be used as effective, simple, and low-cost materials for As removal at the household level and for small communities. Natural organic materials are also the basis for suitable low-cost technologies. Sorption agents coming from plants and animal residues are also useful. Procedures using zerovalent iron from diverse materials are affordable and easy to operate and maintain. Other alternatives are capacitive deionization, phytoremediation, and constructed wetlands. An overview of the state of the art of technologies for As removal studied in LA will be given in this chapter.

Keywords

Arsenic removal technologies Biotransformation Cancer Diabetes Immunotoxicity 

Notes

Acknowledgment

This work was supported by Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) from Argentina under PICT-2015-0208 and by BioCriticalMetals – ERAMIN 2015 grants. We want to appreciate the support of Olivia Cruz, Alejandra Aguayo, Nora E. Ceniceros Bombela, and Blanca X. Felipe Martínez from the Geophysics Institute, UNAM, on the search of bibliographic information.

References

  1. Aballay LR, Díaz M d P, Francisca FM, Muñoz SE (2012) Cancer incidence and pattern of arsenic concentration in drinking water wells in Córdoba, Argentina. Int J Environ Health Res 22:220–231CrossRefGoogle Scholar
  2. Acuña-Piedra A, Araya-Obando A, Romero-Esquivel LG (2016) Selección teórica de adsorbentes potenciales naturales de bajo costo para la remoción de arsénico en el agua de consumo humano en Costa Rica (Potential natural low-cost adsorbents for the removal of arsenic in drinking water in Costa Rica). Tecnol Marcha 29:23–34CrossRefGoogle Scholar
  3. Adedge Water Technologies, LLC (2012) Arica Pago de Gomez, Chile – case study. http://www.siss.gob.cl/586/w3-article-9785.html. Accessed Sept 2018
  4. Agency for Toxic Substances and Disease Registry (ATSDR) (2013) Course: arsenic toxicity. Environmental Health and Medicine Education. https://www.atsdr.cdc.gov/csem/csem.asp?csem=1&po=1.1. Accessed Oct 2013
  5. Alarcón-Herrera M T, Flores Montenegro I, Sánchez I. (1999) Remoción de flúor y arsénico del agua potable por precipitación química. Cátedra del Medio Ambiente, Contribución a la Educación y la Protección Ambiental, La Habana, pp 168–172Google Scholar
  6. Alarcón-Herrera M T, Martín-Domínguez I R, Benavides Montoya A (2007) Wetlands for arsenic removal. In: WETPOL 2007 2nd International Symposium on Wetland Pollutant Dynamics and Control, TartuGoogle Scholar
  7. Alarcón-Herrera MT, Nuñez-Montoya OG, Melgoza-Castillo A, Royo-Márquez MH, Rodriguez Almeida FA (2009) Potential use of sedges (Cyperaceae) in arsenic phytoremediation. In: Bundschuh J, Armienta MA, Birkle P, Bhattacharya P, Matschullat J, Mukherjee AB (eds) Natural arsenic in groundwater of Latin America. CRC Press/Balkema Publisher, Leiden, pp 649–655Google Scholar
  8. Alarcón-Herrera MT, Bundschuh J, Nath B, Nicolli HB, Gutierrez M, Reyes-Gomez VM, Nunez D, Martín-Dominguez IR, Sracek O (2013) Co-occurrence of arsenic and fluoride in groundwater of semi-arid regions in Latin America: genesis, mobility and remediation. J Hazard Mater 262:960–969CrossRefGoogle Scholar
  9. Alarcón-Herrera MT, López Paraguay MZ, Martín Domínguez IR (2014a) Arsenic removal from groundwater using magnetic nanoparticles. In: Litter MI, Nicolli HB, Meichtry JM, Quici N, Bundschuh J, Bhattacharya P, Naidu R (eds) One century of the discovery of Arsenicosis in Latin America (1914–2014). CRC Press, London, pp 792–796CrossRefGoogle Scholar
  10. Alarcón-Herrera MT, Llorens i, Ribes E, Olmos-Márquez MA, Martín-Domínguez IR (2014b) Arsenic retention and distribution in treatment wetlands. In: Litter MI, Nicolli HB, Meichtry JM, Quici N, Bundschuh J, Bhattacharya P, Naidu R (eds) One century of the discovery of Arsenicosis in Latin America (1914–2014). CRC Press, London, pp 856–857CrossRefGoogle Scholar
  11. Alonso H (1992) Arsenic enrichment in superficial waters. II. Región Northern Chile. In: Sancha A (ed) Proceedings of the international seminar on arsenic in the environment and its incidence on health. Universidad de Chile, Santiago, pp 101–108Google Scholar
  12. Alvarado S, Guédez M, Marcó P L-M, Graterol N, Anzalone A, Arroyo CJ, Záray Gyula J (2008) Arsenic removal from waters by bioremediation with the aquatic plants Water Hyacinth (Eichhornia crassipes) and Lesser Duckweed (Lemna minor). Bioresour Technol 99:8436–8440CrossRefGoogle Scholar
  13. Alvarado-Rodríguez CE, Duarte Pérez R, Klapp-Escribano J, Romero Guzmán ET, de Marín Allende MJ (2012) Dispersion and sorption of Arsenic in a biofilter with a not living biomass (Eicchornia crassipes): comparison of experimental and numerical results. In: Klapp J, Cros A, Velasco Fuentes O, Stern C, Rodriguez Meza MA (eds) Experimental and theoretical advances in fluid dynamics. Springer, Berlin, pp 349–358CrossRefGoogle Scholar
  14. Alvarez J, Rosas L (1999) Adsorción de Arsénico Electrotratamiento, IPN Ciencia, Arte: Cultura, Enero-Febrero, Hemeroteca Virtual ANUIESGoogle Scholar
  15. Alvarez-Silva M, Uribe-Salas A, Nava-Alonso F, Pérez Garibay R (2009) Adsorption of As(V) onto goethite: experimental statistical optimization. In: Bundschuh J, Armienta MA, Birkle P, Bhattacharya P, Matschullat J, Mukherjee AB (eds) Natural arsenic in groundwater of Latin America. CRC Press/Balkema Publisher, Leiden, pp 527–534Google Scholar
  16. Araujo SF, Caldeira CL, Ciminelli VST, Silva A, Amorim CC (2018) Versatility of iron-rich steel waste for the removal of high arsenic and sulfate concentrations in water. Environ Sci Pollut Res.  https://doi.org/10.1007/s11356-018-3168-7CrossRefGoogle Scholar
  17. Armas A, Olivieri V, Mauricci JJ, Silva V (2014) Reduction of arsenic from groundwater by using a coupling of RO and processes. In: Litter MI, Nicolli HB, Meichtry JM, Quici N, Bundschuh J, Bhattacharya P, Naidu R (eds) One century of the discovery of arsenicosis in Latin America (1914–2014). CRC Press, London, pp 759–761CrossRefGoogle Scholar
  18. Armienta MA, Segovia N (2008) Arsenic and fluoride in the groundwater of Mexico. Environ Geochem Health 30:345–353CrossRefGoogle Scholar
  19. Armienta MA, Rodríguez CR, Ongley LK, Brust H, Morales F, Aguayo A, Cruz O, Ceniceros N (2007) Origin and fate of arsenic in a historic mining area of Mexico. In: Trace metals and other contaminants in the environment, vol 9. Elsevier, Amsterdam, pp 461–486Google Scholar
  20. Armienta MA, Micete S, Flores-Valverde E (2009) Feasibility of arsenic removal from contaminated water using indigenous limestone. In: Bundschuh J, Armienta MA, Birkle P, Bhattacharya P, Matschullat J, Mukherjee AB (eds) Natural arsenic in groundwater of Latin America. CRC Press/Balkema Publisher, Leiden, pp 505–510Google Scholar
  21. Armienta MA, Labastida I, Lara RH, Cruz O, Aguayo A, Ceniceros N (2016) Removal of arsenic from acid mine drainage by indigenous limestones. In: Bhattacharya P, Vahter M, Jarsijö J, Kumpiene J, Ahmad A, Sparrenborm C, Jacks G, Donselaar ME, Bundschuh J, Naidu R (eds) Arsenic research and global sustainability (As2016). CRC Press/Balkema, Taylor and Francis Group, London, pp 594–595CrossRefGoogle Scholar
  22. Arsenic in Nicaragua (n.d.) http://aquaclara.org/where-we-work/nicaragua/arsenic/. Accessed Aug 2018
  23. Arsénico en agua, informe del Grupo Ad-Hoc Arsénico en agua de la Red de Seguridad Alimentaria de CONICET (2018) https://rsa.conicet.gov.ar/wp-content/uploads/2018/08/Informe-Arsenico-en-agua-RSA.pdf. Accessed Nov 2018
  24. Avilés M, Pardón M (2000) Remoción de Arsénico de Agua Mediante Coagulación-Floculación a Nivel Domiciliario, Federación Mexicana de Ingeniería Sanitaria y Ciencias del Ambiente, FEMISCA, pp 1–10Google Scholar
  25. Ayerza A (1917) Noticias Universitarias en la Academia de Medicina. Premios del Centenario. Interesante disertación del Dr. Ayerza. La Prensa Médica Argentina N° 13. Buenos Aires, 10 de octubre de 1917, pp. 170–171Google Scholar
  26. Ayerza A (1918a) Arsenicismo regional endémico (keratodermia y melanodermia combinadas). Bol Acad Med 2(3):11–24Google Scholar
  27. Ayerza A (1918b) Arsenicismo regional endémico (keratodermia y melanodermia combinadas) (continuación). Bol Acad Med 2(3):41–55Google Scholar
  28. AySA (2014a) http://www.aysa.com.ar/index.php?id_seccion=562. Accessed June 2014.
  29. Bahr C, Ewy W (2014) Drinking water dearsenification with granular ferric hydroxide: comparison of field experience with waterworks units in Germany and POU units in Argentina. In: Litter MI, Nicolli HB, Meichtry JM, Quici N, Bundschuh J, Bhattacharya P, Naidu R (eds) One century of the Discovery of Arsenicosis in Latin America (1914–2014). CRC Press, London, pp 667–669CrossRefGoogle Scholar
  30. Bailey KA, Wu MC, Ward WO, Smeester L, Rager JE, García-Vargas G, Del Razo LM, Drobná Z, Stýblo M, Fry RC (2013) Arsenic and the epigenome: interindividual differences in arsenic metabolism related to distinct patterns of DNA methylation. J Biochem Mol Toxicol 27:106–115CrossRefGoogle Scholar
  31. Bailey KA, Laine J, Rager JE, Sebastian E, Olshan A, Smeester L, Drobná Z, Stýblo M, Rubio-Andrade M, García-Vargas G, Fry RC (2014) Prenatal arsenic exposure and shifts in the newborn proteome: interindividual differences in tumor necrosis factor (TNF)- responsive signaling. Toxicol Sci 139:328–337CrossRefGoogle Scholar
  32. Bailey KA, Smith AH, Tokar EJ, Graziano JH, Kim KW, Navasumrit P, Ruchirawat M, Thiantanawat A, Suk WA, Fry RC (2016) Mechanisms underlying latent disease risk associated with early-life arsenic exposure: current research trends and scientific gaps. Environ Health Perspect 124:170–175CrossRefGoogle Scholar
  33. Barahona J, González Z (1987) Estudio a nivel de planta piloto sobre abatimiento de arsénico del agua de Taltal. Proceedings VII Congreso Chileno de Ingeniería Sanitaria y Ambiental, pp 880–896Google Scholar
  34. Bardach AE, Ciapponi A, Soto N, Chaparro MR, Calderon M, Briatore A, Cadoppi N, Tassara R, Litter MI (2015) Epidemiology of chronic disease related to arsenic in Argentina: a systematic review. Sci Total Environ 538:802–816CrossRefGoogle Scholar
  35. Barrientos E, Matutes J, Miki M (2013) Arsenic removal from water using magnetic nanoparticles obtained by ACCVD. Momento, Rev Fís 46:28–37Google Scholar
  36. Bedolla L, Avilés M, Tirado L, Cortés J M C (1999) Remoción de arsénico del agua para consumo humano mediante coagulación-floculación a nivel domiciliario. Instituto Mexicano de Tecnología del Agua (IMTA), México, ReportGoogle Scholar
  37. Benavente M, Arévalo M, Martínez J (2006) Speciation and removal of Arsenic in column packed with chitosan, Water practice & technology, 1 IWA Publishing.  https://doi.org/10.2166/WPT.2006089
  38. Berardozzi E, Einschlag FSG (2017) Development of a water treatment plant for arsenic removal based on the zero-valent iron technology. In: Knežević R (ed) Arsenic: risks of exposure, behavior in the environment and toxicology. Nova Science Publishers, New York, pp 115–148Google Scholar
  39. Berardozzi E, Galindez JM, García Einschlag FS (2014) Effects of changes in operating conditions on the iron corrosion rate in zerovalent iron columns. In: Litter MI, Nicolli HB, Meichtry JM, Quici N, Bundschuh J, Bhattacharya P, Naidu R (eds) One century of the discovery of arsenicosis in Latin America (1914–2014). CRC Press, London, pp 675–677CrossRefGoogle Scholar
  40. Bobillo C, Navoni JA, Olmos V, Merini LJ, Villaamil Lepori E, Corach D (2014) Ethnic characterization of a population of children exposed to high doses of arsenic via drinking water and a possible correlation with metabolic processes. Int J Mol Epidemiol Genet 17:1–10Google Scholar
  41. Bolaños-Guerrón D R, Sánchez-Gómez V P, Paz J, Izquierdo A R, Stael C, Balseiro-Romero M (2018) Arsenic retention on technosols prepared with nanoparticles and ferric soil from mine drainage water. J Nanotechnol: 6840856, 8 pages.  https://doi.org/10.1155/2018/6840856.CrossRefGoogle Scholar
  42. Bonillas E (2012) Arsenic free in Argentina. https://sgc-wqpmag.s3.amazonaws.com/s3fs-public/14_app_adedge_0512WQP.pdf. Accessed Aug 2018
  43. Borneo G, Barrionuevo L (2014) Adsorption technology for removal of arsenic in water. In: Litter MI, Nicolli HB, Meichtry JM, Quici N, Bundschuh J, Bhattacharya P, Naidu R (eds) One century of the discovery of Arsenicosis in Latin America (1914–2014). CRC Press, London, pp 722–723CrossRefGoogle Scholar
  44. Botto IL, González MJ, Gazzolli D, Soto E (2013) Iron activation of natural aluminosilicates to remove arsenic from groundwater. J Environ Sci Eng A 2(12A):744–752Google Scholar
  45. Bundschuh J, Litter MI (2010) Opciones sustentables para resolver los problemas de arsénico en Iberoamérica. In: Litter MI, Bundschuh J (eds) Situación del arsénico en la Región Ibérica e Iberoamericana. Posibles acciones articuladas e integradas para el abatimiento del As en zonas aisladas. Editorial Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo, Buenos Aires, pp 37–54Google Scholar
  46. Bundschuh J, García M E, Alvarez M T (2007) Arsenic and heavy metal removal by phytofiltration and biogenic sulfide precipitation – a comparative study from Poopó Lake Basin, Bolivia. 3rd International Groundwater Conference IGC-2007, Water, Environment & Agriculture – Present Problems & Future Challenges, p 152Google Scholar
  47. Bundschuh J, García ME, Birkle P, Cumbal LH, Bhattacharya P, Matschullat J (2009) Occurrence, health effects and remediation of arsenic in groundwaters of Latin America. In: Bundschuh J, Armienta MA, Birkle P, Bhattacharya P, Matschullat J, Mukherjee AB (eds) Natural arsenic in groundwater of Latin America. CRC Press/Balkema Publisher, Leiden, pp 3–15Google Scholar
  48. Bundschuh J, Litter M, Ciminelli V, Morgada ME, Cornejo L, Garrido Hoyos S, Hoinkis J, Alarcón-Herrera MT, Armienta MA, Bhattacharya P (2010) Emerging mitigation needs and sustainable options for solving the arsenic problems of rural and isolated urban areas in Iberoamerica – a critical analysis. Water Res 44:5828–5845CrossRefGoogle Scholar
  49. Bundschuh J, Bhattacharya P, Sracek O, Mellano MF, Ramírez AE, Storniolo AdR, Martín RA, Cortés J, Litter MI, Jean J-S (2011) Arsenic removal from groundwater of the Chano-Pampean plain (Argentina) using natural geological materials as adsorbents. J Environ Sci Health Part A 46:1297–1310CrossRefGoogle Scholar
  50. Bundschuh J, Litter MI, Parvez F, Román-Ross G, Nicolli HB, Jiin-Shuh J, Chen-Wuing L, López D, Armienta MA, Guilherme LRG, Gomez Cuevas A, Cornejo L, Cumbal L, Toujaguez R (2012) One century of arsenic exposure in Latin America: a review of history and occurrence from 14 countries. Sci Tot Environ 429:2–35CrossRefGoogle Scholar
  51. Cabrera HN, Gómez ML (2003) Skin cancer induced by arsenic in the water. J Cutan Med Surg 2:106–111CrossRefGoogle Scholar
  52. Cáceres R, Aguirre L, Cáceres CX (2010) Experiencias de remoción of arsénico realizadas en Argentina por corrosión electroquímica de un lecho fijo of hierro. In: Litter MI, Sancha AM, Ingallinella AM (eds) Tecnologías económicas para el abatimiento de arsénico in aguas. Editorial Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo, Buenos Aires, pp 209–217Google Scholar
  53. Caetano ML, Ciminelli VST, Rocha SDF, Spitale MC, Caldeira CL (2009) Batch and continuous precipitation of scorodite from diluted industrial solutions. Hydrometallurgy 95:44–52CrossRefGoogle Scholar
  54. Calderón J, Navarro ME, Jimenez-Capdeville ME, Santos-Diaz MA, Golden A, Rodriguez-Leyva I, Borja-Aburto V, Díaz-Barriga F (2001) Exposure to arsenic and lead and neuropsychological development in Mexican children. Environ Res 85:69–76CrossRefGoogle Scholar
  55. Callegaro R, Deambrosis N, Cusimano N, Cotta E (1976) Arsénico, flúor y vanadio en aguas de bebida. Técnicas para corregir su exceso. XV Congreso de Ingeniería Sanitaria, Buenos AiresGoogle Scholar
  56. Camacho LM, Gutierrez M, Alarcón-Herrera MT, Villalba ML, Deng S (2011) Occurrence and treatment ofarsenic in groundwater and soil in northern Mexico and southwestern USA. Chemosphere 83:211–225CrossRefGoogle Scholar
  57. Cambero F A, Cohen L (2018) Chile’s Codelco receives approval for $1 billion desalination plant. https://www.reuters.com/article/us-chile-codelco/chiles-codelco-receives-approval-for-1-billion-desalination-plant-idUSKCN1GK26Y. Accessed Aug 2018
  58. Camerotto Andreani PA, Trinelli MA, Leal PR, Rodriguez AV, Rodriguez AI, Llano J, dos Santos Afonso M (2014) Adsorptive removal of arsenic from waters using natural and modified Argentine zeolites. In: Litter MI, Nicolli HB, Meichtry JM, Quici N, Bundschuh J, Bhattacharya P, Naidu R (eds) One century of the discovery of Arsenicosis in Latin America (1914–2014). CRC Press, London, pp 711–713CrossRefGoogle Scholar
  59. Cano-Aguilera AF, Aguilera-Alvarado AF, de la Rosa G, Fuentes Ramírez F, Cruz-Jiménez G, Gutiérrez-Valtierra M, Ramírez-Ramírez ML (2009) The use of iron-coated LECA for arsenic removal from aqueous solutions under batch and flow conditions. In: Bundschuh J, Armienta MA, Birkle P, Bhattacharya P, Matschullat J, Mukherjee AB (eds) Natural arsenic in groundwater of Latin America. CRC Press/Balkema Publisher, Leiden, pp 565–570Google Scholar
  60. Cardoso S, Grajeda C, Argueta S, Garrido S (2010) Experiencia satisfactoria para la remoción de arsénico en Mixco, Guatemala. In: Litter MI, Sancha AM, Ingallinella AM (eds) Tecnologías económicas para el abatimiento de arsénico en aguas. Editorial Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo, Buenos Aires, pp 179–189Google Scholar
  61. Carro Perez ME, Francisca FM (2013) Arsenic entrapment in reactive columns of residual soils. J Environ Eng 139:788–795CrossRefGoogle Scholar
  62. Castro de Esparza, M.L. 2004. Remoción del arsénico en el agua para bebida y biorremediación de suelos. Tercer Seminario Internacional sobre Evaluación y Manejo de las Fuentes de Agua de Bebida contaminadas con Arsénico. Santiago: Universidad de Chile, November 08–11. http://www.bvsde.paho.org/bvsacd/arsenico/Arsenic2004/theme1/Esparza2.pdf. Accessed Nov 2018
  63. Castro de Esparza ML (2006) Removal of arsenic from drinking water and soil bioremediation. In: International Congress Mexico City, Natural Arsenic in Groundwaters of Latin AmericaGoogle Scholar
  64. Castro de Esparza ML (2009) The presence of arsenic in drinking water in Latin America and its effect on public health. In: Bundschuh J, Armienta MA, Birkle P, Bhattacharya P, Matschullat J, Mukherjee AB (eds) Natural arsenic in groundwater of Latin America. CRC Press/Balkema Publisher, Leiden, pp 17–29Google Scholar
  65. Castro de Esparza ML (2010) Remoción de arsénico del agua de pozos de zonas rurales de Puno, Perú empleando ALUFLOC. In: Litter MI, Sancha AM, Ingallinella AM (eds) Tecnologías económicas para el abatimiento de arsénico en aguas. Editorial Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo, Buenos Aires, pp 243–255Google Scholar
  66. Cebrián ME, Albores A, Aguilar M, Blakely E (1983) Chronic arsenic poisoning in the north of Mexico. Hum Toxicol 2:121–133CrossRefGoogle Scholar
  67. Chávez Quijada ML, Miglio Toledo M (2011) Remoción de arsénico por oxidación solar en aguas para consumo humano. Rev Soc Quím Perú 77:307–314Google Scholar
  68. Círculo Médico del Rosario (1917) Sobre la nueva enfermedad descubierta en Bell Ville. Sesión extraordinaria del Círculo Médico del 15 de octubre de 1917. Rev Med de Rosario 7:485–489Google Scholar
  69. Claesson M, Fagerberg J (2003) Arsenic in groundwater of Santiago del Estero – Sources, Mobility Patterns and Remediation with Natural Materials. Master thesis, Department of Land and Water Resources Engineering, KTH, Stockholm, Sweden, TRITALWREX-03-05Google Scholar
  70. Código Alimentario Argentino (2012) Bebidas hídricas, aguas y aguas gasificadas. Capítulo XII. http://www.anmat.gov.ar/alimentos/codigoa/CAPITULO_XII.pdf. Accessed Jan 2018
  71. Cohen SM, Chowdhury A, Arnold LL (2016) Inorganic arsenic: a non-genotoxic carcinogen. J Environ Sci 49:28–37CrossRefGoogle Scholar
  72. Córdova-Villegas LG, Alarcón-Herrera MT (2014) Use of heterogeneous photocatalysis in water for arsenic removal and disinfection. In: Litter MI, Nicolli HB, Meichtry JM, Quici N, Bundschuh J, Bhattacharya P, Naidu R (eds) One century of the discovery of Arsenicosis in Latin America (1914–2014). CRC Press, London, pp 844–846CrossRefGoogle Scholar
  73. Cornejo L, Mansilla HD, Arenas MJ, Flores M, Flores V, Figueroa L, Yañez J (2004) Removal of arsenic from water of Río Camarones, Arica, Chile, using the modified SORAS technology. In: Litter MI, Jiménez González A (eds) Advances in economic solar technologies for disinfection, decontamination, and removal of arsenic from water of rural communities of Latin America, OAS AE 141 Project. Digital Graphic Publisher, La Plata, pp 84–97Google Scholar
  74. Cornejo L, Lienqueo H, Arenas M, Acarapi J, Mansilla H, Yañez J (2006a) Remoción de arsénico de aguas naturales del río de Camarones y su utilización para consumo humano, mediante la tecnología SORAS Modificada-Hierro Cero (Removal of arsenic from natural waters of the Camarones River and their use for human consumption by the modified SORAS – zerovalent iron technology). In: Litter MI (ed) Resultados finales del Proyecto OEA/AE141: investigación, desarrollo, validación y aplicación de tecnologías solares para la potabilización de agua en zonas rurales aisladas de América Latina y el Caribe. Editorial OEA, Buenos Aires, pp 139–157Google Scholar
  75. Cornejo L, Lienqueo H, Arenas M, Acarapi J, Mansilla H, Yañez J (2006b) Transferencia de la metodología SORAS Modificada – Hierro Cero a los poblados que carecen de agua potable de la Comuna de Camarones, Arica, Chile (Transference of the modified SORAS – zerovalent iron methodology to communities that lack drinking water in the Commune of Camarones, Arica, Chile). In: Litter MI (ed) Resultados finales del Proyecto OEA/AE141: investigación, desarrollo, validación y aplicación de tecnologías solares para la potabilización de agua en zonas rurales aisladas de América Latina y el Caribe. Editorial OEA, Buenos Aires, pp 159–198Google Scholar
  76. Cornejo L, Lienqueo H, Arenas M, Acarapi J, Contreras D, Yáñez J, Mansilla HD (2008) In field arsenic removal from natural water by zero valent iron. Environ Poll 156:827–831CrossRefGoogle Scholar
  77. Cornejo L, Acarapi J, Lienqueo H, Arenas M (2010) Métodos solares. Tecnología Hierro Cero para la remoción de arsénico en aguas naturales con altos niveles de salinidad. Experiencias en implementación y transferencia tecnológica comunidades rurales del norte de Chile. In: Litter MI, Sancha AM, Ingallinella AM (eds) Tecnologías económicas para el abatimiento de arsénico en aguas. Editorial Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo, Buenos Aires, pp 229–241Google Scholar
  78. Coronado-González JA, Del Razo LM, García-Vargas G, Sanmiguel-Salazar F, Escobedo-de la Peña J (2007) Inorganic arsenic exposure and type 2 diabetes mellitus in Mexico. Environ Res 104:383–389CrossRefGoogle Scholar
  79. Cortina JL, Litter MI, Gibert O, Valderrama C, Sancha AM, Garrido S, Ciminelli VST (2016) Latin American experiences in arsenic removal from drinking water and mining effluents. In: Kabay N, Bryjak M (eds) Innovative materials and methods for water treatment-separation of Cr and As. CRC-Taylor & Francis, Boca Raton, pp 391–416Google Scholar
  80. Cumbal LH (2004) Polymer-supported hydrated ferric oxide nanoparticles: characterization and environmental applications. Lehigh University, BethlehemGoogle Scholar
  81. Cumbal Flores L, Zúñiga Salazar M (2010) Quitosano impregnado con partículas de óxido de hierro: un biosorbente que remueve selectivamente arsénico de aguas. In: Litter MI, Sancha AM, Ingallinella AM (eds) Tecnologías económicas para el abatimiento de arsénico en aguas. Editorial Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo, Buenos Aires, pp 269–289Google Scholar
  82. Cumbal L, Sengupta AK (2005) Arsenic removal using polymer-supported hydrated iron(III) oxide nanoparticles: role of Donnan membrane effect. Environ Sci Technol 39:6508–6515CrossRefGoogle Scholar
  83. Cumbal LH, Sengupta AK (2009) Polymer-supported Fe(III) oxide particles: an arsenic-selective sorbent. In: Bundschuh J, Armienta MA, Birkle P, Bhattacharya P, Matschullat J, Mukherjee AB (eds) Natural arsenic in groundwater of Latin America. CRC Press/Balkema Publisher, Leiden, pp 571–580Google Scholar
  84. Cumbal L, Shengheng H (2014) Robust and reusable hybrid nanosorbent to mitigate arsenic crisis: from laboratory to masses in the field. In: Litter MI, Nicolli HB, Meichtry JM, Quici N, Bundschuh J, Bhattacharya P, Naidu R (eds) One century of the discovery of Arsenicosis in Latin America (1914–2014). CRC Press, London, pp 797–800CrossRefGoogle Scholar
  85. Cumbal L, Greenleaf J, Leun D, SenGupta AK (2003) Polymer supported inorganic nanoparticles: characterization and environmental applications. React Funct Polym 54:167–180CrossRefGoogle Scholar
  86. Currier JM, Ishida MC, González-Horta C, Sánchez-Ramírez B, Ballinas-Casarrubias L, Gutiérrez-Torres DS, Hernández Cerón R, Viniegra Morales D, Baeza Terrazas FA, Del Razo LM, García-Vargas GG, Saunders RJ, Drobná Z, Fry RC, Matoušek T, Buse JB, Mendez MA, Loomis D, Stýblo M (2014) Associations between arsenic species in exfoliated urothelial cells and prevalence of diabetes among residents of Chihuahua, Mexico. Environ Health Perspect 122:1088–1094CrossRefGoogle Scholar
  87. Czerniczyniec M, Farías S, Magallanes J, Cicerone D (2007) Arsenic (V) Adsorption onto biogenic hydroxyapatite: solution composition effects. Water Air Soil Pollut 180:75–82CrossRefGoogle Scholar
  88. D’Ambrosio C (2005) Evaluación y selección de tecnologías disponibles para remoción de arsénico. In: Galindo G, Fernández Turiel JL, Parada MA, Torrente DG (eds) Arsénico en aguas: origen movilidad y tratamiento. Taller II Seminario Hispano-Latinoamericano sobre temas actuales de hidrología subterránea-IV Congreso Hidrogeológico Argentino. Río Cuarto, pp. 28–38Google Scholar
  89. d’Hiriart J, Hidalgo MV, García, Litter MI, Blesa MA (2009) Arsenic removal by solar oxidation in groundwater of Los Pereyra, Tucumán province, Argentina. In: Bundschuh J, Armienta MA, Birkle P, Bhattacharya P, Matschullat J, Mukherjee AB (eds) Natural arsenic in groundwater of Latin America. CRC Press/Balkema Publisher, Leiden, pp 615–624Google Scholar
  90. Danil de Namor AF, Cartwright JR, Abou Hamdan W, Webb OA, Al Hakawati N, Valiente L, Korfali S (2014) From a modified naturally occurring material to the design of novel receptors for the removal of arsenic from water. In: Litter MI, Nicolli HB, Meichtry JM, Quici N, Bundschuh J, Bhattacharya P, Naidu R (eds) One century of the discovery of Arsenicosis in Latin America (1914–2014). CRC Press, London, pp 787–791CrossRefGoogle Scholar
  91. Dauphiné DC, Ferreccio C, Guntur S, Yuan Y, Hammond SK, Balmes J, Smith AH, Steinmaus C (2011) Lung function in adults following in utero and childhood exposure to arsenic in drinking water: preliminary findings. Int Arch Occup Environ Health 84:591–600CrossRefGoogle Scholar
  92. De Carvalho F, Masetto N, Lima A, Arbelaez J, Ramos RG, Avalos C (2014) Arsenic removal enhanced by the use of ultrafiltration. In: Litter MI, Nicolli HB, Meichtry JM, Quici N, Bundschuh J, Bhattacharya P, Naidu R (eds) One century of the discovery of Arsenicosis in Latin America (1914–2014). CRC Press, London, pp 775–777CrossRefGoogle Scholar
  93. de la Fuente L, Soria MC, Blesa MA, Litter MI (2006) Acciones de difusión del Proyecto OEA/AE/141, Tecnologías económicas para la desinfección y descontaminación de aguas en zonas rurales de América Latina. In: Litter MI (ed) Resultados finales del Proyecto OEA/AE141: investigación, desarrollo, validación y aplicación de tecnologías solares para la potabilización de agua en zonas rurales aisladas de América Latina y el Caribe. Editorial OEA, Buenos Aires, pp 379–409Google Scholar
  94. de la Rosa R, Steinmaus C, Akers NK, Conde L, Ferreccio C, Kalman D, Zhang KR, Skibola CF, Smith AH, Zhang L, Smith MT (2017) Associations between arsenic (+3 oxidation state) methyltransferase (AS3MT) and N-6 adenine-specific DNA methyltransferase 1 (N6AMT1) polymorphisms, arsenic metabolism, and cancer risk in a Chilean population. Environ Mol Mutagen 58:411–422CrossRefGoogle Scholar
  95. de Mello JWV, Gasparon M, Silva J (2014) Treatment of As contaminated water from mining industry by precipitation of Al-Fe (hydr)oxides. In: Litter MI, Nicolli HB, Meichtry JM, Quici N, Bundschuh J, Bhattacharya P, Naidu R (eds) One century of the discovery of Arsenicosis in Latin America (1914–2014). CRC Press, London, pp 678–680CrossRefGoogle Scholar
  96. de Souza TD, Carraro Borges A, Teixeira de Matos A, Veloso RW, Fernandes Braga A (2018) Kinetics of arsenic absorption by the species Eichhornia crassipes and Lemna valdiviana under optimized conditions. Chemosphere 209:866–874CrossRefGoogle Scholar
  97. Del Razo LM, García-Vargas GG, Valenzuela OL, Castellanos EH, Sánchez-Peña LC, Currier JM, Drobná Z, Loomis D, Stýblo M (2011) Exposure to arsenic in drinking water is associated with increased prevalence of diabetes: a cross-sectional study in the Zimapán and Lagunera regions in Mexico. Environ Health 10:73.  https://doi.org/10.1186/1476-069X-10-73CrossRefGoogle Scholar
  98. Deschamps E, Ciminelli VST, Weidler PG, Ramos AY (2003) Arsenic sorption onto soils enriched in Mn and Fe minerals. Clays Clay Miner 51:197–204CrossRefGoogle Scholar
  99. Deschamps E, Ciminelli VST, Höll W (2005) Removal of As(III) and As(V) from water using a natural Fe and Mn enriched sample. Water Res 39:5212–5220CrossRefGoogle Scholar
  100. Dias A, Sá RG, Spitale MC, Athayde M, Ciminelli VST (2008) Microwave-hydrothermal synthesis of nanostructured Na-birnessites and phase transformation by arsenic(III) oxidation. Mater Res Bull 43:1528–1538CrossRefGoogle Scholar
  101. Dodero E, Pirosky A, Guberman J, Martínez L, Tarquini G (1978) Tratamiento por ósmosis inversa de aguas con alto contenido de arsénico y fluor. XVI Congreso Interamericano de Ingeniería Sanitaria y Ambiental, Santo DomingoGoogle Scholar
  102. Duarte G, Ciminelli V, Gasparon M, Mello JWV (2012) Evaluation of 10 years stability of concentrated arsenic-sulfide tailings. In: Ng JC, Noller BN, Naidu R, Bundschuh J, Bhattacharya P (eds) Understanding the Geological and Medical Interface of Arsenic. Taylor and Francis Group, London, pp 423–425Google Scholar
  103. Einschlag FSG, Triszcz JM (2008) Arsenic removal in continuous systems using zero – valent iron fixed beds. In: Masotti A (ed) Arsenic: sources, toxicity and environmental impact. Nova Science Publishers, New York, pp 305–324Google Scholar
  104. Elizalde-González MP, Mattusch J, Einicke W-D, Wennrich R (2001) Sorption on natural solids for arsenic removal. Chem Eng J 81:187–195CrossRefGoogle Scholar
  105. Engström K, Vahter M, Mlakar SJ, Concha G, Nermell B, Raqib R, Cardozo A, Broberg K (2011) Polymorphisms in arsenic (+III oxidation state) methyltransferase (AS3MT) predict gene expression of AS3MT as well as arsenic metabolism. Environ Health Perspect 119:182–188CrossRefGoogle Scholar
  106. Engström K, Wojdacz TK, Marabita F, Ewels P, Käller M, Vezzi F, Prezza N, Gruselius J, Vahter M, Broberg K (2017) Transcriptomics and methylomics of CD4-positive T cells in arsenic-exposed women. Arch Toxicol 91:2067–2078CrossRefGoogle Scholar
  107. Escalera R, Ormachea OA (2012a) Solar oxidation and removal of arsenic from groundwater utilizing a semicircular section Tubular Photoreactor. J Environ Sci Eng A 1:1071–1082Google Scholar
  108. Escalera CR, Ormachea OA (2012b) Solar oxidation and removal of arsenic from groundwater utilizing a semicircular section tubular photoreactor. J Environ Sci Eng A1:1071–1082Google Scholar
  109. Escalera Vásquez R (2016) Remoción de arsénico en aguas subterráneas con bajas concentraciones de hierro mediante microfiltros comerciales. Investig Desarro 16:39–48CrossRefGoogle Scholar
  110. Escalera Vásquez R, Ormachea M, Ormachea O, Heredia M (2014) Presencia de arsénico en aguas de pozos profundos y su remoción usando un prototipo piloto basado en colectores solares de bajo costo. Investig Desarro 14:83–91CrossRefGoogle Scholar
  111. Escudero LB, Castro Grijalba A, Wuilloud RG (2014) Removal of arsenic using a phosphonium ionic liquid impregnated-resin. In: Litter MI, Nicolli HB, Meichtry JM, Quici N, Bundschuh J, Bhattacharya P, Naidu R (eds) One century of the discovery of Arsenicosis in Latin America (1914–2014). CRC Press, London, pp 740–741Google Scholar
  112. Esparza M L (1996) Abatimiento de Arsénico en Aguas Subterráneas para zonas rurales. Experiencias del CEPIS en Salta y Tucumán. Seminario Potabilización de Aguas con Arsénico y Flúor. AIDIS-CórdobaGoogle Scholar
  113. Esparza M L, Wong M (1998) Abatimiento de Arsénico en Aguas Subterráneas para Zonas Rurales, CEPIS. Congreso Interamericano de Ingeniería Sanitaria y AmbientalGoogle Scholar
  114. Esper J A M M, Amaral R D, Ciminelli V S T (2007) Cover design performance at a Kinross gold mine in Brazil. In: XXII Encontro Nacional de Tratamento de Minérios e Metalurgia Extrativa, Proceedings VII Meeting of the Southern Hemisphere on Mineral Technology, Ouro Preto, Vol. II, Ouro Preto, p 607–612Google Scholar
  115. Fernández RG, Petrusevski B, Schippers J, Sharma S (2009a) Arsenic removal from groundwater using ferric chloride and direct filtration. In: Bundschuh J, Armienta MA, Birkle P, Bhattacharya P, Matschullat J, Mukherjee AB (eds) Natural arsenic in groundwater of Latin America. CRC Press/Balkema Publisher, Leiden, pp 555–564Google Scholar
  116. Fernández RG, Ingallinella AM, Stecca LM (2009b) Arsenic removal from groundwater by coagulation with polyaluminum chloride and double filtration. In: Bundschuh J, Armienta MA, Birkle P, Bhattacharya P, Matschullat J, Mukherjee AB (eds) Natural arsenic in groundwater of Latin America. CRC Press/Balkema Publisher, Leiden, pp 589–594Google Scholar
  117. Fernández MI, López JF, Vivaldi B, Coz F (2012) Long-term impact of arsenic in drinking water on bladder cancer health care and mortality rates 20 years after end of exposure. J Urol 187:856–861CrossRefGoogle Scholar
  118. Ferreccio C, Sancha AM (2006) Arsenic exposure and its impact on health in Chile. J Health Popul Nutr 24:164–175Google Scholar
  119. Ferreccio C, Gonzalez C, Milosavjlevic V, Marshall G, Sancha AM (1998) Lung cancer and arsenic exposure in drinking water: a case-control study in northern Chile. Cad Saúde Pública 14(Suppl 3):S193–S198CrossRefGoogle Scholar
  120. Ferreccio C, González C, Milosavjlevic V, Marshall G, Sancha AM, Smith AH (2000) Lung cancer and arsenic concentrations in drinking water in Chile. Epidemiology 11:673–679CrossRefGoogle Scholar
  121. Ferreccio C, Yuan Y, Calle J, Benitez H, Parra RL, Acevedo J, Smith AH, Liaw J, Steinmaus C (2013a) Arsenic, tobacco smoke, and occupation associations of multiple agents with lung and bladder cancer. Epidemiology 24:898–905CrossRefGoogle Scholar
  122. Ferreccio C, Smith AH, Durán V, Barlaro T, Benítez H, Valdés R, Aguirre JJ, Moore LE, Acevedo J, Vásquez MI, Pérez L, Yuan Y, Liaw J, Cantor KP, Steinmaus C (2013b) Case-control study of arsenic in drinking water and kidney cancer in uniquely exposed Northern Chile. Am J Epidemiol 178:813–818CrossRefGoogle Scholar
  123. Ferreira FAG, Franco MW, De Oliveira DM, Magalhães SMS, Rodrigues Barbosa FA (2018) Arsenic tolerance of Microcystis novacekii and its arsenic decontamination potential. Braz Arch Biol Technol 61:e18160644.  https://doi.org/10.1590/1678-4324-2018160644CrossRefGoogle Scholar
  124. Figueroa ME, Montes F (1995) Remoción de arsénico por coagulación química. Departamento de Los Andes, Dirección General de Obras Sanitarias, SaltaGoogle Scholar
  125. Flora SJS (2015) Arsenic: chemistry, occurrence and exposure. Handbook of arsenic toxicology. Academic, London, pp 1–49CrossRefGoogle Scholar
  126. Flóres-Montenegro I (1998) Evaluación de las concentraciones de flúor y arsénico en el agua del valle del Guadiana: alternativas de remoción. Master of Science thesis, Instituto Tecnológico de Durango, Química y Bioquímica, DurangoGoogle Scholar
  127. Fostier AH, Pereira MDSS, Rath S, Guimarães JR (2008) Arsenic removal from water employing heterogeneous photocatalysis with TiO2 immobilized in PET bottles. Chemosphere 72:319–324CrossRefGoogle Scholar
  128. Francisca FM, Carro Perez ME, Krapp A, Panique Lazcano DR (2014) Adsorptive filter for removal of arsenic from drinking water. In: Litter MI, Nicolli HB, Meichtry JM, Quici N, Bundschuh J, Bhattacharya P, Naidu R (eds) One century of the discovery of arsenicosis in Latin America (1914–2014). CRC Press, London, pp 708–710CrossRefGoogle Scholar
  129. Frangie MS, Hernández A, Orsini MP (2014) Intervention model on removal of arsenic from drinking water. In: Litter MI, Nicolli HB, Meichtry JM, Quici N, Bundschuh J, Bhattacharya P, Naidu R (eds) One century of the discovery of Arsenicosis in Latin America (1914–2014). CRC Press, London, pp 894–896CrossRefGoogle Scholar
  130. Fu S, Wu J, Li Y, Liu Y, Gao Y, Yao F, Qiu C, Song L, Wu Y, Liao Y, Sun D (2014) Urinary arsenic metabolism in a Western Chinese population exposed to high-dose inorganic arsenic in drinking water: influence of ethnicity and genetic polymorphisms. Toxicol Appl Pharmacol 274:117–123CrossRefGoogle Scholar
  131. Fuentealba C (2003) Planta piloto para remover arsénico en una fuente subterránea de agua potable. Facultad de Ciencias Físicas y Matemáticas, Universidad de ChileGoogle Scholar
  132. Gamboa-Loira B, Hernández-Alcaraz C, Gandolfi AJ, Cebrián ME, Burguete-García A, García-Martínez A, López-Carrillo L (2018) Arsenic methylation capacity in relation to nutrient intake and genetic polymorphisms in one-carbon metabolism. Environ Res 164:18–23CrossRefGoogle Scholar
  133. Garcés Mendoza ID, Vaca Mier M, López Callejas R (2014) Evaluation of arsenic removal process in water using zerovalent iron oxidation. In: Litter MI, Nicolli HB, Meichtry JM, Quici N, Bundschuh J, Bhattacharya P, Naidu R (eds) One century of the discovery of Arsenicosis in Latin America (1914–2014). CRC Press, London, pp 662–663CrossRefGoogle Scholar
  134. García MG, Hidalgo MV, Litter MI, Blesa MA (2003) Remoción de As mediante el método RAOS en Los Pereyra, Provincia de Tucumán, Argentina (As removal by SORAS in Los Pereyra, Province of Tucumán, Argentina). In: Litter MI, Mansilla H (eds) Arsenic removal assisted by solar light in rural communities of Latin America, OAS Project AE/141. Digital Grafic, La Plata, pp 9–33Google Scholar
  135. García MG, D'Hiriart J, Giullitti J, Lin H, Custo G, Hidalgo MV, Litter MI, Blesa MA (2004a) Solar light induced removal of arsenic from contaminated groundwater: the interplay of solar energy and chemical variables. Sol Energy 77:601–613CrossRefGoogle Scholar
  136. García MG, Lin HJ, Custo G, d’Hiriart J, Hidalgo MV, Litter MI, Blesa MA (2004b) Avances en remoción de arsénico por oxidación solar en aguas de Tucumán, Argentina (Advances in arsenic removal by solar oxidation from water of Tucumán, Argentina). In: Litter MI, Jiménez-González A (eds) Advances in economic solar technologies for disinfection, decontamination, and removal of Arsenic from Water of Rural Communities of Latin America. Digital Graphic Publisher, La Plata, pp 43–63Google Scholar
  137. García JI, Boeykens S, Saralegui A, Gobbi A, Fernandez C, Ozols A (2014) Arsenic removal feasibility from aqueous solutions using shells and bone derivatives as adsorbents: a preliminary study. In: Litter MI, Nicolli HB, Meichtry JM, Quici N, Bundschuh J, Bhattacharya P, Naidu R (eds) One century of the discovery of Arsenicosis in Latin America (1914–2014). CRC Press, London, pp 738–739CrossRefGoogle Scholar
  138. Garrido S, Avilés M (2008) Análisis de la información técnica y evaluación del funcionamiento de la planta para remoción de arsénico, Mixco, Guatemala, Final report. Instituto Mexicano de Tecnología del Agua, JiutepecGoogle Scholar
  139. Garrido Hoyos SE, Avilés Flores M, Pargaru I, Santos de La Paz J, Segura Beltrán N, Narváez YG, Ortiz F (2010) México: Método electroquímico. In: Litter MI, Sancha AM, Ingallinella AM (eds) Tecnologías económicas para el abatimiento de arsénico en aguas. Editorial Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo, Buenos Aires, pp 257–267Google Scholar
  140. Garrido Hoyos S, Avilés Flores M, Ramírez Gonzalez A, Grajeda Fajardo C, Cardoso Zoloeta S, Velásquez Orozco H (2013) Comparing two operating configurations in a full-scale arsenic removal plant: case study Guatemala. Water 5:834–851CrossRefGoogle Scholar
  141. Garrido SE, Romero L (2014) Synthesis of adsorbents with iron oxide and hydroxide contents for the removal of arsenic from water for human consumption. In: Litter MI, Nicolli HB, Meichtry JM, Quici N, Bundschuh J, Bhattacharya P, Naidu R (eds) One century of the discovery of Arsenicosis in Latin America (1914–2014). CRC Press, London, pp 693–695CrossRefGoogle Scholar
  142. Garrido S, Avilés M, Ramírez A, Calderón C, Ramírez-Orozco A, Nieto A, Shelp G, Seed L, Cebrián M, Vera E (2009) Arsenic removal from water of Hualtla, Morelos, Mexico using a capacitive deionization. In: Bundschuh J, Armienta MA, Birkle P, Bhattacharya P, Matschullat J, Mukherjee AB (eds) Natural arsenic in groundwater of Latin America. CRC Press/Balkema Publisher, Leiden, pp 665–679Google Scholar
  143. Garrido S, Piña M, López I, De La OD, Rodríguez R (2013) Behavior of two filter media for to remove arsenic from drinking water. The Filtration Society. Int J Filtrat Separ 13:21–26Google Scholar
  144. Gelover S, Leal Ascencio MT, Tonnerieux JB (2006) Implementación de la remoción de arsénico por oxidación solar en México. In: Litter MI (ed) Resultados finales del Proyecto OEA/AE141: investigación, desarrollo, validación y aplicación de tecnologías solares para la potabilización de agua en zonas rurales aisladas de América Latina y el Caribe. Editorial OEA, Buenos Aires, pp 243–277Google Scholar
  145. Giménez MC, Pellizzari EE (2014) Arsenic decrease using Pseudomonas aeruginosa on mineral matrix for bioremediation. In: Litter MI, Nicolli HB, Meichtry JM, Quici N, Bundschuh J, Bhattacharya P, Naidu R (eds) One century of the discovery of Arsenicosis in Latin America (1914–2014). CRC Press, London, pp 762–763Google Scholar
  146. Giménez MC, Varela NM, Blanes PS (2016) Bioadsorption studies of arsenate from aqueous solutions using chitosan. In: Bhattacharya P, Vahter M, Jarsijö J, Kumpiene J, Ahmad A, Sparrenborm C, Jacks G, Donselaar ME, Bundschuh J, Naidu R (eds) Arsenic research and global sustainability (As2016). CRC Press/Balkema, Taylor and Francis Group, London, pp 474–475CrossRefGoogle Scholar
  147. Global Water Intelligence (2011) Water for mining. Opportunities in scarcity and environmental regulation. A Global Water Intelligence publication. Water management and technologies. Water supply, treatment and reuse in mines, pp 64–65. https://www.globalwaterintel.com/client_media/uploaded/Water%20for%20Mining/GWI_Water_for_Mining_sample_pages-.pdf. Accessed Oct 2018
  148. Gómez V, Garrido SE (2014) Removal of arsenic from water for human consumption using a bioadsorbent obtained from orange wastes. In: Litter MI, Nicolli HB, Meichtry JM, Quici N, Bundschuh J, Bhattacharya P, Naidu R (eds) One century of the discovery of Arsenicosis in Latin America (1914–2014). CRC Press, London, pp 735–737CrossRefGoogle Scholar
  149. Gonzalez K (1997) Alternativas de remoción de arsénico desde fuentes de agua potable en la II Región Antofagasta y costos asociados. Dissertation, Facultad de Ciencias Físicas y Matemáticas, Universidad de ChileGoogle Scholar
  150. González MJ (2015) Desarrollo de adsorbentes a partir de especies minerales para eliminación de contaminantes inorgánicos. Tesis doctoral. Facultad de Ciencias Exactas, Universidad Nacional de La PlataGoogle Scholar
  151. González A, Ingallinella AM, Pacini V, Fernández R, Sanguinetti G, Quevedo H (2014a) Remoción de arsénico (As) y fluoruros (F-) en aguas subterráneas mediante coagulación, adsorción y doble filtración. Cuad CURIHAM 20:59–72Google Scholar
  152. González A, Ingallinella AM, Sanguinetti GS, Pacini VA, Fernández RG, Quevedo H (2014b) Enhancing arsenic removal by means of coagulation—adsorption—filtration processes from groundwater containing phosphates. In: Litter MI, Nicolli HB, Meichtry JM, Quici N, Bundschuh J, Bhattacharya P, Naidu R (eds) One century of the discovery of Arsenicosis in Latin America (1914–2014). CRC Press, London, pp 705–707CrossRefGoogle Scholar
  153. González A, Ingallinella AM, Sanguinetti GS, Quevedo H, Pacini VA, Fernández RG (2016) Influence of silica on arsenic removal from groundwater by coagulation, adsorption and filtration. In: Bhattacharya P, Vahter M, Jarsijö J, Kumpiene J, Ahmad A, Sparrenborm C, Jacks G, Donselaar ME, Bundschuh J, Naidu R (eds) Arsenic research and global sustainability (As2016). CRC Press/Balkema, Taylor and Francis Group, London, pp 486–488CrossRefGoogle Scholar
  154. González-Acevedo ZI, Cano-Aguilera I, Aguilera-Alvarado AF (2005) Removal and recovery of arsenic from aqueous solutions bysorghum biomass In Bundschuh J, Bhattacharya P, Chadraseharam D (eds) Natural arsenic in groundwater: occurrence, remediation and management. 32nd international geological congress, Florence, Italy, Taylor and Francis/Balkema, Leiden, pp 255–261.Google Scholar
  155. Graieb OJ, Lujan JC (2014) Arsenic reduction levels in drinking water using granular ferric hydroxide oxide. In: Litter MI, Nicolli HB, Meichtry JM, Quici N, Bundschuh J, Bhattacharya P, Naidu R (eds) One century of the discovery of Arsenicosis in Latin America (1914–2014). CRC Press, London, pp 673–674CrossRefGoogle Scholar
  156. Granada J, Cerda W, Godoy D (2003) ESSAN: El camino para reducir notoriamente el arsénico en el agua potable. Rev AIDIS-Chile 34:44–49Google Scholar
  157. GTWE German Technology for Water and Energy (n.d.) http://www.gtwe-nu.com/costa-rica-gtwe-installs-filter-for-arsenic-removal-from-drinking-water/. Accessed Nov 2018
  158. Guatemala, Ministerio de Salud Pública y Asistencia Social, Unidad Ejecutora del Programa de Acueductos Rurales (2001) Norma guatemalteca obligatoria, agua potable (especificaciones), CONGUANOR, NGO, 29.001. UNEPAR, GuatemalaGoogle Scholar
  159. Guo HR, Wang NS, Hu H, Monson RR (2004) Cell type specificity of lung cancer associated with arsenic ingestion. Cancer Epidemiol Biomark Prev 13:638–643Google Scholar
  160. Hall MN, Gamble MV (2012) Nutritional manipulation of one-carbon metabolism: effects on arsenic methylation and toxicity. J Toxicol 2012:595307,. 11 pages.  https://doi.org/10.1155/2012/595307CrossRefGoogle Scholar
  161. Hall EM, Acevedo J, López FG, Cortés S, Ferreccio C, Smith AH, Steinmaus CM (2017) Hypertension among adults exposed to drinking water arsenic in Northern Chile. Environ Res 153:99–105CrossRefGoogle Scholar
  162. Hansen H, Ribeiro AB, Mateus EP (2006) Biosorption of arsenic(V) with Lessonia nigrescens. Miner Eng 19:486–490CrossRefGoogle Scholar
  163. Haque N, Morrison G, Perrusquía G, Cano-Aguilera I, Aguilera-Alvarado AF, Gutiérrez-Valtierra M (2005) Sorption of arsenic on sorghum biomass: a case study. In: Bundschuh J, Bhattacharya P, Chadraseharam D (eds) Natural arsenic in groundwater: occurrence, remediation and management, 32nd international geological congress, Florence, Italy. Taylor and Francis/Balkema, Leiden, pp 246–253Google Scholar
  164. Haque MN, Morrison GM, Perrusquía G, Gutierrez M, Aguilera AF, Cano-Aguilera I, Gardea-Torresdey JL (2007) Characteristics of arsenic adsorption to sorghum biomass. J Hazard Mater 145:30–35CrossRefGoogle Scholar
  165. Harari F, Engström K, Concha G, Colque G, Vahter M, Broberg K (2013) N-6-Adenine-Specific DNA Methyltransferase 1 (N6AMT1) polymorphisms and arsenic methylation in Andean women. Environ Health Perspect 121:797–803CrossRefGoogle Scholar
  166. Health Brazil (2011) Standards and drinkability standard of water intended for human consumption. Administrative Rule 2914, BrasíliaGoogle Scholar
  167. Hering JG, Chen PY, Wilkie JA, Elimelech M (1997) Arsenic removal from drinking water during coagulation. J Environ Eng ASCE 123:800–807CrossRefGoogle Scholar
  168. Hering JG, Katsoyiannis IA, Ahumada Theoduloz G, Berg M, Hug SJ (2017) Arsenic removal from drinking water: experiences with technologies and constraints in practice. J Environ Eng 143:1–1CrossRefGoogle Scholar
  169. Hernández-Castro B, Doníz-Padilla LM, Salgado-Bustamante M, Rocha D, Ortiz-Pérez MD, Jiménez-Capdeville ME, Portales-Pérez DP, Quintanar-Stephano A, González-Amaro R (2009) Effect of arsenic on regulatory T cells. J Clin Immunol 29:461–469CrossRefGoogle Scholar
  170. Höll W, Litter MI (2010) Ocurrencia y química del arsénico en aguas. Sumario de tecnologías de remoción de arsénico de aguas. In: Litter MI, Sancha AM, Ingallinella AM (eds) Tecnologías económicas para el abatimiento de arsénico en aguas. Editorial Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo, Buenos Aires, pp 17–31Google Scholar
  171. Hong Y-S, Song K-H, Chung J-Y (2014) Health effects of chronic arsenic exposure. J Prev Med Public Health 47:245–252CrossRefGoogle Scholar
  172. Hopenhayn C, Ferreccio C, Browning SR, Huang B, Peralta C, Gibb H, Hertz-Picciotto I (2003) Arsenic exposure from drinking water and birth weight. Epidemiology 14:593–602CrossRefGoogle Scholar
  173. Hopenhayn-Rich C, Biggs ML, Smith AH (1998) Lung and kidney cancer mortality associated with arsenic in drinking water in Córdoba, Argentina. Int J Epidemiol 27:561–569CrossRefGoogle Scholar
  174. Hott RC, Andrade TG, Santos MS, Lima ACF, Faria MCS, Bomfeti CA, Barbosa F, Maia LFO, Oliveira LCA, Pereira MC, Rodrigues JL (2016) Adsorption of arsenic from water and its recovery as a highly active photocatalyst. Environ Sci Pollut Res.  https://doi.org/10.1007/s11356-016-7441-3CrossRefGoogle Scholar
  175. Hryczyñski E, López WG, Alegre J, Giménez MC (2014) Arsenic removal with compressed laterite. In: Litter MI, Nicolli HB, Meichtry JM, Quici N, Bundschuh J, Bhattacharya P, Naidu R (eds) One century of the discovery of Arsenicosis in Latin America (1914–2014). CRC Press, London, pp 717–718CrossRefGoogle Scholar
  176. Hug SJ, Leupin O (2003) Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction. Environ Sci Technol 37:2734–2742CrossRefGoogle Scholar
  177. Hug S, Canonica L, Wegelin M, Gechter D, Von Gunten U (2001) Solar oxidation and removal of arsenic at circumneutral pH in iron containing waters. Environ Sci Technol 35:2114–2121CrossRefGoogle Scholar
  178. Hurng L, Meichtry JM, Piperata G, Apella MC, Hidalgo MV, Powell P, Litter MI (2004) Resultados de la aplicación de la tecnología FH para potabilizar aguas de la República Argentina (Results of the application of the HP technology for water purification in Argentina). In: Litter MI, Jiménez-González A (eds) Advances in Economic Solar Technologies for Disinfection, Decontamination, and Removal of Arsenic from Water of Rural Communities of Latin America. Digital Graphic Publisher, La Plata, pp 15–41Google Scholar
  179. IADB (2003) Antofagasta desalination plant, Project Abstract, CH-0171. Interamerican Development Bank, Washington, DC. http://idbdocs.iadb.org/wsdocs/getdocument.aspx?docnum=410882. Accessed Aug 2018Google Scholar
  180. Iliná A, Martínez-Hernández JL, Segura-Ceniceros P, Villarreal-Sánchez JA, Gregorio-Jáuregui KM (2009) Biosorción de arsénico en materiales derivados de maracuyá. Rev Int Contam Ambient 25:201–216Google Scholar
  181. INAA (2001) Normas Técnicas para el diseño de abastecimiento y potabilización de agua. Normas NTON 09003-99Google Scholar
  182. INEN (Instituto Ecuatoriano de Normalización) (2006) Norma 1108: Sobre requisitos del agua potable. Registro Oficial N° 231, Quito, EcuadorGoogle Scholar
  183. Ingallinella AM (2006) Remoción de Arsénico y Flúor en Aguas Subterráneas Mediante Doble Filtración, Doctoral Thesis, Universidad Nacional de Rosario, Santa FeGoogle Scholar
  184. Ingallinella AM, Fernández RG (2010) Experiencia argentina en la remoción de arsénico por diversas tecnologías. In: Litter MI, Sancha AM, Ingallinella AM (eds) Tecnologías económicas para el abatimiento de arsénico en aguas. Editorial Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo, Buenos Aires, pp 155–167Google Scholar
  185. Ingallinella AM, Fernández RG, Stecca LM (2003a) Proceso ARCIS-UNR para la remoción de As y flúor en aguas subterráneas: una experiencia de aplicación. Part 1. Rev Ing Sanit Ambient 66:36–39Google Scholar
  186. Ingallinella AM, Fernández RG, Stecca LM (2003b) Proceso ARCIS-UNR para la remoción de As y flúor en aguas subterráneas: una experiencia de aplicación. Part 2. Rev Ing Sanit Ambient 67:61–65Google Scholar
  187. Instituto Boliviano de Normalización y Calidad A Norma Boliviana NB 512-2010 (n.d.) Agua potable – RequisitosGoogle Scholar
  188. Instituto Nacional of Tecnología Industrial (INTI) (2009) Modelo de intervención para el abatimiento de arsénico en aguas de consumo. Informe INTI Química, Centro de investigación y desarrollo en química. https://www.inti.gob.ar/quimica/pdf/asenagua.pdf. Accessed Nov 2017
  189. Inteccon.inc (2018) Arsenator®: Digital Arsenic Test Kit Product code: WAG-WE10500http://www.intecconinc.com/index.php?option=com_content&view=article&id=266&Itemid=121. Accessed Nov 2018
  190. International Agency for Research on Cancer (IARC) (2012) Arsenic, metals, fibres, and dusts. volume 100 C. A review of human carcinogens, IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Arsenic, metals, fibres, and dusts. International Agency for Research on Cancer, World Health Organization, Lyon. http://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Evaluation-Of-Carcinogenic-Risks-To-Humans/Arsenic-Metals-Fibres-And-Dusts-2012. Accessed Apr 2018Google Scholar
  191. International Mining (2018) BHP opens Escondida Water Supply, the largest desalination plant in Latin America. https://im-mining.com/2018/04/07/bhp-opens-escondida-water-supply-largest-desalination-plant-latin-america/. Accessed Sept 2018
  192. Iriel A, Fernández Cirelli A, Marco-Brown JL, Trinelli MA, Pérez AL, dos Santos Afonso M (2014) Arsenic removal in polluted water using pillared clays. In: Litter MI, Nicolli HB, Meichtry JM, Quici N, Bundschuh J, Bhattacharya P, Naidu R (eds) One Century of the Discovery of Arsenicosis in Latin America (1914–2014). CRC Press, London, pp 670–672CrossRefGoogle Scholar
  193. Jain RB (2015) Association of arsenic exposure with smoking, alcohol, and caffeine consumption: data from NHANES 2005–2010. Environ Toxicol Pharmacol 39:651–658CrossRefGoogle Scholar
  194. Jorge C, Nieto J, Ponce S, Rodríguez J, Solís J, Estrada W (2003) Remoción de arsénico del agua mediante irradiación solar en Lima, Perú (Arsenic removal of water using solar radiation in Lima, Peru). In: Litter MI, Mansilla H (eds) Arsenic removal assisted by Solar Light in Rural Communities of Latin America, OAS Project AE/141. Digital Grafic, La Plata, pp 55–64Google Scholar
  195. Jorge C, Venero J, Díaz J, Carpio E, Zúñiga P, Maurtua D, Cristóbal R, Galarza P, Quintana M, Ponce S, Solís J, Rodríguez J, Estrada W (2006) La experiencia peruana en la desinfección y descontaminación de agua utilizando energía solar. In: Litter MI (ed) Resultados finales del Proyecto OEA/AE141: investigación, desarrollo, validación y aplicación de tecnologías solares para la potabilización de agua en zonas rurales aisladas de América Latina y el Caribe. Editorial OEA, Buenos Aires, pp 279–334Google Scholar
  196. Kanel SR, Manning B, Charlet L, Choi H (2005) Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environ Sci Technol 39:1291–1298CrossRefGoogle Scholar
  197. Karcher S, Cáceres I, Jekel M, Contreras R (1999) Arsenic removal from water supplies in northern Chile using ferric chloride coagulation. Water Environ Manag 13:164–168CrossRefGoogle Scholar
  198. Khairul I, Wang QQ, Jiang YH, Wang C, Naranmandura H (2017) Metabolism, toxicity and anticancer activities of arsenic compounds. Oncotarget 8(14):23905–23926CrossRefGoogle Scholar
  199. Kirchmer C, Castro de Esparza ML (1978) Remoción de Arsénico en aguas con alto contenido de Magnesio. CEPIS, LimaGoogle Scholar
  200. Kordas K, Queirolo EI, Mañay N, Peregalli F, Hsiao PY, Lu Y, Vahter M (2016) Low-level arsenic exposure: nutritional and dietary predictors in first-grade Uruguayan children. Environ Res 147:16–23CrossRefGoogle Scholar
  201. Kordas K, Roy A, López P, García-Vargas G, Cebrián ME, Vera-Aguilar E, Rosado JL (2017) Iron and zinc supplementation does not impact urinary arsenic excretion in Mexican School Children. J Pediatr 185:205–210CrossRefGoogle Scholar
  202. Kunz S, Romero L G, Otter P, Feller J (2017) Treatment of arsenic-contaminated water using in-line electrolysis, co-precipitation and filtration in Costa Rica. Water Sci Technol Water Supply 18(1):ws2017089  https://doi.org/10.2166/ws.2017.089.Google Scholar
  203. Labastida I, Armienta MA, Lara-Castro RH, Aguayo A, Cruz O, Ceniceros N (2013) Treatment of mining acidic leachates with indigenous limestone, Zimapan Mexico. J Hazard Mater 262:1187–1195CrossRefGoogle Scholar
  204. Ladeira ACQ, Ciminelli VST (2004) Adsorption and desorption of arsenic on an oxisol and its constituents. Water Res 38:2087–2094CrossRefGoogle Scholar
  205. Ladeira ACQ, Ciminelli VST, Nepomuceno AL (2002) Seleçao de solos para a immobilizaçao de arsênio. REM 55:215–221Google Scholar
  206. Langsch JE, Costa M, Moore L, Morais P, Bellezza A, Falcão S (2012) New technology for arsenic removal from mining effluents. J Mater Res Technol 1:178–181CrossRefGoogle Scholar
  207. Lara F, Cornejo L, Yanez J, Freer J, Mansilla HD (2006) Solar-light assisted removal of arsenic from natural waters: effect of iron and citrate concentrations. J Chem Technol Biotechnol 81:1282–1287CrossRefGoogle Scholar
  208. Larralde AL, Tufo AE, Sileo EE (2014) Sorption and chemical stability of As(V) onto tin doped goethites. In: Litter MI, Nicolli HB, Meichtry JM, Quici N, Bundschuh J, Bhattacharya P, Naidu R (eds) One century of the discovery of Arsenicosis in Latin America (1914–2014). CRC Press, London, pp 714–716CrossRefGoogle Scholar
  209. Latorre C (1966) Estudio fisico-químico para la remoción del arsénico en el rio Toconce. Santiago: Rev Ing Sanit:12–21Google Scholar
  210. Lescano M, Zalazar C, Cassano A, Brandi R (2011) Arsenic(III) oxidation of water applying a combination of hydrogen peroxide and UVC radiation. Photochem Photobiol Sci 19:1797–1803CrossRefGoogle Scholar
  211. Lescano M, Zalazar C, Cassano A, Brandi R (2012) Kinetic modelling of arsenic (III) oxidation in water employing the UV/H2O2 process. Chem Eng J 211– 212:360–368CrossRefGoogle Scholar
  212. Lescano MR, Zalazar CS, Brandi RJ (2014) A combined system for arsenic removal from water by photochemical oxidation and adsorption technology. In: Litter MI, Nicolli HB, Meichtry JM, Quici N, Bundschuh J, Bhattacharya P, Naidu R (eds) One century of the discovery of arsenicosis in Latin America (1914–2014). CRC Press, London, pp 664–666CrossRefGoogle Scholar
  213. Leupin OX, Hug SJ (2005) Oxidation and removal of arsenic (III) from aerated groundwater by filtration through sand and zero-valent iron. Water Res 39:1729–1740CrossRefGoogle Scholar
  214. Levy IK, Mizrahi M, Ruano G, Requejo F, Zampieri G, Litter MI (2012) TiO2-photocatalytic reduction of pentavalent and trivalent arsenic: production of elemental arsenic and arsine. Environ Sci Technol 46:2299–2308CrossRefGoogle Scholar
  215. Levy IK, Brusa MA, Aguirre ME, Custo G, San Román E, Litter MI, Grela MA (2013) Exploiting electron storage in TiO2 nanoparticles for dark reduction of As(V) by accumulated electrons. Phys Chem Chem Phys 15:10335–10338CrossRefGoogle Scholar
  216. Levy IK, Ramos C, Custo G, Litter MI, Mizrahi M, Requejo F (2014a) Removal of arsenic with zerovalent iron nanoparticles in the dark and under UV-vis light. In: Litter MI, Nicolli HB, Meichtry JM, Quici N, Bundschuh J, Bhattacharya P, Naidu R (eds) One century of the discovery of arsenicosis in Latin America (1914–2014). CRC Press, London, pp 805–807CrossRefGoogle Scholar
  217. Levy IK, Quici N, Custo G, Litter MI (2014b) Dark reduction of As(V) by accumulated electrons stored in alcoholic TiO2 nanoparticles. In: Litter MI, Nicolli HB, Meichtry JM, Quici N, Bundschuh J, Bhattacharya P, Naidu R (eds) One century of the discovery of Arsenicosis in Latin America (1914-2014). CRC Press, London, pp 802–804CrossRefGoogle Scholar
  218. Liaw J, Marshall G, Yuan Y, Ferreccio C, Steinmaus C, Smith AH (2008) Increased childhood liver cancer mortality and arsenic in drinking water in northern Chile. Cancer Epidemiol Biomark Prev 17:1982–1987CrossRefGoogle Scholar
  219. Lindbäck K, Sjölin A M (2006) Arsenic in Groundwater in the Southwestern Part of the Río Dulce Alluvial Cone, Santiago del Estero Province, Argentina. Master thesis. Department of Land and Water Resource Engineering, KTH, Stockholm, Sweden, TRITA-LWREX- 06-26Google Scholar
  220. Litter MI (2009) Treatment of chromium, mercury, lead, uranium and arsenic in water by heterogeneous photocatalysis. Adv Chem Eng 36:37–67CrossRefGoogle Scholar
  221. Litter MI (2010) La problemática del arsénico en la Argentina: el HACRE. Rev Soc Argent Endocrinol Ginecol Reprod (SAEGRE) 17:5–10Google Scholar
  222. Litter MI (2017) Last advances on TiO2-photocatalytic removal of chromium, uranium and arsenic. Curr Opin Green Sustain Chem 6:150–158CrossRefGoogle Scholar
  223. Litter MI, Bundschuh J (2012) Emerging options for solving the arsenic problems of rural and periurban areas in Latin America. In: Ng JC, Noller BN, Naidu R, Bundschuh J, Bhattacharya P (eds) Understanding the geological and medical interface of arsenic. Taylor and Francis Group, London, pp 267–270Google Scholar
  224. Litter MI, Pereyra S (2016) Evaluation of safe drinking water access for dispersed rural populations in the Santiago del Estero province, Argentina – a challenge for arsenic removal. In: Bhattacharya P, Vahter M, Jarsijö J, Kumpiene J, Ahmad A, Sparrenborm C, Jacks G, Donselaar ME, Bundschuh J, Naidu R (eds) Arsenic research and global sustainability. CRC Press/Balkema, Taylor and Francis Group, London, pp 642–643CrossRefGoogle Scholar
  225. Litter MI, Quici N (2014) New advances of heterogeneous photocatalysis for treatment of toxic metals and arsenic. In: Kharisov BI, Kharissova OV, Rasika Dias HV (eds) Nanomaterials for environmental protection. Wiley, Hoboken, pp 145–167Google Scholar
  226. Litter M, Fernández R, Cáceres R, Grande Cobián D, Cicerone D, Fernández Cirelli A (2008) Tecnologías de bajo costo para el tratamiento de arsénico a pequeña y mediana escala. Rev Ing Sanit Ambient 100:41–50Google Scholar
  227. Litter MI, Morgada ME, Bundschuh J (2010a) Possible treatments for arsenic removal in Latin American waters for human consumption. Environ Pollut 158:1105–1118CrossRefGoogle Scholar
  228. Litter MI, Morgada ME, Lin H, García MG, Hidalgo MV, d’Hiriart J, Giullitti J, Blesa MA, Levy IK, López G, Mateu M (2010b) Experiencias de remoción de arsénico por tecnologías fotoquímicas y solares en Argentina. In: Litter MI, Sancha AM, Ingallinella AM (eds) Tecnologías económicas para el abatimiento de arsénico en aguas. Editorial Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo, Buenos Aires, pp 191–207Google Scholar
  229. Litter MI, Armienta MA, Villanueva Estrada RE, Villaamil Lepori EC, Olmos V (2019) Arsenic in Latin America – Part I. In: Srivastava S (ed) Arsenic in drinking water and food. Springer. In pressGoogle Scholar
  230. Litter MI, Alarcón-Herrera MT, Arenas MJ, Armienta MA, Avilés M, Cáceres RE, Cipriani HN, Cornejo L, Dias LE, Fernández Cirelli A, Farfán EM, Garrido S, Lorenzo L, Morgada ME, Olmos-Márquez MA, Pérez-Carrera A (2012) Small-scale and household methods to remove arsenic from water for drinking purposes in Latin America. Sci Total Environ 429:107–122CrossRefGoogle Scholar
  231. Litter MI, Levy IK, Requejo F, Mizrahi M, Ruano G, Zampieri G (2014) Titanium dioxide-photocatalytic reduction of pentavalent and trivalent arsenic: production of elemental arsenic and arsine. In: Litter MI, Nicolli HB, Meichtry JM, Quici N, Bundschuh J, Bhattacharya P, Naidu R (eds) One century of the discovery of Arsenicosis in Latin America (1914–2014). CRC Press, London, pp 820–824CrossRefGoogle Scholar
  232. Litter MI, Pereyra S, López Pasquali CE, Iriel A, Senn AM, García FE, Blanco Esmoris MF, Rondano K, Pabón DC, Dicelio LE, Lagorio MG, Noel GD (2015) Remoción de arsénico en localidades de la provincia de Santiago del Estero, Argentina. Evaluación del acceso, uso y calidad de agua en poblaciones rurales con problemas de arsénico. Rev Ing Sanit Amb 125:13–25Google Scholar
  233. Litter MI, Quici N, Meichtry JM, Senn AM (2016) Photocatalytic removal of metallic and other inorganic pollutants. In: Dionysiou DD, Li Puma G, Ye J, Schneider J, Bahnemann (eds) Photocatalysis: applications. Royal Society, London, pp 35–71CrossRefGoogle Scholar
  234. Litter MI, Quici N, Meichtry JM, Montesinos VN (2018) Photocatalytic treatment of inorganic materials with TiO2 nanoparticles. In: Nalwa HS (ed) Encyclopedia of nanoscience and nanotechnology, vol 29. American Scientific Publishers, Valencia, pp 303–336Google Scholar
  235. Lizama Allende K, Fletcher TD, Sun G (2010) Removal processes for arsenic in constructed wetlands. Chemosphere 84:1032–1043CrossRefGoogle Scholar
  236. Lizama Allende K, Fletcher TD, Sun G (2012a) The effect of substrate media on the removal of arsenic, boron and iron from an acidic wastewater in planted column reactors. Chem Eng J 179:119–130CrossRefGoogle Scholar
  237. Lizama Allende K, Fletcher TD, Sun G (2012b) Arsenic removal by subsurface flow constructed wetlands. In: Ng JC, Noller BN, Naidu R, Bundschuh J, Bhattacharya P (eds) Understanding the Geological and Medical Interface of Arsenic. Taylor and Francis Group, London, pp 278–279Google Scholar
  238. Lizama Allende K, McCarthy DT, Fletcher TD (2014) The removal of arsenic by horizontal subsurface flow constructed wetlands. In: Litter MI, Nicolli HB, Meichtry JM, Quici N, Bundschuh J, Bhattacharya P, Naidu R (eds) One century of the discovery of Arsenicosis in Latin America (1914–2014). CRC Press, London, pp 764–765CrossRefGoogle Scholar
  239. López-Carrillo L, Gamboa-Loira B, Becerra W, Hernández-Alcaraz C, Hernández-Ramírez RU, Gandolfi AJ, Franco-Marina F, Cebrián ME (2016) Dietary micronutrient intake and its relationship with arsenic metabolism in Mexican women. Environ Res 151:445–450CrossRefGoogle Scholar
  240. Lorenzo L, Farfán Torres E M, Naranjo P M, Torres Sánchez R (2008) Adsorción de As en 4-NaMica sintética y su producto de tratamiento mecánico. In: Blesa MA, Dos Santos Afonso M, Torres Sánchez RM (eds) Las Fronteras de la Física y Química Ambiental en Ibero América. Buenos Aires, pp 314–9Google Scholar
  241. Luján J (2001a) Hidróxido de aluminio coloidal para eliminar el arsénico del agua. Rev. Panam Salud Pública 9:302–305CrossRefGoogle Scholar
  242. Luján JC (2001b) Desarsenicación del agua utilizando hidrogel activado de hidróxido de aluminio. Cienc, Tecnol Medio Ambiente Univ Tecnol Nac, Tucumán I:9–13Google Scholar
  243. Luján JC, Graieb OJ (1994) Eliminación del arsénico en agua por destilación a escala doméstica en zonas rurales. Rev Méd Tucumán 1:247–255Google Scholar
  244. Luján JC, Graieb OJ (1995) Eliminación del arsénico en agua por destilación a escala doméstica en zonas rurales. Rev Cien Tecnol Univ Tecnol Nac, Tucumán 3:13Google Scholar
  245. Mansilla, H.D., Cornejo, L., Lara, F., Yáñez, J., Lizama, C., Figueroa, L. 2003. Remoción de arsénico de aguas del Río Camarones, Arica, Chile (Arsenic removal from waters from the Camarones River, Arica, Chile). Litter, M.I., Mansilla, H. Arsenic Removal Assisted by Solar Light in Rural Communities of Latin America, OAS Project AE/141. Digital Grafic, La Plata, 35–53.Google Scholar
  246. Marshall G, Ferreccio C, Yuan Y, Bates MN, Steinmaus C, Selvin S, Liaw J, Smith AH (2007) Fifty-year study of lung and bladder cancer mortality in Chile related to arsenic in drinking water. J Natl Cancer Inst 99:920–928CrossRefGoogle Scholar
  247. Martin E, González-Horta C, Rager J, Bailey KA, Sánchez-Ramírez B, Ballinas-Casarrubias L, Ishida MC, Gutiérrez-Torres DS, Hernández Cerón R, Viniegra Morales D, BaezaTerrazas FA, Saunders RJ, Drobná Z, Mendez MA, Buse JB, Loomis D, Jia W, García-Vargas GG, Del Razo LM, Stýblo M, Fry R (2015) Metabolomic characteristics of arsenic-associated diabetes in a prospective cohort in Chihuahua, Mexico. Toxicol Sci 144:338–346CrossRefGoogle Scholar
  248. Martinez VD, Buys TP, Adonis M, Benítez H, Gallegos I, Lam S, Lam WL, Gil L (2010) Arsenic-related DNA copy-number alterations in lung squamous cell carcinomas. Br J Cancer 103:1277–1283CrossRefGoogle Scholar
  249. Martinez VD, Vucic EA, Becker-Santos DD, Gil L, Lam WL (2011) Arsenic exposure and the induction of human cancers. J Toxicol:431287,. 13 pages.  https://doi.org/10.1155/2011/431287CrossRefGoogle Scholar
  250. Mateu M (2007) Remoción de arsénico por fotocatálisis heterogénea, Master thesis, Universidad de Buenos AiresGoogle Scholar
  251. May-Ix LA, Gomez R, López R (2014) Photocatalytic oxidation of As(III) using TiO2-Cr2O3 semiconductors. In: Litter MI, Nicolli HB, Meichtry JM, Quici N, Bundschuh J, Bhattacharya P, Naidu R (eds) One century of the discovery of Arsenicosis in Latin America (1914–2014). CRC Press, London, pp 811–813CrossRefGoogle Scholar
  252. Mazumder DN (2005) Effect of chronic intake of arsenic-contaminated water on liver. Toxicol Appl Pharmacol 206:169–175CrossRefGoogle Scholar
  253. McClintock TR, Chen Y, Bundschuh J, Oliver JT, Navoni J, Olmos V, Villaamil Lepori E, Ahsan H, Parvez F (2012) Arsenic exposure in latinamerica: biomarkers, risk assessments and related health effects. Sci Total Environ 429:76–91CrossRefGoogle Scholar
  254. McNeill LS, Edwards M (1995) Soluble arsenic removal in full-scale water treatment plants. J AWWA 87:105–113CrossRefGoogle Scholar
  255. Meichtry JM, Lin HJ, Fuente L, Levy IK, Gautier EA, Blesa MA, Litter M (2007) Low-cost TiO2 photocatalytic technology for water potabilization in plastic bottles for isolated regions. J Sol Energ-T ASME 129:119–126CrossRefGoogle Scholar
  256. Meichtry JM, De Seta EG, López AR, Reina FD, Mugrabi FI, Lan LE, Lavezzari E, Domingo EJ, Tojo N (2014) Arsenic removal using low-cost materials. In: Litter MI, Nicolli HB, Meichtry JM, Quici N, Bundschuh J, Bhattacharya P, Naidu R (eds) One century of the discovery of Arsenicosis in Latin America (1914–2014). CRC Press, London, pp 684–686CrossRefGoogle Scholar
  257. Meichtry J, Castiglia M, Mugrabi F, Lan L, Reina F, De Seta E, López A, Domingo E (2015) Remoción de arsénico en agua mediante materiales de bajo costo y segura disposición final. Proyecciones 13:47–58Google Scholar
  258. Meichtry JM, Levy IK, Mohamed HH, Dillert R, Bahnemann DW, Litter MI (2016) Mechanistic features of TiO2-heterogeneous photocatalysis of arsenic and uranyl nitrate in aqueous suspensions studied by the stopped flow technique. Chem Phys Chem 17:885–892CrossRefGoogle Scholar
  259. Melak D, Ferreccio C, Kalman D, Parra R, Acevedo J, Pérez L, Cortés S, Smith AH, Yuan Y, Liaw J, Steinmaus C (2014) Arsenic methylation and lung and bladder cancer in a case-control study in northern Chile. Toxicol Appl Pharmacol 274:225–231CrossRefGoogle Scholar
  260. Mellano MF, Ramirez AE (2004) Groundwater Arsenic in the Area around Maria Elena in Santiago del Estero Province, Northwestern Argentina, TRITA-LWREX-04-40. Department of Land and Water Resources Engineering KTH, StockholmGoogle Scholar
  261. Mendez MA, González-Horta C, Sánchez-Ramírez B, Ballinas-Casarrubias L, Cerón RH, Morales DV, Terrazas FA, Ishida MC, Gutiérrez-Torres DS, Saunders RJ, Drobná Z, Fry RC, Buse JB, Loomis D, García-Vargas GG, Del Razo LM, Stýblo M (2016) Chronic exposure to arsenic and markers of cardiometabolic risk: a cross-sectional study in Chihuahua, Mexico. Environ Health Perspect 124:104–111CrossRefGoogle Scholar
  262. Mendoza-Barrón J, Jacobo-Azuara A, Leyva-Ramos R, Berber-Mendoza MS, Guerrero-Coronado RM, Fuentes-Rubio L, Martínez-Rosales JM (2011) Adsorption of arsenic (V) from a water solution onto a surfactant-modified zeolite. Adsorption 17:489–496CrossRefGoogle Scholar
  263. Meng XG, Bang S, Korfiatis GP (2000) Effects of silicate, sulfate, and carbonate on arsenic removal by ferric chloride. Water Res 34:1255–1261CrossRefGoogle Scholar
  264. Mercado de Scaglione S, Llapur M (2006) Hidroarsenicismo crónico. Comentario de los casos diagnosticados en el Hospital Independencia de Santiago del Estero en el período 1998–2005. Arch Argent Dermatol 56:177–183Google Scholar
  265. Mercado-Borrayo B M, Schouwenaars R, Litter M I, Ramírez-Zamora R M (2014) Metallurgical slag as an efficient and economical adsorbent of arsenic. In: Ahuja S (ed) Water reclamation and sustainability, Elsevier, San Diego, pp 95–114CrossRefGoogle Scholar
  266. Ministerio de la Protección Social y Ministerio de Ambiente, Vivienda y Desarrollo Territorial. Resolución 2115 (2007) República de Colombia, BogotáGoogle Scholar
  267. Ministerio de Salud (2011) Reglamento de la calidad del agua para consumo humano. Lima: Dirección General de Salud Ambiental. http://www.digesa.minsa.gob.pe/publicaciones/descargas/Reglamento_Calidad_Agua.pdf. Accessed Nov 2018
  268. Ministerio de Salud (MINSA) (2012) Guia de practica clinica para el diagnostico y tratamiento de la intoxicacion por arsenico 2012 Peru. http://bvs.minsa.gob.pe/local/MINSA/2109.pdf. Accessed Nov 2018
  269. Ministerio de Salud (MINSAL) (2014) Guia Clinica: Vigilancia Biologica de la Poblacion Expuesta a Arsenico, beneficiarios de la ley 20.590. Santiago: MINSAL. https://www.minsal.cl/sites/default/files/files/Guia_Clinica_Vigilancia_Arsenico_final.pdf. Accessed Nov 2018.
  270. Ministerio de Salud (MSAL) (2011) Hidroarsenicismo crónico regional endémico (HACRE). Módulo de capacitación para atención primaria. Programa Nacional para la Prevención y Control de las Intoxicaciones (PRECOTOX). Ministerio de Salud. http://www.msal.gob.ar/images/stories/bes/graficos/0000000332cnt-03-Capacit_hidroarsenicismo.pdf. Accessed Nov 2018
  271. Ministerio de Salud, Costa Rica (2005) Reglamento para la Calidad del Agua Potable. Pub. L. No. 32327-SGoogle Scholar
  272. Modificacion a la Norma Oficial Mexicana NOM-127-SSA1-1994 (2000) Salud Ambiental. Agua para uso y consumo humano. Límites permisibles de calidad y tratamientos a los que debe someterse el agua para su potabilización. Diario Oficial de la Federación, 22 noviembre de 2000, Mexico CityGoogle Scholar
  273. Molina R, Schulz C, Bernardos J, Dalmaso M (2014) Association between arsenic in groundwater and malignant tumors in La Pampa, Argentina. In: Litter MI, Nicolli HB, Meichtry JM, Quici N, Bundschuh J, Bhattacharya P, Naidu R (eds) One century of the discovery of arsenicosis in Latin America (1914–2014). CRC Press, London, pp 644–645CrossRefGoogle Scholar
  274. Monroy Torres R, Espinoza Pérez JA, Pérez González RM (2016) Evaluación de las prácticas de alimentación y nutrición en una población expuesta a arsénico: una propuesta para integrar indicadores de exposición nutricional. Nutr Clín Diet Hosp, ISSN 0211-6057 36:140–149Google Scholar
  275. Moreira M, Costa PF, Teixeira Sun MC (2012) Arsenite (bio) immobilization using Sulfur Reducing Bacteria (SRB). In: Ng JC, Noller BN, Naidu R, Bundschuh J, Bhattacharya P (eds) Understanding the Geological and Medical Interface of Arsenic. Taylor and Francis Group, London, pp 303–304Google Scholar
  276. Morgada de Boggio ME, Levy IK, Mateu M, Litter MI (2006) Tecnologías económicas basadas en la fotocatálisis heterogénea y el hierro cerovalente para la remoción de arsénico en la Llanura Chacopampeana, Argentina (Low-cost technologies based on heterogeneous photocatalysis and zerovalent iron for arsenic removal in the Chaco-Pampean Plain, Argentina). In: Litter MI (ed) Resultados finales del Proyecto OEA/AE141: investigación, desarrollo, validación y aplicación de tecnologías solares para la potabilización de agua en zonas rurales aisladas de América Latina y el Caribe. Editorial OEA, Buenos Aires, pp 11–37Google Scholar
  277. Morgada de Boggio ME, Levy IK, Mateu M, Bhattacharya P, Bundschuh J, Litter MI (2009) Low-cost technologies based on heterogeneous photocatalysis and zerovalent iron for arsenic removal in the Chacopampean plain, Argentina. In: Bundschuh J, Armienta MA, Birkle P, Bhattacharya P, Matschullat J, Mukherjee AB (eds) Natural arsenic in groundwater of Latin America. CRC Press/Balkema Publisher, Leiden, pp 677–686Google Scholar
  278. Morgada de Boggio ME, Levy IK, Mateu M, Meichtry JM, Farías S, López GD, Bahnemann D, Dillert R, Litter MI (2010) Low-cost solar technologies for arsenic removal in drinking water. In: Kabay N, Bundschuh J, Hendry B, Bryjak M, Yoshizuka K, Bhattacharya P, Anaç S (eds) The global Arsenic problem: challenges for safe water production. CRC Press/Balkema, Taylor & Francis Group, Londres, pp 209–218CrossRefGoogle Scholar
  279. Morgada ME, Litter MI (2010) Tecnologías fotoquímicas y solares para la remoción de arsénico de soluciones acuosas. Estado del arte. In: Litter MI, Sancha AM, Ingallinella AM (eds) Tecnologías económicas para el abatimiento de arsénico en aguas. Editorial Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo, Buenos Aires, pp 73–89Google Scholar
  280. Morgada ME, Mateu M, Bundschuh J, Litter MI (2008) Arsenic in the Iberoamerican Region. The Iberoarsen Network and a possible economic solution for arsenic removal in isolated rural zones. e-Terra, vol 5 – n° 5. http://e-terra@geopor.pt. ISSN 1645-0388Google Scholar
  281. Morgada ME, Levy IK, Salomone V, Farías SS, López G, Litter MI (2009) Arsenic(V) removal with nanoparticulate zerovalent iron: effect of UV light and humic acids. Catal Today 143:261–268CrossRefGoogle Scholar
  282. Morgada ME, Levy IK, Salomone V, Farías SS, López G, Litter MI (2010) Arsenic (V) removal with zerovalent iron nanoparticles: Effect of UV light and humic acid. In: Shuh Jean J-J, Bundschuh J, Bhattacharya P (eds) Arsenic in geosphere and human diseases. Taylor and Francis Group, London, pp 535–537Google Scholar
  283. Mozziconacci D, Madiec H, Cepero E (1998) Abatimiento de arsénico por coagulación sobre filtro. Rev Ing Sanit Ambient 40:25Google Scholar
  284. Muñiz G, Manjarrez-Nevárez LA, Pardo-Rueda J, Rueda-Ramírez A, Torres-Muñoz V, Ballinas-Casarrubias ML (2009) Filter development from low cost materials for arsenic removal from water. In: Bundschuh J, Armienta MA, Birkle P, Bhattacharya P, Matschullat J, Mukherjee AB (eds) Natural arsenic in groundwater of Latin America. CRC Press/Balkema Publisher, Leiden, pp 657–663Google Scholar
  285. Muñoz-Rivadeneira GA, de la Torre E, Guevara A, Criollo E, Díaz V (2004) Removing arsenic: Ecuador. http://tcdc2.undp.org/GSSDAcademy/SIE/Docs/Vol11/SIE.v11_CH19.pdf. Accessed Nov 2018
  286. Nardone A, Ferreccio C, Acevedo J, Enanoria W, Blair A, Smith AH, Balmes J, Steinmaus C (2017) The impact of BMI on non-malignant respiratory symptoms and lung function in arsenic exposed adults of Northern Chile. Environ Res 158:710–719CrossRefGoogle Scholar
  287. National Research Council (2001) Arsenic in the drinking water: 2001 update. National Academy Press, Washington, DC. https://www.nap.edu/download/10194. Accessed Nov 2018
  288. NCh 409/1 Instituto nacional de Normalización, INN-Chile (2005) Drinking water- part 1- requirements.Google Scholar
  289. O’Ryan R, Sancha A (2000) Controlling hazardous pollutants in a developing contex: the case of arsenic in Chile. In: Lehr JH (ed) McGraw-Hill Standard handbook of environmental science, health and technology. Global perspectives and trends. McGraw-Hill, New York, pp 22.13–22.28Google Scholar
  290. Ochoa Reyes J, Vidal Lozano A, Lerma Santana A, Gómez Reza L, Reta Sánchez A, Fernández Escajeda D, Vidal Flores A, Trevizo Ortiz L, González Piñeyro DM, Ornelas Reynoso M, Fernández Luna F, Hernández García A, del Rosal Díaz C, Chavira Renova J, Orozco Domínguez LR (2009) Arsenicismo subagudo y crónico en una población rural. Dermatol Rev Mex 53:63–69Google Scholar
  291. Olivas-Calderón E, Recio-Vega R, Gandolfi AJ, Lantz RC, González-Cortes T, Gonzalez-De Alba C, Froines JR, Espinosa-Fematt JA (2015) Lung inflammation biomarkers and lung function in children chronically exposed to arsenic. Toxicol Appl Pharmacol 287:161–167CrossRefGoogle Scholar
  292. Olmos V, Navoni JA, Villaamil Lepori EC (2014) High levels of exposure to arsenic and its influence on arsenic urinary methylated metabolites. A study from Argentina. In: Litter MI, Nicolli HB, Meichtry JM, Quici N, Bundschuh J, Bhattacharya P, Naidu R (eds) One century of the discovery of Arsenicosis in Latin America (1914–2014). CRC Press, London, pp 501–503CrossRefGoogle Scholar
  293. Olmos V, Navoni JA, Calcagno ML, Sassone AH, Villaamil Lepori EC (2015) Influence of the level of arsenic exposure on its metabolic profile, in a population from an endemic area of Argentina. Association with the presence of the T860C polymorphism in arsenic 3-Methyl Transferase Gene. Hum Exp Toxicol 34:170–178CrossRefGoogle Scholar
  294. Olmos-Márquez M A, Benavides-Montoya A, Rosette M, Alarcón-Herrera M T (2009) The arsenic removal efficiency of Eleocharis Macrostachya in constructed wetlands with subsurface flow. In Proceedings of the 3rd wetland pollutant dynamics and control WETPOL, BarcelonaGoogle Scholar
  295. Ongley LK, Armienta MA, Heggeman K, Lathrop A, Mango H, Miller W, Pickelner S (2001) Arsenic removal from contaminated water by the Soyatal Formation, Zimapán mining district, Mexico da potential low-cost low-tech remediation system. Geochem: Explor, Environ, Anal 1:23–31Google Scholar
  296. Ormachea M, Huallpara L, Quintanilla J, Ormachea O, Escalera R, Bhattacharya P (2012) Natural arsenic occurrence and its removal from drinking water using a tubular photo-reactor enhanced with a solar concentrator in Cochabamba, Bolivia. In: Ng JC, Noller BN, Naidu R, Bundschuh J, Bhattacharya P (eds) Understanding the geological and medical interface of arsenic. Taylor and Francis Group, London, pp 305–306Google Scholar
  297. OSE (Obras Sanitarias del Estado), Provincia de San Juan, Argentina (2006) Personal CommunicationGoogle Scholar
  298. Osorio-Yáñez C, Ayllon-Vergara JC, Aguilar-Madrid G, Arreola-Mendoza L, Hernández-Castellanos E, Barrera-Hernández A, De Vizcaya-Ruiz A, Del Razo LM (2013) Carotid intima-media thickness and plasma asymmetric dimethylarginine in Mexican children exposed to inorganic arsenic. Environ Health Perspect 121:1090–1096CrossRefGoogle Scholar
  299. Pantuzzo FL, Ciminelli VST (2010) Arsenic association and stability in long-term disposed arsenic residues. Water Res 44:5631–5640CrossRefGoogle Scholar
  300. Pantuzzo F L, Ciminelli V S T, Braga I (2007) Arsenic Speciation in arsenic slimes. In: Meeting of the Southern hemisphere on mineral technology, 7, Ouro Preto, Proceedings, Ouro Preto, 1, pp 107–114Google Scholar
  301. Paredes J, Garrido SE (2014) Development of a bio-adsorbent medium to remove arsenic from water. In: Litter MI, Nicolli HB, Meichtry JM, Quici N, Bundschuh J, Bhattacharya P, Naidu R (eds) One century of the discovery of Arsenicosis in Latin America (1914–2014). CRC Press, London, pp 730–732CrossRefGoogle Scholar
  302. Parvez F, Chen Y, Yunus M, Olopade C, Segers S, Slavkovich AM, Hasan R, Ahmed A, Islam T, Akter MM, Graziano JH, Ahsan H (2013) Arsenic exposure and impaired lung function. Findings from a Large Population-based Prospective Cohort Study. Am J Resp Crit Care Med 188:813–819CrossRefGoogle Scholar
  303. Pellizzari EE, Marinich LG, Flores SA, Giménez MC (2015) Degradación de arsénico por Pseudomonas aeruginosa para bioremediación de agua. Estudio preliminar (Arsenic degradation by Pseudomonas aeruginosa for water bioremediation. Preliminary study). Av Cien Ing 6:1–5Google Scholar
  304. Pereira PAL, Dutra AJB, Martins AH (2007) Adsorptive removal of arsenic from river waters using pisolite. Minerals Eng 20:52–59CrossRefGoogle Scholar
  305. Pereyra S, Litter MI, López Pasquali CE (2014) Access, use and quality of water: water economy and policy in rural populations with arsenic problems in Santiago del Estero, Argentina. In: Litter MI, Nicolli HB, Meichtry JM, Quici N, Bundschuh J, Bhattacharya P, Naidu R (eds) One century of the discovery of arsenicosis in Latin America (1914–2014). CRC Press, London, pp 900–901CrossRefGoogle Scholar
  306. Pérez Carrera A, Cayla C, Fabre J, Fernández Cirelli A (2010) Uso de plantas acuáticas para la remoción de arsénico del agua. In: Litter MI, Sancha AM, Ingallinella AM (eds) Tecnologías económicas para el abatimiento de arsénico en aguas. Editorial Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo, Buenos Aires, pp 219–228Google Scholar
  307. Pérez Coll CS, Pabón-Reyes C, Meichtry JM, Litter MI (2018) Monitoring of toxicity of As(V) solutions by AMPHITOX test without and with treatment with zerovalent iron nanoparticles. Environ Toxicol Pharmacol 60:138–145CrossRefGoogle Scholar
  308. Pérez-Carrera A, FernándezCirelli A (2010) Arsenic and water quality challenges in South America. In: Schneier-Madanes G, Courel MF (eds) Water and sustainability in arid regions. Springer, Dordrecht, pp 275–293CrossRefGoogle Scholar
  309. Petkova Simeonova V (1999) Pilot studies for arsenic removal, State of Hidalgo. Rev Ing Hidráulica Méx 14:65–77Google Scholar
  310. Petrick JS, Jagadish B, Mash EA, Aposhian HV (2001) Monomethylarsonous acid (MMA(III)) and arsenite: LD(50) in hamsters and in vitro inhibition of pyruvate dehydrogenase. Chem Res Toxicol 14:651–656CrossRefGoogle Scholar
  311. Petry M, Sanz MA, Langlais C, Bonnelye V, Durand J-P, Guevara D, Mantovani Nardes W, Homma Saemi C (2007) The El Coloso (Chile) reverse osmosis plant. Desalination 203:141–152CrossRefGoogle Scholar
  312. Piñón-Miramontes M, Bautista-Margulis RG, Perez-Hernandez A (2003) Removal of arsenic and fluoride from drinking water with cake alum and a polymeric anionic flocculent. Fluoride 35:122–128Google Scholar
  313. Pires VGR, Lima DRS, Aquino SF, Libânio M (2015) Evaluating arsenic and manganese removal from water by chlorine oxidation followed by clarification. Braz J Chem Eng 32:409–419CrossRefGoogle Scholar
  314. Pirnie M (2000) Technologies and costs for removal of arsenic from drinking water, US EPA Report 815-R-00-028Google Scholar
  315. Quici N, Meichtry M, Montesinos VN (2018) Use of nanoparticulated iron materials for chromium, arsenic, and Uranium removal from water. In: Litter MI, Quici N, Meichtry M (eds) Iron nanomaterials for water and soil treatment. Pan Stanford Publishing Pte. Ltd, Singapore, pp 177–200CrossRefGoogle Scholar
  316. Rager JE, Bailey KA, Smeester L, Miller SK, Parker JS, Laine JE, Drobná Z, Currier J, Douillet C, Olshan AF, Rubio-Andrade M, Stýblo M, García-Vargas G, Fry RC (2014) Prenatal arsenic exposure and the epigenome: altered microRNAs associated with innate and adaptive immune signaling in newborn cord blood. Environ Mol Mutagen 55:196–208CrossRefGoogle Scholar
  317. Rager JE, Miller S, Tulenko SE, Smeester L, Ray PD, Yosim A, Currier JM, Ishida MC, González-Horta MC, Sánchez-Ramírez B, Ballinas-Casarrubias L, Gutiérrez-Torres DS, Drobná Z, Del Razo LM, García-Vargas GG, Kim WY, Zhou Y-H, Wright FA, Stýblo M, Fry RC (2015) Identification of novel gene targets and putative regulators of arsenic-associated DNA methylation in human urothelial cells and bladder cancer. Chem Res Toxicol 28:1144–1155CrossRefGoogle Scholar
  318. Rahman MM, Ng JC, Naidu R (2009) Chronic exposure of arsenic via drinking water and its adverse health impacts on humans. Environ Geochem Health 31(Suppl 1):189–200CrossRefGoogle Scholar
  319. Ramírez Alvarado JA, Garrido SE, Baeza Reyes A (2014) Recovery of elemental arsenic using electrodeposition with rejection water from capacitive deionization and reverse osmosis. In: Litter MI, Nicolli HB, Meichtry JM, Quici N, Bundschuh J, Bhattacharya P, Naidu R (eds) One century of the discovery of Arsenicosis in Latin America (1914–2014). CRC Press, London, pp 772–774CrossRefGoogle Scholar
  320. Ravenscroft P, Brammer H, Richards K (2009) Arsenic pollution: a global synthesis. Wiley-Blackwell, Hoboken, p 588CrossRefGoogle Scholar
  321. Recio-Vega R, Gonzalez-Cortes TD, Olivas-Calderon E, Lantz RC, Gandolfi AJ, Gonzalez-De Alba C (2015) In utero and early childhood exposure to arsenic decreases lung function in children. J Appl Toxicol 35:358–366CrossRefGoogle Scholar
  322. Recio-Vega R, González-Cortes T, Olivas-Calderón E, Clark Lantz R, Jay Gandolfi A, Michel-Ramirez G (2016) Association between polymorphisms in arsenic metabolism genes and urinary arsenic methylation profiles in girls and boys chronically exposed to arsenic. Environ Mol Mutagen 57:516–525CrossRefGoogle Scholar
  323. Reporte de Sustentabilidad de EcoMetales (2012) https://www.ecometales.cl/wp-content/uploads/2016/09/EcoMetales_Espanol2012.pdf. Accessed Oct 2018
  324. Rivera ML, Piña M (2004) A pilot study for arsenic removal from water by adsorption in natural zeolite adsorption in presence of iron and manganese. In: Sancha A M (ed) Third international seminar on evaluation, and management of drinking water resources contamin ated by arsenic. http://www.cepis.ops-oms.org/bvsacd/arsenico/Arsenic2004/theme3/paper3.14.pdf. Accessed Dec 2009
  325. Rivera-Hernández JR, Green-Ruiz CR (2014) Effect of pH on As3+ sorption from aqueous solution by red clays. In: Litter MI, Nicolli HB, Meichtry JM, Quici N, Bundschuh J, Bhattacharya P, Naidu R (eds) One century of the discovery of Arsenicosis in Latin America (1914–2014). CRC Press, London, pp 702–704CrossRefGoogle Scholar
  326. Rivera-Huerta M L, Cortés-Muñoz J E, Piña-Soberanis M, Martín Domínguez A (2000) Remoción de hierro y arsénico de agua de consumo humano mediante precipitación y adsorción en Zimapán, Hidalgo, México. In: Anales del XXVII Congreso Interamericano de Ingeniería Sanitaria y Ambiental: Las Américas y la Acción por el Medio Ambiente en el Mundo, Río de Janeiro, ABES, p 1–8Google Scholar
  327. Robles-Osorio ML, Pérez-Maldonado IV, del Campo DM, Montero-Perea D, Avilés-Romo I, Sabath-Silva E, Sabath E (2012) Urinary arsenic levels and risk of renal injury in a cross-sectional study in open population. Rev Invest Clin 64:609–614Google Scholar
  328. Robles-Osorio ML, Sabath-Silva E, Sabath E (2015) Arsenic-mediated nephrotoxicity. Ren Fail 37:542–547CrossRefGoogle Scholar
  329. Rocha-Amador D, Navarro ME, Carrizales L, Morales R, Calderón J (2007) Decreased intelligence in children and exposure to fluoride and arsenic in drinking water. Cad Saude Publica 23(Suppl 4):S579–S587CrossRefGoogle Scholar
  330. Roco A, Quiñones L, Acevedo C, Zagmutt O (2013) Cancer Status in Chile 2000 – 2010. Cuad Méd Soc (Chile) 53:83–94Google Scholar
  331. Rodríguez DJ, Quici N, Custo G, Cherchiet L, Ortiz M, Litter MI (2014) TiO2 photocatalytic oxidation of As(III) in the presence of Hg(II). In: Litter MI, Nicolli HB, Meichtry JM, Quici N, Bundschuh J, Bhattacharya P, Naidu R (eds) One century of the discovery of Arsenicosis in Latin America (1914–2014). CRC Press, London, pp 808–810CrossRefGoogle Scholar
  332. Rodríguez CM, Castillo E, Brandão PFB (2016) Evaluation of native sulphate-reducing bacteria for arsenic bioremediation. In: Bhattacharya P, Vahter M, Jarsijö J, Kumpiene J, Ahmad A, Sparrenborm C, Jacks G, Donselaar ME, Bundschuh J, Naidu R (eds) Arsenic research and global sustainability (As2016). CRC Press/Balkema, Taylor and Francis Group, London, pp 488–489CrossRefGoogle Scholar
  333. Rojas-Chaves P, Vargas-Benavides MJ, Araya-Obando A, Valverde-Cerdas J, Romero-Esquivel LG (2015) Estudio de remoción de arsénico en agua potable a nivel domiciliar mediante oxidación solar y coagulación-floculación (Study of arsenic removal in drinking water at household level using solar oxidation and coagulation-flocculation techniques). Tecnol Marcha 28:54–65CrossRefGoogle Scholar
  334. Roman MD, Niclis C, Aballay LR, Lantieri MJ, Díaz MDP, Muñoz SE (2018) Do exposure to arsenic, occupation and diet have synergistic effects on prostate cancer risk? Asian Pac J Cancer Prev 19:1495–1501Google Scholar
  335. Romero FM, Armienta MA, Carrillo-Chavez A (2004) Arsenic sorption by carbonate-rich aquifer material, a control on arsenic mobility at Zimapán, Mexico. Archiv Environ Contam Toxicol 47:1–13CrossRefGoogle Scholar
  336. Romero LG, Valverde J, Rojas P, Vargas MJ, Araya JA (2014) Exploring low-cost arsenic removal alternatives in Costa Rica. In: Litter MI, Nicolli HB, Meichtry JM, Quici N, Bundschuh J, Bhattacharya P, Naidu R (eds) One century of the discovery of Arsenicosis in Latin America (1914–2014). CRC Press, London, pp 853–855CrossRefGoogle Scholar
  337. Rosado JL, Ronquillo D, Kordas K, Rojas O, Alatorre J, Lopez P, Garcia-Vargas G, Caamaño MC, Cebrián ME, Stoltzfus RJ (2007) Arsenic exposure and cognitive performance in Mexican schoolchildren. Environ Health Perspect 115:1371–1375CrossRefGoogle Scholar
  338. Roy A, Kordas K, Lopez P, Rosado JL, Cebrian ME, Vargas GG, Ronquillo D, Stoltzfus RJ (2011) Association between arsenic exposure and behavior among first-graders from Torreón, Mexico. Environ Res 111:670–676CrossRefGoogle Scholar
  339. Ruiz G, Perez O, Sancha A M (1992) Filtración directa para el Tratamiento de Aguas Subterráneas con arsénico. In: Proceedings XXIII Congreso de la Asociación Interamericana de Ingeniería Sanitaria y Ambiental (AIDIS), AIDIS Cuba, La Habana, pp 729–39Google Scholar
  340. Saitua H, Campderros M, Cerutti S, Padilla AP (2005) Effect of operating conditions in removal of arsenic from water by nanofiltration membrane. Desalination 172:173–180CrossRefGoogle Scholar
  341. Sancha A (1986) Experiencia Chilena en remoción de arsénico en fuentes de agua potable. Sección Ingenieria Sanitaria y Ambiental, Universidad de Chile, SantiagoGoogle Scholar
  342. Sancha A M (1996) Experiencia Chilena en Abatimiento de Arsénico. Seminario Potabilización de Aguas con Arsénico y Flúor. 9°. Congreso Argentino de Saneamiento y Medio Ambiente. Córdoba- ArgentinaGoogle Scholar
  343. Sancha A (1999) Full-scale application of coagulation processes for arsenic removal in Chile: a successful case study. In: Chappell W, Abernathy C, Calderon R (eds) Arsenic exposure and health effects. Elsevier, Amsterdam, pp 373–378CrossRefGoogle Scholar
  344. Sancha A (2000) Removal of arsenic from drinking water supplies: Chile experience. Water Supp 18:621–625Google Scholar
  345. Sancha AM (2003) Removing arsenic from drinking water: a brief review of some lessons learned and gaps arisen in Chilean water utilities. In: Chappell WR, Abernathy CO, Calderon RL, Thomas DJ (eds) Arsenic exposure and health effects V. Elsevier B.V, Amsterdam, pp 471–481CrossRefGoogle Scholar
  346. Sancha AM (2006) Review of coagulation technology for removal of arsenic: Case of Chile. J Health Popul Nutr 24:267–272Google Scholar
  347. Sancha AM (2010a) Remoción de arsénico por coagulación y precipitación. In: Litter MI, Sancha AM, Ingallinella AM (eds) Tecnologías económicas para el abatimiento de arsénico en aguas. Editorial Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo, Buenos Aires, pp 33–41Google Scholar
  348. Sancha AM (2010b) Importancia de la matriz de agua a tratar en la selección de las tecnologías de abatimiento de arsénico. In: Litter MI, Sancha AM, Ingallinella AM (eds) Tecnologías económicas para el abatimiento de arsénico en aguas. Editorial Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo, Buenos Aires, pp 145–153Google Scholar
  349. Sancha AM (2010c) Experiencia chilena en la remoción de arsénico a escala de planta de Tratamiento. In: Litter MI, Sancha AM, Ingallinella AM (eds) Tecnologías económicas para el abatimiento de arsénico en aguas. Editorial Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo, Buenos Aires, pp 169–178Google Scholar
  350. Sancha AM, Castro ML (2001) Arsenic in Latin America: occurrence, exposure, health effects and remediation. In: Chappell WR, Abernathy CO, Calderon RL (eds) Arsenic exposure and health effects IV. Elsevier B.V., Amsterdam, pp 88–96Google Scholar
  351. Sancha AM, Fuentealba C (2009) Application of coagulation-filtration processes to remove arsenic from low-turbidity waters. In: Bundschuh J, Armienta MA, Birkle P, Bhattacharya P, Matschullat J, Mukherjee AB (eds) Natural arsenic in groundwater of Latin America. CRC Press/Balkema Publisher, Leiden, pp 581–588Google Scholar
  352. Sancha A, Ruiz G (1984) Estudio del proceso de remoción de arsénico de fuentes de agua potable empleando sales de aluminio. In: Proceedings XIX Congreso Interamericano de Ingeniería Sanitaria y Ambiental (AIDIS) Chile, Tema I Agua Potable 2:380–410Google Scholar
  353. Sancha A M, Vega F, Fuentes S (1992) Speciation of arsenic present in water inflowing to the Salar del Carmen treatment plant in Antofagasta, Chile, and its incidence on the removal process. In: International Seminar Proceedings. Arsenic in the environment and its incidence on health. Universidad de Chile, Chile, p 183–186Google Scholar
  354. Sancha A M, O’Ryan R, Pérez O (2000) The removal of arsenic from drinking water and associated costs: the Chilean case. Interdisciplinary Perspectives on drinking water risk assessment and management. IAHS Publ 260, pp 17–25Google Scholar
  355. Saralegui A, García JI, Gobbi A, Boeykens S (2014) Dead macrophyte biomass utilization for the adsorption of arsenic from aqueous solutions. In: Litter MI, Nicolli HB, Meichtry JM, Quici N, Bundschuh J, Bhattacharya P, Naidu R (eds) One century of the discovery of Arsenicosis in Latin America (1914–2014). CRC Press, London, pp 742–744Google Scholar
  356. Schlebusch CM, Lewis CM Jr, Vahter M, Engström K, Tito RY, Obregón-Tito AJ, Huerta D, Polo SI, Medina ÁC, Brutsaert TD, Concha G, Jakobsson M, Broberg K (2013) Possible positive selection for anarsenic-protective haplotype in humans. Environ Health Perspect 121:53–58CrossRefGoogle Scholar
  357. Schlebusch CM, Gattepaille LM, Engström K, Vahter M, Jakobsson M, Broberg K (2015) Human Adaptation to Arsenic-Rich Environments. Mol Biol Evol 32:1544–1555CrossRefGoogle Scholar
  358. Schouten JN, Verheij J, Seijo S (2015) Idiopathic non-cirrhotic portal hypertension: a review. Orphanet J Rare Dis 10:67.  https://doi.org/10.1186/s13023-015-0288-8CrossRefGoogle Scholar
  359. Secretaría de Obras Públicas; Ministerio de Planificación Federal, Inversión Pública y Servicios (n.d.) Proyecto S10068 y S10064. http://www.vivienda.gob.ar/adjuntos/0b04f1260de41f646bb678aca593b6aa.pdf. Accessed Jul 2018.
  360. Secretaría de Políticas, Regulación e Institutos y Secretaría de Agricultura, Ganadería y Pesca, Código Alimentario Argentino, Resolución Conjunta 34/2012 y 50/2012 Modificación (2012) https://www.ecolex.org/details/legislation/resolucion-conjunta-no-342012-y-502012-prorrogase-el-plazo-de-cinco-anos-previsto-en-los-articulos-982-y-983-del-codigo-alimentario-argentino-lex-faoc110418/. Accessed Jul 2018.
  361. SenGupta A K, Cumbal L H (2005) Method of manufacture and use of hybridanion exchanger for selective removal of contaminating ligands from fluids. US Patent Appl. 156136 (07/21/05)Google Scholar
  362. Sepúlveda P, Muñoz Lira D, Suazo J, Arancibia-Miranda N, Rubio MA (2016) Synthesis of Fe-Cu bimetallic nanoparticles: effect of percentage of Cu in the removal of As present in aqueous matrices. In: Bhattacharya P, Vahter M, Jarsijö J, Kumpiene J, Ahmad A, Sparrenborm C, Jacks G, Donselaar ME, Bundschuh J, Naidu R (eds) Arsenic research and global sustainability (As2016). CRC Press/Balkema, Taylor and Francis Group, London, pp 503–504CrossRefGoogle Scholar
  363. Sharma A, Flora SJS (2018) Nutritional management can assist a significant role in alleviation of arsenicosis. J Trace Elem Med Biol 45:11–20CrossRefGoogle Scholar
  364. Sharma VK, Sohn M (2009) Aquatic arsenic: toxicity, speciation, transformations, and remediation. Environ Int 35:743–759CrossRefGoogle Scholar
  365. Silva GC, Vasconcelos IF, Carvalho RP, Dantas MSS, Ciminelli VST (2009) Molecular modeling of iron and arsenic interactions with carboxyl groups in natural biomass. Environ Chem 6:1–7CrossRefGoogle Scholar
  366. Simeonova V (2000) Pilot study for arsenic removal. Water Supply 18:636–640Google Scholar
  367. Smith AH, Hopenhayn-Rich C, Bates NM, Goeden HM, Hertz-Picciotto I, Dugdan HM, Wood R, Kosnett MJ, Smith MTE (1992) Environ Health Persp ECT97:259–267CrossRefGoogle Scholar
  368. Smith AH, Goycolea M, Haque R, Biggs ML (1998) Marked increase in bladder and lung cancer mortality in a region of Northern Chile due to arsenic in drinking water. Am J Epidemiol 147:660–669CrossRefGoogle Scholar
  369. Smith AH, Arroyo AP, Mazumder DN, Kosnett MJ, Hernandez AL, Beeris M, Smith MM, Moore LE (2000) Arsenic-induced skin lesions among Atacamenio people in Northern Chile despite good nutrition and centuries of exposure. Environ Health Perspect 108:617–620Google Scholar
  370. Smith AH, Marshall G, Yuan Y, Ferreccio C, Liaw J, von Ehrenstein O, Steinmaus C, Bates MN, Selvin S (2006) Increased mortality from lung cancer and bronchiectasis in young adults after exposure to arsenic in utero and in early childhood. Environ Health Perspect 114:1293–1296CrossRefGoogle Scholar
  371. Smith AH, Marshall G, Liaw J, Yuan Y, Ferreccio C, Steinmaus C (2012) Mortality in young adults following in utero and childhood exposure to arsenic in drinking water. Environ Health Perspect 120:1527–1531CrossRefGoogle Scholar
  372. Smith AH, Marshall G, Roh T, Ferreccio C, Liaw J, Steinmaus C (2018) Lung, bladder, and kidney cancer mortality 40 years after arsenic exposure reduction. J Natl Cancer Inst 110:241–249CrossRefGoogle Scholar
  373. Solsona F (1985) Informe final de la consultoría sobre remoción de flúor y arsénico de las aguas de bebida. Panamerican Health Organization, DurangoGoogle Scholar
  374. Solsona F (1986) Solución al problema del hidroarsenicismo en la Región Lagunera (Coahuila y Durango). Organización Panamericana de la Salud, MéxicoGoogle Scholar
  375. Soto-Peña GA, Luna AL, Acosta-Saavedra L, Conde P, López-Carrillo L, Cebrián ME, Bastida M, Calderón-Aranda ES, Vega L (2006) Assessment of lymphocyte subpopulations and cytokine secretion in children exposed to arsenic. FASEB J 20:779–781CrossRefGoogle Scholar
  376. Steinmaus, C-, Yuan, Y-, Kalman, D-, Rey, O.A., Skibola, C.F., Dauphiné, D., Basu, A., Porter, K.E., Hubbard, A., Bates, M.N., Smith, M.T., Smith, A.H. 2010. Individual differences in arsenic metabolism and lung cancer in a case-control study in Cordoba, Argentina. Toxicol Appl Pharmacol 247:138–145.CrossRefGoogle Scholar
  377. Steinmaus C, Ferreccio C, Acevedo J, Yuan Y, Liaw J, Durán V, Cuevas S, García J, Meza R, Valdés R, Valdés G, Benítez H, VanderLinde V, Villagra V, Cantor KP, Moore LE, Perez SG, Steinmaus S, Smith AH (2014) Increased lung and bladder cancer incidence in adults after in utero and early-life arsenic exposure. Cancer Epidemiol Biomark Prev 23:1529–1538CrossRefGoogle Scholar
  378. Steinmaus C, Castriota F, Ferreccio C, Smith AH, Yuan Y, Liaw J, Acevedo J, Pérez L, Meza R, Calcagno S, Uauy R, Smith MT (2015) Obesity and excess weight in early adulthood and high risks of arsenic-related cancer in later life. Environ Res 142:594–601CrossRefGoogle Scholar
  379. Steinmaus C, Ferreccio C, Acevedo J, Balmes JR, Liaw J, Troncoso P, Dauphiné DC, Nardone A, Smith AH (2016) High risks of lung disease associated with early-life and moderate lifetime arsenic exposure in northern Chile. Toxicol Appl Pharmacol 313:10–15CrossRefGoogle Scholar
  380. Storniolo A, Martín R, Thir M, Cortes J, Ramirez A, Mellano F, Bundschuh J, Bhattacharya P (2005) Reduction of the arsenic content in water using natural geological materials. In: Galindo G, Fernández-Turiel JL, Parada MA, Gimeno Torrente D (eds) Arsenic in water: origen, mobility and treatment. Taller. II Seminario Hispano-Latinoamericano sobre temas actuales de hidrología subterránea – IV Congreso Hidrogeológico Argentino, pp 173–182Google Scholar
  381. Styblo M, Del Razo LM, Vega L, Germolec DR, LeCluyse EL, Hamilton GA, Reed W, Wang C, Cullen WR, Thomas DJ (2000) Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Arch Toxicol 74:289–299CrossRefGoogle Scholar
  382. Su C, Puls RW (2001) Arsenate and arsenite removal by zerovalent iron: kinetics, redox transformation, and implications for in situ groundwater remediation. Environ Sci Technol 35:1487–1492CrossRefGoogle Scholar
  383. Superneau L (2012) Codelco, EcoMetals launch arsenic treatment plant. www.ecometales.cl. http://www.bnamericas.com/news/mining/codelco-ecometals-launch-arsenic-treatment-plant. Accessed Jan 2015
  384. Teixeira MC, Ciminelli VST (2005) Development of a biosorbent for arsenite: structural modeling based on x-ray spectroscopy. Environ Sci Technol 39:895–900CrossRefGoogle Scholar
  385. Trelles R, Larghi A, Paez J (1970) El problema sanitario de las aguas destinadas a la bebida humana con contenidos elevados de arsénico, vanadio y flúor. Universidad de Buenos Aires. Facultad de Ingeniería Sanitaria, Publicación No. 4Google Scholar
  386. Triszcz JM, Porta A, García Einschlag FS (2009) Effect of operating conditions on iron corrosion rates in zero-valent iron systems for arsenic removal. Chem Eng J 150:431–439CrossRefGoogle Scholar
  387. Tseng CH (2009) A review on environmental factors regulating arsenic methylation in humans. Toxicol Appl Pharmacol 235:338–350CrossRefGoogle Scholar
  388. Tufo AE, Marchi MC, dos Santos Afonso M, Sileo EE, Landi SM (2014) Influence of the Al-for-Fe substitution in the adsorption of As(V) onto goethites—morphological surface characterization. In: Litter MI, Nicolli HB, Meichtry JM, Quici N, Bundschuh J, Bhattacharya P, Naidu R (eds) One century of the discovery of Arsenicosis in Latin America (1914–2014). CRC Press, London, pp 699–701CrossRefGoogle Scholar
  389. Valles-Aragón MC, Alarcón-Herrera MT (2014) Seasonal variation of redox potential and arsenic removal from water in a constructed wetland mesocosm. In: Litter MI, Nicolli HB, Meichtry JM, Quici N, Bundschuh J, Bhattacharya P, Naidu R (eds) One century of the discovery of Arsenicosis in Latin America (1914–2014). CRC Press, London, pp 748–750CrossRefGoogle Scholar
  390. Van den Bergh K, Du Laing G, Montoya JC, De Deckere E, Tack F (2010) Arsenic in drinking water wells on the Bolivian high plain: Field monitoring and effect of salinity on removal efficiency of iron-oxides containing filters. J Environ Sci Health Part 45:1741–1749CrossRefGoogle Scholar
  391. Vasconcelos FM, Ciminelli VST, Oliveira RP, Silva RJ (2004) Determination of chemical speciation and the potential of As remobilization in mining sites. Geochim Bras 18:115–120Google Scholar
  392. Villa G, Huamaní C, Charvez M, Huamaní J (2016) In: Bhattacharya P, Vahter M, Jarsijö J, Kumpiene J, Ahmad A, Sparrenborm C, Jacks G, Donselaar ME, Bundschuh J, Naidu R (eds) Arsenic research and global sustainability, Proceedings 6th. International Congress on Arsenic in the Environment (As2016), Stockholm, Sweden. CRC Press/Balkema, Taylor and Francis Group, London, pp 531–532Google Scholar
  393. Villela-Martínez DE, Leyva-Ramos R, Mendoza-Barron J (2016) Removal of As(V) supported on bone char. In: Bhattacharya P, Vahter M, Jarsijö J, Kumpiene J, Ahmad A, Sparrenborm C, Jacks G, Donselaar ME, Bundschuh J, Naidu R (eds) Arsenic research and global sustainability (As2016). CRC Press/Balkema, Taylor and Francis Group, London, pp 507–509CrossRefGoogle Scholar
  394. WaterWorld (2010) Desalination plant to serve Chilean mine. https://www.waterworld.com/articles/2010/03/desalination-plant-to-serve-chilean-mine.html
  395. Wegelin M, Gechter D, Hug S, Mahmud A, Motaleb A (2000) SORAS-a simple arsenic removal process. In: Water, sanitation, hygiene: challenges of the millennium. 26th WEDC Conference, Dhaka, Bangladesh, p 379–382Google Scholar
  396. Westergren R (2006) Arsenic removal using biosorption with Chitosan Evaluating the extraction and adsorption performance of Chitosan from shrimp shell waste. A Minor Field Study, MSc. Thesis KTH, the Royal Institute of Technology, StockholmGoogle Scholar
  397. World Health Organization (WHO) (2011) Guidelines for drinking-water quality, 4th edn. World Health Organization, Suiza. [en línea]. Disponible en: http://whqlibdoc.who.int/publications/2011/9789241548151_eng.pdf?ua=1. Consulta: noviembre 2017.
  398. World Health Organization (WHO) (2017) Cardiovascular diseases (CVDs) key facts. http://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds). Accessed July 2018
  399. Xu X, Drobná Z, Voruganti VS, Barron K, González-Horta C, Sánchez-Ramírez B, Ballinas-Casarrubias L, Cerón RH, Morales DV, Terrazas FA, Ishida MC, Gutiérrez-Torres DS, Saunders RJ, Crandell J, Fry RC, Loomis D, García-Vargas GG, Del Razo LM, Stýblo M, Mendez MA (2016) Association between variants in arsenic (+3 oxidation state) methyltranserase (AS3MT) and urinary metabolites of inorganic arsenic: role of exposure level. Toxicol Sci 153:112–123CrossRefGoogle Scholar
  400. Yáñez J, Mansilla HD, Santander IP, Fierro V, Cornejo L, Barnes RM, Amarasiriwardena D (2015) Urinary arsenic speciation profile in ethnic group of the Atacama desert (Chile) exposed to variable arsenic levels in drinking water. J Environ Sci Health A 50:1–8CrossRefGoogle Scholar
  401. Yonni F, Fasoli HJ, Fernández AE, Martínez LC, Alvarez JH (2016) Ergonomic design of a system for removal of arsenic for household use. In: Bhattacharya P, Vahter M, Jarsijö J, Kumpiene J, Ahmad A, Sparrenborm C, Jacks G, Donselaar ME, Bundschuh J, Naidu R (eds) Arsenic research and global sustainability (As2016). CRC Press/Balkema, Taylor and Francis Group, London, pp 545–546CrossRefGoogle Scholar
  402. Yuan Y, Marshall G, Ferreccio C, Steinmaus C, Selvin S, Liaw J, Bates MN, Smith AH (2007) Acute myocardial infarction mortality in comparison with lung and bladder cancer mortality in arsenic-exposed region II of Chile from 1950 to 2000. Am J Epidemiol 166:1381–1391CrossRefGoogle Scholar
  403. Yuan Y, Marshall G, Ferreccio C, Steinmaus C, Liaw J, Bates M, Smith AH (2010) Kidney cancer mortality: fifty- year latency patterns related to arsenic exposure. Epidemiology 21:103–108CrossRefGoogle Scholar
  404. Zaldivar R (1980) A morbid condition involving cardio- vascular, bronco pulmonary, digestive and neural lesions in children and young infants after dietary arsenic exposure. Zbl Bakt I Abt Orig B 170:44–56Google Scholar
  405. Zurita F, De Anda J, Belmont MA (2009) Treatment of domestic wastewater and production of commercial flowers in vertical and horizontal subsurface-flow constructed wetlands. Ecol Eng 35:861–869CrossRefGoogle Scholar
  406. Zurita F, Belmont MA, De Anda J, White JR (2011) Seeking a way to promote the use of constructed wetlands for domestic wastewater treatment in developing countries. Water Sci Technol 63:654–659CrossRefGoogle Scholar
  407. Zurita F, Del Toro-Sánchez CL, Gutierrez-Lomelí M, Rodriguez-Sahagún A, Castellanos-Hernandez OA, Ramírez-Martínez G, White JR (2012) Preliminary study on the potential of arsenic removal by subsurface flow constructed mesocosms. Ecol Eng 47:101–104CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Marta I. Litter
    • 1
    • 2
  • María A. Armienta
    • 3
  • Ruth E. Villanueva Estrada
    • 4
  • Edda C. Villaamil Lepori
    • 5
  • Valentina Olmos
    • 5
  1. 1.Gerencia Química, Comisión Nacional de Energía Atómica-CONICETSan Martín, Prov. de Buenos AiresArgentina
  2. 2.Instituto de Investigación e Ingeniería AmbientalUniversidad Nacional de General San Martín, Campus MigueleteSan Martín, Prov. de Buenos AiresArgentina
  3. 3.Universidad Nacional Autónoma de México, Instituto de Geofísica, Circuito ExteriorCU, Ciudad de MéxicoMéxico
  4. 4.Instituto de Geofísica, Unidad MichoacánUniversidad Nacional Autónoma de México, Campus-MoreliaMoreliaMéxico
  5. 5.Facultad de Farmacia y Bioquímica, Cátedra de Toxicología y Química LegalUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations