Arsenic in Latin America: Part I

  • Marta I. Litter
  • María A. Armienta
  • Ruth E. Villanueva Estrada
  • Edda C. Villaamil Lepori
  • Valentina Olmos


A complete analysis on the occurrence of arsenic (As) in aquifers and several superficial water bodies in Latin America, identified in 13 countries, is presented. The Chaco-Pampean plain in Argentina is the largest area affected by groundwater As contamination. Research on the chemical and hydrogeological processes of release and mobilization of As has also been developed in Mexico, Chile, Bolivia, Peru, and Nicaragua. In most of the contaminated areas, As originates from geogenic sources, mainly volcanic rocks, hydrothermal fluids, and As-bearing minerals. However, anthropogenic sources are also present in certain zones, most of them coming from mining operations and, in some cases, related to agriculture. Mining is indeed the main As source in Brazil. The physicochemical characteristics of the water, such as pH and Eh, and the presence of other ions influence the mobilization of As. Hydrogeological conditions also determine the occurrence of As contamination. It has been found that the element is in the As(V) form in most locations. In all Latin American countries, more research has still to be conducted to determine As concentrations and speciation in water bodies used as drinking water source, to unravel its origin and mobilization processes.

Regarding analytical methods on As determination, 167 papers in scientific journals have been identified in the last 18 years in Latin America. The most widely analytical methodologies used for As determination are AAS (57%), specifically HG-AAS, and ICP (26%), mainly coupled with MS. Electrochemical methods have been applied in Chile, Brazil, and Argentina. UV-VIS spectrometry has been used mainly in Cuba and Mexico. XRF spectrometry, principally for solid samples, has been used in Mexico, Cuba, Brazil, Argentina, and Chile. Other used methodologies are INAA, the ARSOlux Biosensor and the SPRN technique.


Argentina Arsenic Brazil Chile HG-AAS XRF spectrometry 



Atomic absorption spectrometry


Anion exchange


Anion exchange chromatography


Atomic emission spectrometry


Atomic fluorescence spectrometry


Anodic stripping square-wave voltammetry


Anodic stripping voltammetry


Adsorptive stripping voltammetric carrageenan modified carbon paste electrode


Bi-directional electrostacking system


Cloud point extraction


Cathodic stripping voltammetry


Cryotrapping gas


Differential pulse polarography


Electrochemical hydride generation


Electrothermal atomic absorption spectrometry


Electrothermal vaporizer


Ethyl vinyl acetate


Flow injection


Gas chromatography with pulsed flame photometric detection


Graphite furnace atomic absorption spectrometry


Granular ferric hydroxide


Hydride generation


High pressure liquid chromatography


High-resolution continuum source


Headspace solid-phase micro-extraction


Ionic chromatography


Inductively coupled plasma atomic emission spectroscopy


Inductively coupled plasma mass spectrometry


Inductively coupled plasma optical emission spectrometry


Instrumental neutron activation analysis


Ion exchange/electrodialysis


Laser ablation


Liquid chromatography


Microwave plasma


Mass spectrometry


Multisyringe flow injection analysis


Copper nanoparticles supported in polyamide pellets


Sequential injection analysis


Solid phase extraction


Surface plasmon resonance nanosensor


Square wave cathodic stripping voltammetry




X-ray fluorescence spectrometry



This work was supported by Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) from Argentina under PICT-2015-0208 and by BioCriticalMetals-ERAMIN 2015 grants. We want to appreciate the support of Olivia Cruz, Alejandra Aguayo, Nora E. Ceniceros Bombela, and Blanca X. Felipe Martínez from the Geophysics Institute, UNAM, on the search of bibliographic information.


  1. Alarcón-Herrera MT, Bundschuh J, Nath B, Nicolli HB, Gutierrez M, Reyes-Gomez VM, Nunez D, Martín-Dominguez IR, Sracek O (2013) Co-occurrence of arsenic and fluoride in groundwater of semi-arid regions in Latin America: genesis, mobility and remediation. J Hazard Mater 262:960–969CrossRefGoogle Scholar
  2. Alcántara-Martínez N, Figueroa-Martínez F, Rivera-Cabrera F, Gutiérrez-Sánchez G, Volke-Sepúlveda T (2018) An endophytic strain of Methylobacterium sp. increases arsenate tolerance in Acacia farnesiana (L.) Willd: a proteomic approach. Sci Total Environ 625:762–774CrossRefGoogle Scholar
  3. Alonso DL, Latorre S, Castillo E, Brandão PFB (2014) Environmental occurrence of arsenic in Colombia: a review. Environ Pollut 186:272–281CrossRefGoogle Scholar
  4. Altamirano Espinoza M, Bundschuh J (2009) Natural arsenic groundwater contamination of the sedimentary aquifers of southwestern Sébaco valley, Nicaragua. In: Bundschuh J, Armienta MA, Birkle P, Bhattacharya P, Matschullat J, Mukherjee AB (eds) Natural arsenic in groundwaters of Latin America. CRC Press, London, pp 109–122Google Scholar
  5. Álvarez María A, Carrillo G (2012) Simultaneous determination of arsenic, cadmium, copper, chromium, nickel, lead and thallium in total digested sediment samples and available fractions by electrothermal atomization atomic absorption spectroscopy (ETAAS). Talanta 97:505–512CrossRefGoogle Scholar
  6. Alves VN, Neri TS, Borges SSO, Carvalho DC, Coelho NMM (2017) Determination of inorganic arsenic in natural waters after selective extraction using Moringa oleífera seeds. Ecol Eng 106:431–435CrossRefGoogle Scholar
  7. Amaral CDB, Nóbrega JA, Noguiera ARA (2013) Sample preparation for arsenic speciation in terrestrial plants – a review. Talanta 115:291–299CrossRefGoogle Scholar
  8. Amaral CDB, Nóbrega JA, Nogueira ARA (2014) Investigation of arsenic species stability by HPLC-ICP-MS in plants stored under different conditions for 12 months. Microchem J 117:122–126CrossRefGoogle Scholar
  9. Amaro AS, Venecia Herrera BC, Lictevout E (2014) Spatial distribution of arsenic in the region of Tarapacá, Northern Chile. In: Litter MI, Nicolli HB, Meichtry JM, Quici N, Bundschuh J, Bhattacharya P, Naidu R (eds) One century of the discovery of arsenicosis in Latin America (1914–2014). CRC Press, London, pp 54–55CrossRefGoogle Scholar
  10. Antunes VM, Welz B, Curtius AJ (2002) Determination of arsenic in sediments, coal and fly ash slurries after ultrasonic treatment by hydride generation atomic absorption spectrometry and trapping in an iridium-treated graphite tube. Spectrochim Acta Part B 57:2057–2067CrossRefGoogle Scholar
  11. Arancibia V, López A, Zuñiga MC, Segura R (2006) Extraction of arsenic as the diethyl dithiophosphate complex with supercritical fluid and quantitation by cathodic stripping voltammetry. Talanta 68:1567–1573CrossRefGoogle Scholar
  12. Aranda PR, Llorens I, Perino E, De Vito I, Raba J (2016) Removal of arsenic (V) ions from aqueous media by adsorption on multiwall carbon nanotubes thin film using XRF technique. Environ Nanotechnol Monit Manag 5:21–26Google Scholar
  13. Araujo-Barbosa U, Peña-Vazquez E, Barciela-Alonso MC, Costa Ferreira SL, Pinto dos Santos AM, Bermejo-Barrera P (2017) Simultaneous determination and speciation analysis of arsenic and chromium in iron supplements used for iron-deficiency anemia treatment by HPLC-ICP-MS. Talanta 170:523–529CrossRefGoogle Scholar
  14. Arcega-Cabrera F, Fargher LF (2016) Education, fish consumption, well water, chicken coops, and cooking fires: using biogeochemistry and ethnography to study exposure of children from Yucatan, Mexico to metals and arsenic. Sci Total Environ 568:75–82CrossRefGoogle Scholar
  15. Archer J, Hudson-Edwards KA, Preston DA, Howarth RJ, Linge K (2005) Aqueous exposure and uptake of arsenic by riverside communities affected by mining contamination in the Río Pilcomayo basin, Bolivia. Min Mag 69:719–736CrossRefGoogle Scholar
  16. Argos M, Kalra T, Pierce BL, Chen Y, Parvez F, Islam T, Ahmed A, Hasan R, Hasan K, Sarwar G, Levy D, Slavkovich V, Graziano JH, Rathouz PJ, Ahsan H (2011) A prospective study of arsenic exposure from drinking water and incidence of skin lesions in Bangladesh. Am J Epidemiol 174:185–194CrossRefGoogle Scholar
  17. Armienta MA, Segovia N (2008) Arsenic and fluoride in the groundwater of Mexico. Environ Geochem Health 30:345–353CrossRefGoogle Scholar
  18. Armienta MA, Rodríguez R, Cruz O (1997) Arsenic content in hair of people exposed to natural arsenic polluted groundwater at Zimapán, México. Bull Environ Contam Toxicol 59:583–589CrossRefGoogle Scholar
  19. Armienta MA, Villaseñor G, Rodriguez R, Ongley LK, Mango H (2001) The role of arsenic-bearing rocks in groundwater pollution at Zimapán Valley, México. Environ Geol 40:571–581CrossRefGoogle Scholar
  20. Armienta MA, Talavera O, Morton O, Barrera M (2003) Geochemistry of metals from Mine Tailings in Taxco, Mexico. Bull Environ Contam Toxicol 71:387–393CrossRefGoogle Scholar
  21. Armienta MA, Rodríguez R, Segovia N, Monteil M (2010) Medical geology in Mexico, Central America and the Caribbean. In: Selinus O, Finkelman RB, Centeno JA (eds) Medical geology a regional synthesis. Springer, New York, pp 59–78CrossRefGoogle Scholar
  22. Armienta MA, Villaseñor G, Cruz O, Ceniceros N, Aguayo A, Morton O (2012) Geochemical processes and mobilization of toxic metals and metalloids in an As-rich base metal waste pile in Zimapán, Central Mexico. Appl Geochem 27:2225–2237CrossRefGoogle Scholar
  23. Armienta MA, Rodríguez R, Ceniceros N, Cruz O, Aguayo A, Morales P, Cienfuegos E (2014) Groundwater quality and geothermal energy. The case of Cerro Prieto geothermal field, México. Renew Energy 63:236–254CrossRefGoogle Scholar
  24. Armienta MA, Mugica V, Reséndiz I, Gutierrez AM (2016) Arsenic and metals mobility in soils impacted by tailings at Zimapán, México. J Soils Sediments 16:1267–1278CrossRefGoogle Scholar
  25. Arriaza B, Amarasiriwardena D, Cornejo L, Standen V, Byrne S, Bartkus L, Bandak B (2010) Exploring chronic arsenic poisoning in pre-Columbian Chilean mummies. J Archaeol Sci 37:1274–1278CrossRefGoogle Scholar
  26. Arsénico en agua, informe Grupo Ad-Hoc Arsénico en agua (2018) Red de Seguridad Alimentaria, CONICET. Accessed Oct 2018
  27. Avilés M, Garrido SE, Esteller MV, De La Paz JS, Najera C, Cortés J (2013) Removal of groundwater arsenic using a household filter with iron spikes and stainless steel. J Environ Manag 131:103–109CrossRefGoogle Scholar
  28. Ayala AJ, Romero BH (2013) Presencia de metales pesados (arsénico y mercurio) en leche de vaca al sur de Ecuador. LA GRANJA. Rev Cienc Vida 17:36–46Google Scholar
  29. Barra CM, Correia dos Santos MM (2001) Speciation of inorganic arsenic in natural waters by square-wave cathodic stripping voltammetry. Electroanalysis 13:1098–1104CrossRefGoogle Scholar
  30. Barra CM, Cervera ML, De la Guardia M, Erthal Santelli R (2000) Atomic fluorescence determination of inorganic arsenic in soils after microwave-assisted distillation. Anal Chim Acta 407:155–163CrossRefGoogle Scholar
  31. Batista BL, Souza JMO, De Souza SS, Barbosa F Jr (2011) Speciation of arsenic in rice and estimation of daily intake of different arsenic species by Brazilians through rice consumption. J Hazard Mater 191:342–348CrossRefGoogle Scholar
  32. Bhattacharya P, Claesson M, Bundschuh J, Sracek O, Fagerberg J, Jacks G, Martin RA, Storniolo A, Thir JM (2006) Distribution and mobility of arsenic in the Rio Dulce alluvial aquifers in Santiago del Estero Province. Sci Total Environ 358:97–120CrossRefGoogle Scholar
  33. Bidone ED, Castillos ZC, Santos MCB, Silva RSV, Cesar RG, Ferreira M (2014) Arsenic levels in natural and drinking waters from Paracatu, MG, Brazil. In: Litter MI, Nicolli HB, Meichtry JM, Quici N, Bundschuh J, Bhattacharya P, Naidu R (eds) One century of the discovery of arsenicosis in Latin America (1914–2014). CRC Press, London, pp 162–164CrossRefGoogle Scholar
  34. Birkle P, Bundschuh J, Sracek O (2010) Mechanisms of arsenic enrichment in geothermal and petroleum reservoirs fluids in Mexico. Water Res 44:5605–5617CrossRefGoogle Scholar
  35. Blanes PS, Buchamer EE, Giménez MC (2011) Natural contamination with arsenic and other trace elements in groundwater of the Central–West region of Chaco, Argentina. J Environ Sci Health, A 46:1197–1207CrossRefGoogle Scholar
  36. Boochs PW, Billib M, Gutiérrez C, Aparicio J (2014) Groundwater contamination with arsenic, Región Lagunera, México. In: Litter MI, Nicolli HB, Meichtry JM, Quici N, Bundschuh J, Bhattacharya P, Naidu R (eds) One century of the discovery of arsenicosis in Latin America (1914–2014). CRC Press, London, pp 132–134CrossRefGoogle Scholar
  37. Bruhn CG, Bustos CJ, Sáez KL, Neira JY, Álvarez SE (2007) A comparative study of chemical modifiers in the determination of total arsenic in marine food by tungsten coil electrothermal atomic absorption spectrometry. Talanta 71:81–89CrossRefGoogle Scholar
  38. Bühl V, Álvarez C, Kordas K, Pistón M, Mañay N (2015) Development of a simple method for the determination of toxicologically relevant species of arsenic in urine using HG-AAS. J Environ Pollut Human Health 3:46–51CrossRefGoogle Scholar
  39. Bundschuh, J., Pérez-Carrera, A., Litter, M. 2008. Distribución del arsénico en las regiones Ibérica e Iberoamericana. Editorial Programa Iberoamericano de Ciencia y Tecnología para el DesarrolloGoogle Scholar
  40. Bundschuh J, Litter M, Ciminelli V, Morgada ME, Cornejo L, Garrido Hoyos S, Hoinkis J, Alarcón-Herrera MT, Armienta MA, Bhattacharya P (2010) Emerging mitigation needs and sustainable options for solving the arsenic problems of rural and isolated urban areas in Iberoamerica – a critical analysis. Water Res 44:5828–5845CrossRefGoogle Scholar
  41. Bundschuh J, Litter MI, Parvez F, Román-Ross G, Nicolli HB, Jiin-Shuh J, Chen-Wuing L, López D, Armienta MA, Guilherme LRG, Gomez Cuevas A, Cornejo L, Cumbal L, Toujaguez R (2012) One century of arsenic exposure in Latin America: a review of history and occurrence from 14 countries. Sci Total Environ 429:2–35CrossRefGoogle Scholar
  42. Cáceres DD, Pino P, Montesinos N, Atalah E, Amigo H, Loomis D (2005) Exposure to inorganic arsenic in drinking water and total urinary arsenic concentration in a Chilean population. Environ Res 98:151–159CrossRefGoogle Scholar
  43. Caiminagua A, Fernández L, Romero H, Lapo B, Alvarado J (2015) Electrochemical generation of arsenic volatile species using a gold/mercury amalgam cathode, determination of arsenic by atomic absorption spectrometry. Anal Chem Res 3:82–88CrossRefGoogle Scholar
  44. Cárdenas-González M, Osorio-Yáñez C, Gaspar-Ramírez O, Pavković M, Ochoa-Martínez A, López-Ventura D, Medeiros M, Barbier OC, Pérez-Maldonado IN, Sabbisetti VS, Bonventre JV, Vaidya VS (2016) Environmental exposure to arsenic and chromium in children is associated with kidney injury molecule-1. Environ Res 150:653–662CrossRefGoogle Scholar
  45. Carrera P, Espinoza-Montera PJ, Fernández L, Romero H, Alvarado J (2017) Electrochemical determination of arsenic in natural waters using carbon fiber ultra-microelectrode modified with gold nanoparticles. Talanta 166:198–206CrossRefGoogle Scholar
  46. Carrero P, Malave A, Burguera JL, Burguera M, Rondon C (2001) Determination of various arsenic species by flow injection hydride generation atomic absorption spectrometry: investigation of the effects of the acid concentration of different reaction media on the generation of arsines. Anal Chim Acta 438:195–204CrossRefGoogle Scholar
  47. Cassella RJ, de Sant’Ana OD, Santelli RE (2002) Determination of arsenic in petroleum refinery streams by electrothermal atomic absorption spectrometry after multivariate optimization based on Doehlert design. Spectrochim Acta B 57:1967–1978CrossRefGoogle Scholar
  48. Castro Grijalba A, Escudero LB, Wuilloud RG (2015) Capabilities of several phosphonium ionic liquids for arsenic species determination in water by liquid–liquid microextraction and electrothermal atomic absorption spectrometry. Anal Methods 7:490–499CrossRefGoogle Scholar
  49. Castro Grijalba A, Fiorentini EF, Martinez LD, Wuilloud RG (2016) A comparative evaluation of different ionic liquids for arsenic species separation and determination in wine varietals by liquid chromatography – hydride generation atomic fluorescence spectrometry. J Chromat A 1462:44–54CrossRefGoogle Scholar
  50. Cavicchioli A, La-Scalea M, Gutz IGR (2004) Analysis and speciation of traces of arsenic in environmental, food and industrial samples by voltammetry: a review. Electroanalysis 16:697–711CrossRefGoogle Scholar
  51. Cebrián ME, Albores A, García-Vergas G, Del Razo LM (1994) Chronic arsenic poisoning in humans: the case of Mexico. In: Nriagu JO (ed) Arsenic in the environment part II. Wiley, New York, pp 93–107Google Scholar
  52. Cervini-Silva J, Hernández-Pineda J, Rivas-Valdés MT, Cornejo-Garrido H, Guzmán J, Fernández-Lomelín P, Del Razo LM (2010) Arsenic (III) methylation in betaine–nontronite clay–water suspensions under environmental conditions. J Hazard Mater 178:450–454CrossRefGoogle Scholar
  53. Chávez M (2009) Evaluación de dos técnicas analíticas para la especiación de arsénico en aguas superficiales del sur del Perú. Rev Peru Med Exp 26:20–26Google Scholar
  54. Coelho NMM, Coelho LM, De Limac ES, Pastord A, De la Guardia M (2005) Determination of arsenic compounds in beverages by high-performance liquid chromatography-inductively coupled plasma mass spectrometry. Talanta 66:818–822CrossRefGoogle Scholar
  55. Coelho LM, Coelho NMM, Arruda MAZ, De la Guardia M (2007) On-line bi-directional electrostacking for As speciation/preconcentration using electrothermal atomic absorption spectrometry. Talanta 71:353–358CrossRefGoogle Scholar
  56. Contreras S, Henríquez-Vargas L, Álvarez PI (2017) Arsenic transport and adsorption modeling in columns using a copper nanoparticles composite. J Water Proc Eng 19:212–219CrossRefGoogle Scholar
  57. Cumbal LH, Bundschuh J, Aguirre V, Murgueitio E, Tipán I, Chávez C (2009) The origin of arsenic in sediments from Papallacta lake area in Ecuador. In: Bundschuh J, Armienta MA, Birkle P, Bhattacharya P, Matschullat J, Mukherjee AB (eds) Natural arsenic in groundwaters of Latin America. CRC Press, London, pp 81–90Google Scholar
  58. De Moraes FÉM, Cirne da Silva LL, Smanioto BJ, Fleig Saidelles AP, Zanella VR, Dressler L, Gottfried Paniz JN (2001) Minimization of volatile nitrogen oxides interference in the determination of arsenic by hydride generation atomic absorption spectrometry. Spectrochim Acta Part B 56:1883–1891CrossRefGoogle Scholar
  59. de Oliveira LK, Melo CA, Goveia D, Lobo FA, Armienta Hernández MA, Fraceto LF, Rosa AH (2015) Adsorption/desorption of arsenic by tropical peat: influence of organic matter, iron and aluminium. Environ Technol 36:149–159CrossRefGoogle Scholar
  60. De Pietri DE, Navoni JA, Olmos V, Giménez C, Bovi Mitre G, de Titto E, Villaamil Lepori EC (2014) Geospatial human health risk assessment in an Argentinean region of hydroarsenicism. In: Litter MI, Nicolli HB, Meichtry JM, Quici N, Bundschuh J, Bhattacharya P, Naidu R (eds) One century of the discovery of arsenicosis in Latin America (1914–2014). CRC Press, Taylor and Francis Group, London, pp 597–601CrossRefGoogle Scholar
  61. De Santana FA, Portugal LA, Serra AM, Ferrer L, Cerdà V, Ferreira SLC (2016) Development of a MSFIA system for sequential determination of antimony, arsenic and selenium using hydride generation atomic fluorescence spectrometry. Talanta 156–157:29–33CrossRefGoogle Scholar
  62. de Souza SVC, Pinto CT, Junqueira RG (2007) In-house method validation: application in arsenic analysis. J Food Compos Anal 20:241–247CrossRefGoogle Scholar
  63. Del Razo LM, Garcia-Vargas GG, Garcia-Salcedo J, Sanmiguel MF, Rivera M, Hernández MC, Cebrian ME (2002) Arsenic levels in cooked food and assessment of adult dietary intake of arsenic in the Region Lagunera, Mexico. Food Chem Toxicol 40:1423–1431CrossRefGoogle Scholar
  64. Díaz O, Tapia Y, Muños O, Montoro R, Velez D, Almela C (2012) Total and inorganic arsenic concentrations in different species of economically important algae harvested from coastal zones of Chile. Food Chem Toxicol 50:744–749CrossRefGoogle Scholar
  65. Dos Santos Costa BE, Melo Coelho NM, Melo Coelho L (2015) Determination of arsenic species in rice samples using CPE and ETAAS. Food Chem 178:89–95CrossRefGoogle Scholar
  66. Dos Santos QO, Silva Junior MM, Lemos VA, Ferreira SLC, de Andrade JB (2018) An online preconcentration system for speciation analysis of arsenic in seawater by hydride generation flame atomic absorption spectrometry. Microchem J 143:175–180CrossRefGoogle Scholar
  67. Dótor Almazán A, Armienta Hernández MA, Árcega Cabrera F, Talavera Mendoza O (2014) Arsenic and metals transport processes in surface waters from the mining district of Taxco, Mexico: stable isotopes application. Hidrobiol 24:245–256Google Scholar
  68. Echeverría J, Niemeyer HM, Muñoz L, Uribe M (2018) Arsenic in the hair of mummies from agro-ceramic times of Northern Chile (500 BCE–1200 CE). J Archaeol Sci Rep 21:175–182Google Scholar
  69. Escudero LB, Martinis EM, Olsina RA, Wuilloud RG (2013) Arsenic speciation analysis in mono-varietal wines by on-line ionic liquid-based dispersive liquid–liquid microextraction. Food Chem 138:484–490CrossRefGoogle Scholar
  70. Espinosa E, Armienta MA, Cruz O, Aguayo A, Ceniceros N (2009) Geochemical distribution of arsenic, cadmium, lead and zinc in river sediments affected by tailings in Zimapán, a historical polymetalic mining zone of México. Environ Geol 58:1467–1477CrossRefGoogle Scholar
  71. Espino-Valdés MS, Barrera-Prieto Y, Herrera-Peraza E (2009) Arsenic presence in North section of Meoqui–Delicias aquifer of State of Chihuahua, Mexico. Tecnociencia Chihuahua 3:8–17Google Scholar
  72. Esteller MV, Domínguez-Mariani E, Garrido SE, Avilés M (2015) Groundwater pollution by arsenic and other toxic elements in an abandoned silver mine, Mexico. Environ Earth Sci 74:2893–2906CrossRefGoogle Scholar
  73. Farías SS, Casa VA, Vázquez C, Ferpozzi L, Pucci GN, Cohen IM (2003) Natural contamination with arsenic and other trace elements in groundwaters of Argentine Pampean Plain. Sci Total Environ 309:187–199CrossRefGoogle Scholar
  74. Farías S, Smichowski P, Vélez D, Montoro R, Curtosi A, Vodopívez C (2007) Total and inorganic arsenic in Antarctic macroalgae. Chemosphere 69:1017–1024CrossRefGoogle Scholar
  75. Farias SS, Bianco de Salas G, Servant RE, Bovi Mitre G, Escalante J, Ponce RI, Ávila Carrera ME (2016) Survey of arsenic in drinking water and assessment of the intake of arsenic from water in Argentine Puna. In: Bundschuh J, Armienta MA, Birkle P, Bhattacharya P, Matschullat J, Mukherjee AB (eds) Natural arsenic in groundwaters of Latin America. CRC Press, London, pp 397–407Google Scholar
  76. Figueiredo BR, Litter MI, Silva CR, Mañay N, Londono SC, Rojas AM, Garzón C, Tosiani T, Di Giulio GM, De Capitani EM, Dos Anjos JASA, Angélica RS, Morita MC, Paoliello MMB, Cunha FG, Sakuma AM, Licht OA (2010) In: Selinus O, Finkelman RB, Centeno JA (eds) Medical geology studies in South America. Springer, New York, pp 79–106Google Scholar
  77. Funes Pinter I, Salomon MV, Gil R, Mastrantonio L, Bottini R, Piccoli P (2018) Arsenic and trace elements in soil, water, grapevine and onion in Jáchal, Argentina. Sci Total Environ 615:1485–1498CrossRefGoogle Scholar
  78. Gamboa JCM, Cornejo L, Acarapi J, Squella JA (2013) Determination of arsenic (III) by differential pulse polarography in the waters of Camarones area, Chile. J Chil Chem Soc 58:2031–2034CrossRefGoogle Scholar
  79. García MG, D’Hiriart J, Giullitti J, Hurng L, Custo G, Hidalgo M d V, Litter MI, Blesa MA (2004) Solar light induced removal of arsenic from contaminated groundwater: the interplay of solar energy and chemical variables. Sol Energy 77:601–613CrossRefGoogle Scholar
  80. Garrido Hoyos SE, Avilés Flores M, Rivera Huerta ML, Nájera Flores MC (2007) Diagnóstico de la presencia de arsénico en agua de pozo, Mixco, Guatemala, Final report TC-0711.3. Instituto Mexicano de Tecnología del Agua, JiutepecGoogle Scholar
  81. Gil RA, Ferrúa N, Salonia JA, Olsina RA, Martinez LD (2007) On-line arsenic co-precipitation on ethyl vinyl acetate turning-packed mini-column followed by hydride generation-ICP OES determination. J Hazard Mater 143:431–436CrossRefGoogle Scholar
  82. Gomez ML, Blarasin MT, Martínez DE (2009) Arsenic and fluoride in a loess aquifer in the central area of Argentina. Environ Geol 57:143–155CrossRefGoogle Scholar
  83. Gómez-Arroyo S, Armienta MA, Cortés-Eslava J, Villalobos-Pietrini R (1997) Sister chromatid exchanges in Vicia faba induced by arsenic-contaminated drinking water from Zimapan, Hidalgo, Mexico. Mutat Res 394:1–7CrossRefGoogle Scholar
  84. Gómez-Bernal JM, Morton Bermea O, Ruíz-Huerta EA, Armienta-Hernández MA, González DO (2014) Microscopic evidences of heavy metals distribution and anatomic alterations in breaching-leaves of Cupressus lindleyi growing around mining wastes. Microsc Res Tech 77:714–726CrossRefGoogle Scholar
  85. Gómez-Bernal JM, Ruiz-Huerta EA, Armienta Hernández MA, Luna-Pabello VM (2018) Heavy metals and arsenic phytoavailability index in pioneer plants from a semipermanent natural wetland. Environ Prog Sustain Energy 37:980–988CrossRefGoogle Scholar
  86. Guérèquiz R, Mañay N, Goso-Aguilar C, Fernández-Turiel JL, García-Valles M (2009) Environmental risk assessment of arsenic in the Raigon aquifer. Uruguay. Biologist (Lima) 7.. Special issue:C0130Google Scholar
  87. Hernández Ordáz G, Segura Castruita MA, Álvarez González Pico LC, Aldaco Nuncio RA, Fortis Hernández M, González Cervantes G (2013) Behavior of arsenic in soils of the región lagunera of Coahuila, Mexico. Terra Latinoam 31:291–303Google Scholar
  88. Hounslow AW (1995) Water quality data. Analysis and interpretation. Taylor & Francis Group. E.U.AGoogle Scholar
  89. Hurtado-Jiménez R, Gardea-Torresdey JL (2006) Contamination of drinking water supply with geothermal arsenic in Los Altos de Jalisco, Mexico, pp. 179–190. In: Bundschuh J, Armienta MA, Birkle P, Bhattacharya P, Matschullat J, Mukherjee AB (eds) Natural arsenic in groundwaters of Latin America. CRC Press, London, pp 179–190Google Scholar
  90. International Agency for Research on Cancer (IARC) (2012) Arsenic, metals, fibres, and dusts. Volume 100 C. A review of human carcinogens. IARC monographs on the evaluation of carcinogenic risks to humans. Arsenic, metals, fibres, and dusts. International Agency for Research on Cancer, World Health Organization, Lyon. vol100C/mono100C.pdfGoogle Scholar
  91. Jesus JP, Suárez CA, Ferreira JR, Giné MF (2011) Sequential injection analysis implementing multiple standard additions for As speciation by liquid chromatography and atomic fluorescence spectrometry (SIA-HPLC-AFS). Talanta 85:1364–1368CrossRefGoogle Scholar
  92. Kordas K, Roy AR, López P, García Vargas G, Cebrian ME, Vera-Aguilar E, Rosado JL (2017) Iron and zinc supplementation does not impact urinary arsenic excretion in Mexican school children. Nutr Res 185:205–210Google Scholar
  93. Labastida I, Armienta MA, Lara-Castro RH, Aguayo A, Cruz O, Ceniceros N (2013) Treatment of mining acidic leachates with indigenous limestone, Zimapan Mexico. J Hazard Mater 262:1187–1195CrossRefGoogle Scholar
  94. Lara René H, Velázquez Leticia J, Vazquez-Arenas J, Mallet M, Dossot M, Labastida I, Sosa-Rodríguez FS, Espinosa-Cristóbal LF, Escobedo-Bretado MA, Cruz R (2016) Arsenopyrite weathering under conditions of simulated calcareous soil. Environ Sci Pollut Res 23:3681–3706CrossRefGoogle Scholar
  95. Leiva ED, Rámila CDP, Vargas IT, Escauriaza CR, Bonilla CA, Pizarro GE, Regan JM, Pasten PA (2014) Natural attenuation process via microbial oxidation of arsenic in a high Andean watershed. Sci Total Environ 466–467:490–502CrossRefGoogle Scholar
  96. Lima EC, Brasil JL, Vaghetti JCP (2003) Valuation of different permanent modifiers for the determination of arsenic in environmental samples by electrothermal atomic absorption spectrometry. Talanta 60:103–113CrossRefGoogle Scholar
  97. Litter MI, Armienta MA, Farías SS (2009) Metodologías analíticas para la determinación y especiación de arsénico en aguas y suelos. Editorial Programa Iberoamericano de Ciencia y Tecnología para el DesarrolloGoogle Scholar
  98. López Guzmán D, Costilla Salazar R, Pelallo Martínez N, Alcaraz Contreras Y, Bocanegra Salazar M, Rocha Amador DO (2017) Micronucleus in exfoliated buccal cells of children, from Durango, Mexico, exposed to arsenic through drinking water. Rev Int Contam Amb 33:281–287CrossRefGoogle Scholar
  99. López DL, Ransom L, Monterrosa J, Soriano T, Barahona F, Olmos R, Bundschuh J (2009) Volcanic arsenic and boron pollution of Ilopango lake, El Salvador. In: Bundschuh J, Armienta MA, Birkle P, Bhattacharya P, Matschullat J, Mukherjee AB (eds) Natural arsenic in groundwaters of Latin America. CRC Press, London, pp 129–143Google Scholar
  100. López DL, Bundschuh J, Birkle P, Armienta MA, Cumbal L, Sracek O, Cornejo L, Ormachea M (2012) Arsenic in volcanic geothermal fluids of Latin America. Sci Total Environ 429:57–75CrossRefGoogle Scholar
  101. López DL, Ribó A, Quinteros E, Mejía R, López A, Orantes C (2014) Arsenic in soils, sediments, and water in area with high prevalence of chronic kidney disease of unknown etiology. In: Litter MI, Nicolli HB, Meichtry JM, Quici N, Bundschuh J, Bhattacharya P, Naidu R (eds) One century of the discovery of arsenicosis in Latin America (1914–2014). CRC Press, London, pp 251–254CrossRefGoogle Scholar
  102. López-Carrillo L, Gamboa-Loira B, Becerra W, Hernández-Alcaraz C, Hernández-Ramírez RU, Jay GA, Franco-Marina F, Cebrián ME (2016) Dietary micronutrient intake and its relationship with arsenic metabolism in Mexican women. Environ Res 151:445–450CrossRefGoogle Scholar
  103. López-Zepeda JL, Villalobos M, Gutiérrez-Ruiz M, Romero F (2008) The use of synchrotron micro-X-ray techniques to determine arsenic speciation in contaminated soils. In: Bundschuch J, Armienta MA, Birkle P, Bhattacharya P, Matschullat J, Mukherjee AB (eds) Natural arsenic in groundwater of latinoamerica, vol 1. CRC Press, London, pp 255–264CrossRefGoogle Scholar
  104. Macedo SM, de Jesus RM, Garcia KS, Hatje V, Queiroz AF d S, Ferreira SLC (2009) Determination of total arsenic and arsenic (III) in phosphate fertilizers and phosphate rocks by HG-AAS after multivariate optimization based on Box-Behnken design. Talanta 80:974–979CrossRefGoogle Scholar
  105. Mahlknecht J, Steinich B, Navarro de León I (2004) Groundwater chemistry and mass transfers in the Independence aquifer, Central Mexico, by using multivariate statistics and mass-balance models. Environ Geol 45:781–795CrossRefGoogle Scholar
  106. Mañay N, Pistón M, Goso C (2014) Arsenic environmental and health issues in Uruguay: a multidisciplinary approach. In: Litter MI, Nicolli HB, Meichtry JM, Quici N, Bundschuh J, Bhattacharya P, Naidu R (eds) One century of the discovery of arsenicosis in Latin America (1914–2014). CRC Press, London, pp 485–487CrossRefGoogle Scholar
  107. Mar Camacho L, Gutierrez M, Alarcon-Herrera MT, Villalba ML, Deng S (2011) Occurrence and treatment of arsenic in groundwater and soil in northern Mexico and southwestern USA. Chemosphere 83:2011–2225Google Scholar
  108. Martín R, Canet C, Alfonso P, Zambrana RN, Soto N (2014) The role of cassiterite controlling arsenic mobility in an abandoned stanniferous tailings impoundment at Llallagua, Bolivia. Sci Total Environ 481:100–107CrossRefGoogle Scholar
  109. Martínez LD, Gazquez JA (2005) Determinación de arsénico en aguas: diferentes técnicas y metodologías. II° Seminario Hispano-Latinoamericano sobre temas actuales de hidrología subterránea. IV° Congreso Hidrogeológico ArgentinoGoogle Scholar
  110. Martínez-Acuña MI, Mercado-Reyes M, Alegría-Torres JA, Mejía-Saavedra JJ (2016) Preliminary human health risk assessment of arsenic and fluoride in tap water from Zacatecas, México. Environ Monit Assess 188:476CrossRefGoogle Scholar
  111. Martínez-Villegas N, Briones-Gallardo R, Ramos-Leal JA, Avalos-Borja M, Castañón-Sandoval AD, Razo-Flores E, Villalobos M (2013) Arsenic mobility controlled by solid calcium arsenates: a case study in Mexico showcasing a potentially widespread environmental problem. Environ Pollut 176:114–122CrossRefGoogle Scholar
  112. Matos-Reyes MN, Cervera ML, Campos RC, de la Guardia M (2010) Total content of As, Sb, Se, Te and Bi in Spanish vegetables, cereals and pulses and estimation of the contribution of these foods to the Mediterranean daily intake of trace elements. Food Chem 122:188–194CrossRefGoogle Scholar
  113. Matschullat J, Birmann K, Borba RP, Ciminelli V, Deschamps EM, Figueiredo BR, Gabrio T, Haßler S, Hilscher A, Junghänel I, de Oliveira NJ, Raßbach H, Schmidt H, Schwenk M, de Oliveira Vilhena MJ, Weidner U (2007) Long-term environmental impact of arsenic-dispersion in Minas Gerais, Brazil. In: Trace metals and other contaminants in the environment, vol 9. Elsevier, Amsterdam, pp 355–382Google Scholar
  114. McCarty KM, Hanh HT, Kim KW (2011) Arsenic geochemistry and human health in South East Asia. Rev Environ Health 26:71–78CrossRefGoogle Scholar
  115. Mejía-González M, González L, Briones R, Cardona A, Soto P (2014) Mecanismos que liberan arsénico al agua subterránea de la Comarca Lagunera, estados de Coahuila y Durango. México, Tecnología Ciencias del Agua 5:71–82Google Scholar
  116. Melo RF, Dias LE, Vargas de Mello JW, Oliveira JA (2010) Behavior of Eucalyptus grandis and E. cloeziana seedlings grown in arsenic-contaminated soil. Soc Bras Ciênc Solo 34:985–992CrossRefGoogle Scholar
  117. Méndez-Ramírez M, Armienta Hernández MA (2012) Distribución de Fe, Zn, Pb, Cu, Cd y As originada por residuos mineros y aguas residuales en un transecto del Río Taxco en Guerrero, México. Rev Mex Cienc Geológicas 29:450–462Google Scholar
  118. Menegário AA, Gin MF (2000) Rapid sequential determination of arsenic and selenium in waters and plant digests by hydride generation inductively coupled plasma-mass spectrometry. Spectrochim Acta B 55:355–362CrossRefGoogle Scholar
  119. Menezes HA, Maia G (2010) Specific adsorption of arsenic and humic acid on Pt and PtO films. Electrochim Acta 55:4942–4951CrossRefGoogle Scholar
  120. Modificación a la Norma Oficial Mexicana (2000) NOM-127-SSA1-1994, Salud Ambiental. Agua para uso y consumo humano. Límites permisibles de calidad y tratamientos a los que debe someterse el agua para su potabilización. Diario Oficial de la Federación, 22 noviembre de 2000, México City, MéxicoGoogle Scholar
  121. Monasterio RP, Wuilloud RG (2010) Ionic liquid as ion-pairing reagent for liquid–liquid microextraction and preconcentration of arsenic species in natural waters followed by ETAAS. J Anal At Spectrom 25:1485–1490CrossRefGoogle Scholar
  122. Monasterio RP, Londinio JA, Farías SS, Smichowski P, Wuilloud RG (2011) Organic solvent-free reversed-phase ion-pairing liquid chromatography coupled to atomic fluorescence spectrometry for organoarsenic species determination in several matrices. J Agric Food Chem 59:3566–3574CrossRefGoogle Scholar
  123. Morales I, Villanueva-Estrada RE, Rodríguez R, Armienta MA (2015) Geological, hydrogeological and geothermal factors associated to the origin of arsenic, fluoride and groundwater temperature in a volcanic environment. Environ Earth Sci 74:5403–5415CrossRefGoogle Scholar
  124. Morales-Arredondo I, Rodríguez R, Armienta MA, Villanueva-Estrada RE (2016) The origin of groundwater arsenic and fluorine in a volcanic sedimentary basin in Central Mexico: a hydrochemistry hypothesis. Hydrogeol J 24:1029–1044CrossRefGoogle Scholar
  125. Morales-Arredondo JI, Esteller-Alberich MV, Armienta Hernández MA, Martínez-Florentino TAK (2018) Characterizing the hydrogeochemistry of two low-temperature thermal systems in Central Mexico. J Geochem Explor 185:93–104CrossRefGoogle Scholar
  126. Moreira CM, Duarte FA, Lebherz J, Pozebon D, Flores EMM, Dressler VL (2011) Arsenic speciation in white wine by LC-ICP-MS. Food Chem 126:1406–1411CrossRefGoogle Scholar
  127. Moreno ME, Acosta-Saavedra LC, Meza-Figueroa D, Vera E, Cebrian ME, Ostrosky-Wegmand P, Calderon Aranda ES (2010) Biomonitoring of metal in children living in a mine tailings zone in Southern Mexico: a pilot study. Int J Hyg Environ Health 213:252–258CrossRefGoogle Scholar
  128. Morgada ME, Levy IK, Salomone V, Farías SS, López G, Litter MI (2009) Arsenic (V) removal with nanoparticulate zerovalent iron: effect of UV light and humic acids. Catal Today 143:261–268CrossRefGoogle Scholar
  129. Mukherjee A, Raychowdhury N, Bhattacharya P, Bundschuh J, Johannesson K (2014) Tectonic-sourced groundwater arsenic in Andean foreland of Argentina: insight from flow path modeling. In: Litter MI, Nicolli HB, Meichtry JM, Quici N, Bundschuh J, Editorial Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo, Bhattacharya P, Naidu R (eds) One century of the discovery of arsenicosis in Latin America (1914–2014). CRC Press, London, pp 22–25CrossRefGoogle Scholar
  130. Muñoz L, Meneses M, Pismante P, Andonie O, Queirolo F, Stegen S (2014) Methodological validation for the determination of toxic arsenic species in human urine using HPLC with ICP-MS. J Chil Chem Soc 59:2432–2436CrossRefGoogle Scholar
  131. Muñoz O, Zamorano P, Garcia O, Bastías JM (2017) Arsenic, cadmium, mercury, sodium, and potassium concentrations in common foods and estimated daily intake of the population in Valdivia (Chile) using a total diet study. Food Chem Toxicol 109:1125–1134CrossRefGoogle Scholar
  132. Murcott S (2012) Arsenic contamination in the world – an international sourcebook. IWA Publishing, LondonGoogle Scholar
  133. Navarro O, González J, Júnez-Ferreira HE, Bautista C-F, Cardona A (2017) Correlation of arsenic and fluoride in the groundwater for human consumption in a semiarid region of Mexico. Procedia Eng 186:333–340CrossRefGoogle Scholar
  134. Navoni JA, Olivera NM, Villaamil Lepori EC (2010) Cuantificación de arsénico por inyección de flujo-generación de hidruros-espectrometría de absorción atómica (IF-GH-EAA) previa derivatización con L-cisteína. Validación y comparación intermetodológica utilizando dos técnicas de referencia. Acta Toxicol Argent 18:29–38Google Scholar
  135. Navoni JA, De Pietri D, Olmos V, Gimenez C, Bovi Mitre G, Titto d, Villaamil Lepori E (2014) Human health risk assessment with spatial analysis: study of a population chronically exposed to arsenic through drinking water from Argentina. Sci Total Environ 499:166–174CrossRefGoogle Scholar
  136. Nicolli HB, Tineo A, Falcón CM, García JW, Merino MH, Etchichury MC, Alonso MS, Tofalo OR (2009) Arsenic hydrogeochemistry in groundwater from the Burruyacú basin, Tucumán province, Argentina. In: Bundschuh J, Armienta MA, Birkle P, Bhattacharya P, Matschullat J, Mukherjee AB (eds) Natural arsenic in groundwaters of Latin America. CRC Press, London, pp 47–59Google Scholar
  137. Nicolli HB, Bundschuh J, García JW, Falcón CM, Jean J (2010) Sources and controls for the mobility of arsenic in oxidizing groundwaters from loess-type sediments in arid/semi-arid dry climates – evidence from the Chaco Pampean plain (Argentina). Water Res 44:5589–5604CrossRefGoogle Scholar
  138. Nieva NE, Borgnino L, Locati F, García MG (2016) Mineralogical control on arsenic release during sediment–water interaction in abandoned mine wastes from the Argentina Puna. Sci Total Environ 550:1141–1151CrossRefGoogle Scholar
  139. Núñez C, Arancibia V, Gómez M (2016) Determination of arsenic in the presence of copper by adsorptive stripping voltammetry using pyrrolidine dithiocarbamate or diethyl dithiophosphate as chelating-adsorbent agents. Effect of CPB on the sensitivity of the method. Microchem J 126:70–75CrossRefGoogle Scholar
  140. Núñez C, Arancibia V, Triviño JJ (2018) A new strategy for the modification of a carbon paste electrode with carrageenan hydrogel for a sensitive and selective determination of arsenic in natural waters. Talanta 187:259–264CrossRefGoogle Scholar
  141. Oliveira A, Henrique Gonzalez M, Müller Queiroz H, Cadore S (2016) Fractionation of inorganic arsenic by adjusting hydrogen ion concentration. Food Chem 213:76–82CrossRefGoogle Scholar
  142. Ongley LK, Sherma L, Armienta A, Concilio A, Ferguson Salinas C (2007) Arsenic in the soils of Zimapán, Mexico. Environ Pollut 145:793–799CrossRefGoogle Scholar
  143. Ormachea Muñoz M, Huallpara L, Coariti E, García Aróstegui JL, Kohfahl C, Estévez M, Bhattacharya P (2014) Natural arsenic occurrence in drinking water and assessment of water quality in the southern part of the Poopó lake Basin, Bolivia Altiplano. In: Litter MI, Nicolli HB, Meichtry JM, Quici N, Bundschuh J, Bhattacharya P, Naidu R (eds) One century of the discovery of arsenicosis in Latin America (1914–2014). CRC Press, London, pp 154–151CrossRefGoogle Scholar
  144. Ormachea MM, Quintanilla AJ (2014) Distribution of geogenic arsenic in superficial and underground water in Central Bolivian Highlands. Rev Boliviana Quím 31:54–60Google Scholar
  145. Ortega A, Oliva I, Contreras KE, González I, Cruz-Díaz MR, Rivero EP (2017) Arsenic removal from water by hybrid electro-regenerated anion exchange resin/electrodialysis process. Sep Purif Technol 184:319–326CrossRefGoogle Scholar
  146. Ortega-Guerrero MA (2004) Abstract at the International Geologic Congress, FlorenceGoogle Scholar
  147. Ortega-Guerrero A (2009) Presencia, distribución, hidrogeoquímica y origen de arsénico, fluoruro y otros elementos traza disueltos en agua subterránea, a escala de cuenca hidrológica tributaria de Lerma-Chapala, México. Rev Mex Cienc Geol 26:143–161Google Scholar
  148. Ortega-Guerrero A (2017) Evaporative concentration of arsenic in groundwater: health and environmental implications, La Laguna Region, Mexico. Environ Geochem Health 39:987–1003CrossRefGoogle Scholar
  149. Patiño-Reyes N, Duarte Portocarrero E (2014) Analysis of mercury and arsenic in drinking water in Bogotá DC (Colombia) in 2010 and 2011. In: Litter MI, Nicolli HB, Meichtry JM, Quici N, Bundschuh J, Bhattacharya P, Naidu R (eds) One century of the discovery of arsenicosis in Latin America (1914–2014). CRC Press, London, pp 187–188CrossRefGoogle Scholar
  150. Peralta Ramos ML, González JA, Albornoz SG, Pérez CJ, Villanueva ME, Giorgieri SA, Copello GJ (2016) Chitin hydrogel reinforced with TiO2 nanoparticles as an arsenic sorbent. Chem Eng J 285:581–587CrossRefGoogle Scholar
  151. Pereira ER, De Almeida TS, Borges DLG, Carasek E, Welz B, Feldmann J, Del Campo Menoyo J (2016) Investigation of chemical modifiers for the direct determination of arsenic in fish oil using high-resolution continuum source graphite furnace atomic absorption spectrometry. Talanta 150:142–147CrossRefGoogle Scholar
  152. Pérez Moreno F, Prieto García E, Barrado Estebán E, Roas Heranández A, Méndez Marzo MA (2002) Optimización del método de determinación de arsénico en aguas potables por espectrofotometría UV-Vis con dietilcarbamato de plata. Rev Soc Quími Méx 46:175–179Google Scholar
  153. Pérez AA, Pérez LB, Strobl AM, Camarda S, Farias SS, López CM, Fajardo MA (2010) Variación estacional de arsénico total en algas comestibles recolectadas en el Golfo San Jorge (Chubut, Argentina). Rev Latinoam Biotecnol Amb Algal 1:16–30Google Scholar
  154. Pistón M, Silva J, Pérez-Zambra R, Dol I, Knochen M (2012) Automated method for the determination of total arsenic and selenium in natural and drinking water by HG-AAS. Environ Geochem Health 34:273–278CrossRefGoogle Scholar
  155. Pizarro I, Gómez-Gómez M, León J, Román D, Palacios MA (2016) Bioaccessibility and arsenic speciation in carrots, beets and quinoa from a contaminated area of Chile. Sci Total Environ 565:557–563CrossRefGoogle Scholar
  156. Planer-Friedich B, Armienta MA, Merkel BJ (2001) Origin of arsenic in the groundwater of the Río Verde Basin, México. Environ Geol 40:1290–1298CrossRefGoogle Scholar
  157. Quevedo O, Luna B, Carballeira E, Rodríguez AC (2003) Determinación de As(III) y As (V) en aguas naturales por generación de hidruro con detección por espectrometría de absorción atómica. Rev CENIC Cienc Químicas 34:133–137Google Scholar
  158. Quiller G, Mérida-Ortega Á, Rothenberg SJ, Cebrián MEA, Gandolfi J, Franco-Marina F, López-Carrillo L (2018) Dietary flavonoids improve urinary arsenic elimination among Mexican women. Nutr Res 55:65–71CrossRefGoogle Scholar
  159. Quintanilla J, Ramos O, Ormachea M, García ME, Medina H, Thunvik R, Bhattacharya P, Bundschuh J (2009) Arsenic contamination, speciation and environmental consequences in the Bolivian plateau. In: Bundschuh J, Armienta MA, Birkle P, Bhattacharya P, Matschullat J, Mukherjee AB (eds) Natural arsenic in groundwaters of Latin America. CRC Press, London, pp 91–99Google Scholar
  160. Ramírez Cordero BE, Cañizares-Macías MP (2009) Determination of bioavailable soluble arsenic and phosphates in mine tailings by spectrophotometric sequential injection analysis. Talanta 78:1069–1076CrossRefGoogle Scholar
  161. Ramírez-Aldaba H, Valles OP, Vazquez-Arenas J, Rojas-Contreras JA, Valdez-Pérez D, Ruiz-Baca E, Meraz-Rodríguez M, Sosa-Rodríguez FS, Rodríguez AG, Lara RH (2016) Chemical and surface analysis during evolution of arsenopyrite oxidation by Acidithiobacillus thiooxidans in the presence and absence of supplementary arsenic. Sci Total Environ 566–567:1106–1119CrossRefGoogle Scholar
  162. Ramírez-González S, Jiménez-Prieto Y, Esperanza-Pérez G, Ribalta-Quesada JA, Rodríguez-Rivero RA (2017) Determinación de arsénico por el método de azul de molibdeno en muestras de aguas provenientes de una planta de procesamiento de minerales auríferos. Rev Cub Quim 29:3–12Google Scholar
  163. Ramos OE, Quino I, Quintanilla J, Bhattacharya P, Bundschuh J (2014) Geochemical processes controlling mobilization of arsenic and trace elements in shallow aquifers in mining regions, Bolivian Altiplano. In: Litter MI, Nicolli HB, Meichtry JM, Quici N, Bundschuh J, Bhattacharya P, Naidu R (eds) One century of the discovery of arsenicosis in Latin America (1914–2014). CRC Press, London, pp 239–241CrossRefGoogle Scholar
  164. Razo I, Carrizales L, Castro J, Díaz-Barriga F, Monroy M (2004) Arsenic and heavy metal pollution of soils, water and sediments in a semi-arid climate mining area in México. Water Air Soil Pollut 152:129–152CrossRefGoogle Scholar
  165. Reboucas MV, Ferreira SLC, De Barros NB (2005) Behaviour of chemical modifiers in the determination of arsenic by electrothermal atomic absorption spectrometry in petroleum products. Talanta 67:195–204CrossRefGoogle Scholar
  166. Reyes-Gómez V, Alarcón M, Gutiérrez M, Nuñez D (2013) Fluoride and arsenic in an alluvial aquifer system in Chihuahua, Mexico: contaminant levels, potential sources, and co-occurrence. Water Air Soil Pollut 224:1433–1448CrossRefGoogle Scholar
  167. Robles AD, Vetterelo SN, Gerpe M, Garay F (2017) The electrochemical reaction mechanism of arsenic on gold analyzed by anodic stripping square-wave voltammetry. Electrochim Acta 10:447–454CrossRefGoogle Scholar
  168. Rocha-Amador DO, Calderón J, Carrizales L, Costilla-Salazar R, Pérez-Maldonado IN (2011) Apoptosis of peripheral blood mononuclear cells in children exposed to arsenic and fluoride. Environ Toxicol Pharmacol 32:399–405CrossRefGoogle Scholar
  169. Rodríguez Castro MC, Urrea G, Guasch H (2015) Influence of the interaction between phosphate and arsenate on periphyton’s growth and its nutrient uptake capacity. Sci Total Environ 503–504:122–132CrossRefGoogle Scholar
  170. Rodríguez Garrido NE, Segura Castruita MA, Orozco Vidal JA, Fortis Hernández M, Preciado Rangel P, Olague Ramírez J, Yescas Coronado P (2017) Arsénico edáfico y su distribución en el distrito de riego 017: uso de métodos de interpolación. Terra Latinoam 35:19–28CrossRefGoogle Scholar
  171. Rodríguez R, Ramos JA, Armienta A (2004) Groundwater arsenic variations: the role of local geology and rainfall. Appl Geochem 19:245–250CrossRefGoogle Scholar
  172. Romero FM, Armienta MA, González-Hernández G (2007) Solid-phase control on the mobility of potentially toxic elements in an abandoned lead/zinc mine tailings impoundment, Taxco, Mexico. Appl Geochem 22:109–127CrossRefGoogle Scholar
  173. Romero FM, Prol-Ledesma RM, Canet C, Núñez Alvares L, Pérez-Vázquez R (2010) Acid drainage at the inactive Santa Lucia mine, Western Cuba: natural attenuation of arsenic, barium and lead, and geochemical behavior of rare earth elements. Appl Geochem 25:716–727CrossRefGoogle Scholar
  174. Romero FM, Núñes L, Gutiérrez ME, Armienta MA, Ceniceros-Gómez AE (2011) Evaluation of the potential of indigenous calcareous shale for neutralization and removal of arsenic and heavy metals from acid mine drainage in the Taxco Mining Area, Mexico. Arch Environ Contam Toxicol 60:191–203CrossRefGoogle Scholar
  175. Roque-Álvarez I, Sosa-Rodríguez FS, Vázquez-Arenas J, Escobedo-Bretado MA, Labastida I, Corral-Rivas JJ, Aragón-Piña A, Armienta MA, Ponce-Peña P, Lara RH (2018) Spatial distribution, mobility and bioavailability of arsenic, lead, copper and zinc in low polluted forest ecosystem in Northwestern, Mexico. Chemosphere 210:320–333CrossRefGoogle Scholar
  176. Rosas-Castor JM, Guzmán-Mar JL, Alfaro-Barbosa JM, Hernández-Ramírez A, Pérez-Maldonado IN, Caballero-Quintero, Hinojosa-Reyes L (2014) Evaluation of the transfer of soil arsenic to maize crops in suburban areas of San Luis Potosi, Mexico. Sci Total Environ 497–498:153–162CrossRefGoogle Scholar
  177. Rosas-Castor JM, Portugal L, Ferrer L, Guzmán-Mar JL, Hernández-Ramírez A, Cerdà V, Hinojosa-Reyes L (2015) Arsenic fractionation in agricultural soil using an automated three-step sequential extraction method coupled to hydride generation-atomic fluorescence spectrometry. Anal Chim Acta 874:1–10CrossRefGoogle Scholar
  178. Rosas-Castor JM, Portugal L, Ferrer L, Hinojosa-Reyes L, Guzmán-Mar JL, Hernández-Ramírez A, Cerdà V (2016) An evaluation of the bioaccessibility of arsenic in corn and rice samples based on cloud point extraction and hydride generation coupled to atomic fluorescence spectrometry. Food Chem 204:475–482CrossRefGoogle Scholar
  179. Roy A, Kordas K, López P, Rosado JL, Cebrian ME, García Vargas G, Ronquillo D, Stoltzfus RJ (2011) Association between arsenic exposure and behavior among first-graders from Torreón, Mexico. Environ Res 111:670–676CrossRefGoogle Scholar
  180. Ruiz Huerta EA, Armienta MA (2012) Acumulación de arsénico y metales pesados en maíz en suelos cercanos a jales o residuos mineros. Rev Int Contam Amb 28:103–117Google Scholar
  181. Ruíz Huerta EA, De la Garza Varela A, Gómez-Bernal JM, Castillo F, Avalos-Borja M, Sen Gupta B, Martínez-Villegas N (2017) Arsenic contamination in irrigation water, agricultural soil and maize crop from an abandoned smelter site in Matehuala. J Hazard Mater 339:330–339CrossRefGoogle Scholar
  182. Salas-Luévano MA, Mauricio-Castillo JA, González-Rivera M, Vega-Carrillo HR, Salas-Muñoz S (2017) Accumulation and phytostabilization of As, Pb and Cd in plants growing inside mine tailings reforested in Zacatecas, Mexico. Environ Earth Sci 76:806CrossRefGoogle Scholar
  183. Saldaña-Robles A, Saldaña-Robles N, Saldaña-Robles AL, Damian-Ascencio C, Rangel-Hernández VH, Guerra-Sánchez R (2017) Arsenic removal from aqueous solutions and the impact of humic and fulvic acids. J Clean Prod 159:425–431CrossRefGoogle Scholar
  184. Saldaña-Robles A, Damian-Ascencio CE, Guerra-Sanchez RJ, Saldaña-Robles AL, Saldaña-Robles N, Gallegos-Muñoz A, Cano-Andrade S (2018) Effects of the presence of organic matter on the removal of arsenic from groundwater. J Clean Prod 183:720–728CrossRefGoogle Scholar
  185. Salgado-Bustamante M, Ortiz-Pérez MD, Calderón-Aranda E, Estrada-Capetillo L, Niño-Moreno P, González-Amaro R, Portales-Pérez D (2010) Pattern of expression of apoptosis and inflammatory genes in humans exposed to arsenic and/or fluoride. Sci Total Environ 408:760–767CrossRefGoogle Scholar
  186. Salinas S, Mosquera N, Yate L, Coy E, Yamhure G, González E (2014) Surface plasmon resonance nanosensor for the detection of arsenic in water. Sensors Transducers 183:97–102Google Scholar
  187. Sandoval MA, Fuentes R, Navab JL, Coreño O, Lid Y, Hernández JJ (2018) Simultaneous removal of fluoride and arsenic from groundwater by electrocoagulation using a filter-press flow reactor with a three-cell stack. Sep Purif Technol 208:208–216CrossRefGoogle Scholar
  188. Santos Pontes BM, de Albuquerque Menor E, Figueiredo JA (2014) Arsenic, selenium and lead contamination from the waters in surface Itapessoca catchment, northeastern Brazil. In: Litter MI, Nicolli HB, Meichtry JM, Quici N, Bundschuh J, Bhattacharya P, Naidu R (eds) One century of the discovery of arsenicosis in Latin America (1914–2014). CRC Press, London, pp 65–67CrossRefGoogle Scholar
  189. Santos CMM, Nunes MAG, Barbosa IS, Santos GL, Peso-Aguiar MC, Korn MGA, Flores EMM, Dressler VL (2013) Evaluation of microwave and ultrasound extraction procedures for arsenic speciation in bivalve mollusks by liquid chromatography–inductively coupled plasma-mass spectrometry. Spectrochim Acta Part B 86:108–114CrossRefGoogle Scholar
  190. Santos-Domínguez EE, Vargas-Morales JM, Cárdenas-González JF, Acosta-Rodríguez I (2017) Removal of arsenic (V) in aqueous solution by modified fungal biomass of Aspergillus niger. Inf Tecnol 28:45–51CrossRefGoogle Scholar
  191. Santos-Jallath J, Castro-Rodríguez A, Huezo-Casillas J, Torres-Bustillos L (2012) Arsenic and heavy metals in native plants at tailings impoundments in Queretaro, Mexico. Phys Chem Earth 37–39:10–17CrossRefGoogle Scholar
  192. Sariñana-Ruiz YA, Vazquez-Arenas J, Sosa-Rodríguez FS, Labastida I, Armienta MA, Aragon-Piña A, Escobedo-Bretado MA, González Valdez LS, Ponce-Peña P, Ramírez-Aldaba H, Lara RH (2017) Assessment of arsenic and fluorine in surface soil to determine environmental and health risk factors in the Comarca Lagunera, Mexico. Chemosphere 178:391–401CrossRefGoogle Scholar
  193. Schneider M, Cadorim HR, Welz B, Carasek E, Feldmann J (2018) Determination of arsenic in agricultural soil samples using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sample analysis. Talanta 188:722–728CrossRefGoogle Scholar
  194. Segura FR, de Oliveira Souza JM, De Paula ES, da Cunha Martins A Jr, Paulelli ACC, Barbosa F Jr, Batista BL, Lemos Batista B (2016) Arsenic speciation in Brazilian rice grains organically and traditionally cultivated: is there any difference in arsenic content? Food Res Int 89(Part 1):169–176CrossRefGoogle Scholar
  195. Sepúlveda M, Gutiérrez S, Carcamo J, Oyaneder A, Valenzuela D, Montt I, Santoro CM (2015) In situ X-ray fluorescence analysis of rock paintings along the coast and valleys of the Atacama Desert, Northern Chile. J Chil Chem Soc 60:2822–2826CrossRefGoogle Scholar
  196. Siegfried K, Hahn-Tomer S, Koelsch A, Osterwalder E, Mattusch J, Staerk HJ, Meichtry JM, De Seta GE, Reina FD, Panigatti C, Litter MI, Harms H (2015) Introducing simple detection of bioavailable arsenic at Rafaela (Santa Fe Province, Argentina) using the ARSOlux Biosensor. Int J Environ Res Publ Health 12:5465–5482CrossRefGoogle Scholar
  197. Sigrist M, Albertengo A, Beldoménico H, Repetti MR (2010) Evaluation of the influence of arsenical livestock drinking waters on total arsenic levels in cow’s raw milk from Argentinean dairy farms. Food Chem 121:487–491CrossRefGoogle Scholar
  198. Sigrist M, Albertengo A, Beldoménico H, Tudino M (2011) Determination of As(III) and total inorganic As in water samples using an on-line solid phase extraction and flow injection hydride generation atomic absorption spectrometry. J Hazard Mater 188:311–318CrossRefGoogle Scholar
  199. Sigrist M, Albertengo A, Brusa L, Beldoménico H, Tudino M (2013) Distribution of inorganic arsenic species in groundwater from Central-West part of Santa Fe Province, Argentina. Appl Geochem 39:43–48CrossRefGoogle Scholar
  200. Sigrist M, Hilbe N, Brusa L, Campagnoli D, Beldoménico H (2016) Total arsenic in selected food samples from Argentina: estimation of their contribution to inorganic arsenic dietary intake. Food Chem 210:96–101CrossRefGoogle Scholar
  201. Simona S, Lobos G, Pannier F, De Gregori I, Pinochet H, Potin-gautier (2004) Speciation analysis of organoarsenical compounds in biological matrices by coupling ion chromatography to atomic fluorescence spectrometry with on-line photooxidation and hydride generation. Anal Chim Acta 521:99–108CrossRefGoogle Scholar
  202. Smedley PL, Nicolli HB, MacDonald DMJ, Kinniburgh DG (2009) Arsenic in groundwater and sediments from La Pampa province, Argentina. In: Bundschuh J, Armienta MA, Birkle P, Bhattacharya P, Matschullat J, Mukherjee AB (eds) Natural arsenic in groundwaters of Latin America. CRC Press, London, pp 35–45Google Scholar
  203. Sracek O, Armienta MA, Rodríguez R, Villaseñor G (2010) Discrimination between diffuse and point sources of arsenic at Zimapán, Hidalgo state, Mexico. J Environ Monit 12:329–337CrossRefGoogle Scholar
  204. Teixeira MC, Tavares EFL, Saczk AA, Okumura LL, Cardoso M d G, Magriotis ZM, Oliveira MF (2014) Cathodic stripping voltammetric determination of arsenic in sugarcane brandy at a modified carbon nanotube paste electrode. Food Chem 154:38–43CrossRefGoogle Scholar
  205. Tormen L, Gil RA, Frescura VLA, Martinez LD, Curtius AJ (2012) The use of electrothermal vaporizer coupled to the inductively coupled plasma mass spectrometry for the determination of arsenic, selenium and transition metals in biological samples treated with formic acid. Anal Chim Acta 717:21–27CrossRefGoogle Scholar
  206. Torres S, Martínez LD, Pacheco PH (2018) Determination of arsenic species distribution in extra virgin olive oils from arsenic-endemic areas by dimensional chromatography and atomic spectroscopy. J Food Compos Anal 66:121–126CrossRefGoogle Scholar
  207. Torres-Sánchez L, López-Carrillo L, Rosado JL, Rodriguez VM, Vera-Aguilar E, Kordas K, García-Vargas GG, Cebrian ME (2016) Sex differences in the reduction of arsenic methylation capacity as a function of urinary total and inorganic arsenic in Mexican children. Environ Res 151:38–43CrossRefGoogle Scholar
  208. Toujague R, Leonarte T, Reyes Verdecia A, Miravet BL, Leal RM (2003) Arsénico y metales pesados en aguas del área Delita, Isla de la Juventud. Cuba, Cienc Tierra Espacio 4:27–33Google Scholar
  209. Valcárcel LA, Montero A, Estévez JR, Pupo I (2008) Arsenic speciation study using X-ray Fluorescence and cathodic stripping voltammetry. In: Bundschuch J, Armienta MA, Birkle P, Bhattacharya P, Matschullat J, Mukherjee AB (eds) Natural arsenic in groundwater of Latinoamerica, vol 1. CRC Press, London, pp 265–271CrossRefGoogle Scholar
  210. Valenzuela OL, Germolec DR, Borja-Aburto VH, Contreras-Ruiz J, García-Vargas GG, Del Razo LM (2007) Chronic arsenic exposure increases TGFalpha concentration in bladder urothelial cells of Mexican populations environmentally exposed to inorganic arsenic. Toxicol Appl Pharmacol 222:264–270CrossRefGoogle Scholar
  211. Vázquez C, Marcó L, Rodríguez Castro MC, Boeykens S, Maury AM (2014) Integrated study of arsenic contamination in different matrices and targets in La Matanza, Buenos Aires province, Argentina. In: Litter MI, Nicolli HB, Meichtry JM, Quici N, Bundschuh J, Bhattacharya P, Naidu R (eds) One century of the discovery of arsenicosis in Latin America (1914–2014). CRC Press, London, pp 49–51CrossRefGoogle Scholar
  212. Velázquez-Peña GC, Solache-Ríos M, Olguina MT, Fall C (2019) As(V) sorption by different natural zeolite frameworks modified with Fe, Zr and FeZr. Microporous Mesoporous Mater 273:133–141CrossRefGoogle Scholar
  213. Vergara Gallardo M, Bohari Y, Astruc A, Potin-Gautier M, Astruc M (2001) Speciation analysis of arsenic in environmental solids reference materials by high-performance liquid chromatography–hydride generation–atomic fluorescence spectrometry following orthophosphoric acid extraction. Anal Chim Acta 441:257–268CrossRefGoogle Scholar
  214. Vieira MA, Grinberg P, Bobeda CRR, Reyes MNM, Campos RC (2009) Non-chromatographic atomic spectrometric methods in speciation analysis: a review. Spectrochim Acta B 64:459–476CrossRefGoogle Scholar
  215. Villalobos-Castañeda B, Alfaro-Cuevas R, Cortés-Martínez R, Verónica Martínez M, Márquez-Benavides L (2010) Distribution and partitioning of iron, zinc, and arsenic in surface sediments in the Grande River mouth to Cuitzeo Lake, Mexico. Environ Monit Assess 166:331–346CrossRefGoogle Scholar
  216. Villanueva-Estrada RE, Prol-Ledesma RM, Rodríguez-Díaz AA, Canet C, Armienta MA (2013) Arsenic in hot springs of Bahía Concepción, Baja California Peninsula, México. Chem Geol 348:27–36CrossRefGoogle Scholar
  217. Vitela-Rodriguez AV, Rangel-Mendez JR (2013) Arsenic removal by modified activated carbons with iron hydro(oxide) nanoparticles. J Environ Manag 114:225–231CrossRefGoogle Scholar
  218. World Health Organization & International Programme on Chemical Safety (1996) Guidelines for drinking-water quality. Vol. 2, health criteria and other supporting information, 2nd. World Health Organization, Geneva. Accessed Nov 2017
  219. World Health Organization (WHO) (2011) Guidelines for drinking-water quality, 4th edn. World Health Organization, Geneva. Accessed Nov 2017
  220. Wuilloud RG, Altamirano JC, Smichowski PN, Heitkempera DT (2006) Investigation of arsenic speciation in algae of the Antarctic region by HPLC-ICP-MS and HPLC-ESI-Ion Trap MS. J Anal At Spectrom 21:1214–1223CrossRefGoogle Scholar
  221. Yáñez J, Fierro V, Mansilla H, Figueroa L, Cornejo L, Barnes RM (2005) Arsenic speciation in human hair: a new perspective for epidemiological assessment in chronic arsenicism. J Environ Monit 7:1335–1341CrossRefGoogle Scholar
  222. Yáñez LM, Alfaro JA, Bovi Mitre G (2018) Absorption of arsenic from soil and water by two chard (Beta vulgaris L.) varieties: a potential risk to human health. J Environ Manag 218:23–30CrossRefGoogle Scholar
  223. Zabala ME, Manzano M, Vives L (2016) Assessment of processes controlling the regional distribution of fluoride and arsenic in groundwater of the Pampeano aquifer and the Del Azul Creek basin (Argentina). J Hydrol 541:1067–1087CrossRefGoogle Scholar
  224. Zucchi OLAD, Moreira S, Salvador MJ, Santos LL (2005) Multielement analysis of soft drink by X-ray fluorescence spectrometry. J Agric Food Chem 53:7863–7869CrossRefGoogle Scholar
  225. Zurita F, Del Toro-Sánchez CL, Gutierrez-Lomelí M, Rodriguez-Sahagún A, Castellanos-Hernández OA, Ramírez-Martínez G, White JR (2012) Preliminary study on the potential of arsenic removal by subsurface flow constructed mesocosms. Ecol Eng 47:101–104CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Marta I. Litter
    • 1
    • 2
  • María A. Armienta
    • 3
  • Ruth E. Villanueva Estrada
    • 4
  • Edda C. Villaamil Lepori
    • 5
  • Valentina Olmos
    • 5
  1. 1.Gerencia QuímicaComisión Nacional de Energía Atómica-CONICETSan MartínArgentina
  2. 2.Instituto de Investigación e Ingeniería Ambiental, Universidad Nacional de General San Martín, Campus MigueleteSan MartínArgentina
  3. 3.Universidad Nacional Autónoma de México, Instituto de Geofísica, Circuito ExteriorCiudad de MéxicoMéxico
  4. 4.Instituto de Geofísica, Unidad Michoacán, Universidad Nacional Autónoma de México, Campus-MoreliaMoreliaMéxico
  5. 5.Facultad de Farmacia y Bioquímica, Cátedra de Toxicología y Química LegalUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations