Plasmids: The Necessary Knowledge Wealth for Encountering Antibiotic-Resistance Menace

  • Shriparna Mukherjee
  • Ranadhir ChakrabortyEmail author


Infections caused by multidrug resistant bacteria have been identified as an emergent global public health problem as it significantly increases the rate of morbidity and mortality and simultaneously health care costs. It has already been identified that the foremost cause of mortality by the mid of twenty-first century would be drug-resistant disease having direct implication in annual direct costs amounting to 2–3% of the global output GDP. European Center for Disease Prevention and Control (ECDC) and the Center for Disease control and Prevention (CDC) have jointly made the definitions for MDR (multidrug resistant), XDR (extensively or extremely drug resistant) and PDR (Pan drug resistance). Only acquired antimicrobial resistance but not intrinsic resistance was considered for defining MDR, XDR and PDR types. The consecutive development of drug resistance in a population occurs stepwise and organisms with low-level resistance may form the genetic platform for the development of higher resistance levels. Molecular analyses have revealed that widespread multi resistance has commonly been achieved by the acquisition of preexisting determinants followed by amplification in response to selection (acquired resistance). Plasmids, being an important carrier of mobile genetic elements bearing antibiotic resistance genes, play a fundamental role in the dissemination of antimicrobial resistance genes within the gene pool. Certain connections between antibiotic-resistant plasmids and pathogenic bacterial clones are hugely extensive. Plasmids, mainly the conjugative ones are undoubtedly the most significant drivers of antibiotic-resistance dissemination in the bacterial families such as Enterobacteriaceae and Enterococcaceae, which comprise some of the most important hospital-borne- pathogens. Role of plasmids in developing antibiotic resistance and also endemic and epidemic behavior in certain important pathogenic bacterial genera like Pseudomonas, Acinetobacter baumanii, Staphylococcus aureus have been evidenced from several studies. Survival of these bacterial pathogens in different challenging environments is mediated mainly by plasmids. In the near future, scientists will be able to blend the technological and theoretical knowledge in clubbing genomics, transcriptomics, proteomics and metabolomics to delineate the molecular basis of the fitness-cost and compensation in plasmid–bacterium relationships


Plasmids MDR XDR PDR Co-resistance Cross-resistance 


  1. Alibayov B et al (2014) Staphylococcus aureus mobile genetic elements. Mol Biol Rep 41:5005–5018PubMedCrossRefPubMedCentralGoogle Scholar
  2. Andrysiak AK, Olson AB, Tracz DM, Dore K, Irwin R, Ng LK, Gilmour MW (2008) Genetic characterization of clinical and agri-food isolates of multi drug resistant Salmonella enterica serovar Heidelberg from Canada. BMC Microbiol 8:89PubMedPubMedCentralCrossRefGoogle Scholar
  3. Barbosa TM, Levy SB (2000) The impact of antibiotic use on resistance development and persistence. Drug Resist Updat 3(5):03–311CrossRefGoogle Scholar
  4. Bennett PM (2008) Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria. Br J Pharmacol 153(suppl 1):S347–S357CrossRefGoogle Scholar
  5. Bi D, Xie Y, Tai C, Jiang X, Zhang J, Harrison EM et al (2016) A site-specific integrative plasmid found in Pseudomonas aeruginosa clinical isolate HS87 along with a plasmid carrying an aminoglycoside-resistant gene. PLoS One 11(2):e0148367PubMedPubMedCentralCrossRefGoogle Scholar
  6. Brown NL, Misra TK, Winnie JN, Schmidt A, Seiff M, Silver S (1986) The nucleotide sequence of the mercuric resistance operons of plasmid R100 and transposon TnSOZ; further evidence for mer genes which enhance the activity of the mercuric ion detoxification system. Mol Gen Genet 202:143–151CrossRefGoogle Scholar
  7. Cabot G, Zamorano L, Moyà B, Juan C, Navas A, Blázquez J, Oliver A (2016) Evolution of Pseudomonas aeruginosa antimicrobial resistance and fitness under low and high mutation rates. Antimicrob Agents Chemother 60:1767–1778PubMedPubMedCentralCrossRefGoogle Scholar
  8. Canton R, Morosini MI (2011) Emergence and spread of antibiotic resistance following exposure to antibiotics. FEMS Microbiol Rev 35:977–991PubMedCrossRefPubMedCentralGoogle Scholar
  9. Carattoli A (2013) Plasmids and the spread of resistance. Int J Med Microbiol 303(6–7):298–304PubMedCrossRefPubMedCentralGoogle Scholar
  10. Carattoli A, Miriagou V, Bertini A, Loli A, Colinon C, Villa L, Whichard JM, Rossolini GM (2006) Replicon typing of plasmids encoding resistance to newer β-lactams. Emerg Infect Dis 12:1145–1148PubMedPubMedCentralCrossRefGoogle Scholar
  11. Carmeli Y, Akova M, Cornaglia G et al (2010) Controlling the spread of carbapenemase-producing Gram-negatives: therapeutic approach and infection control. Clin Microbiol Infect 16:102–111PubMedCrossRefPubMedCentralGoogle Scholar
  12. Chen Z, Li H, Feng J, Li Y, Chen X, Guo X, Chen W, Wang L, Lin L, Yang H, Yang W, Wang J, Zhou D, Liu C, Yin Z (2015) NDM-1 encoded by a pNDM-BJ01-like plasmid p3SP-NDM in clinical Enterobacter aerogenes. Front Microbiol 6:294PubMedPubMedCentralGoogle Scholar
  13. Colinon C, Miriagou V, Carattoli A, Luzzaro F, Rossolini GM (2007) Characterization of the IncA/C plasmid pCC416 encoding VIM-4 and CMY-4-lactamases. J Antimicrob Chemother 60:258–262PubMedCrossRefPubMedCentralGoogle Scholar
  14. Coque TM, Novais A, Carattoli A, Poirel L, Pitout J et al (2008) Dissemination of clonally related Escherichia coli strains expressing extended-spectrum β-lactamase CTX-M-15. Emerg Infect Dis 14:195–200PubMedPubMedCentralCrossRefGoogle Scholar
  15. Cox G, Wright GD (2013) Intrinsic antibiotic resistance: mechanisms, origins, challenges and solutions. Int J Med Microbiol 303(6–7):287–292PubMedCrossRefPubMedCentralGoogle Scholar
  16. Curiao T, Marchi E, Grandgirard D, León-Sampedro R, Viti C, Leib SL et al (2016) Multiple adaptive routes of Salmonella enterica Typhimurium to biocide and antibiotic exposure. BMC Genomics 17:491PubMedPubMedCentralCrossRefGoogle Scholar
  17. D’Costa VM, King CE, Kalan L, Morar M, Wilson WL et al (2011) Antibiotic resistance is ancient. Nature 477:457–461CrossRefGoogle Scholar
  18. Da Silva GJ, Domingues S (2016) Insights on the horizontal gene transfer of carbapenemase determinants in the opportunistic pathogen Acinetobacter baumannii. Microorganisms 4(3):29PubMedCentralCrossRefGoogle Scholar
  19. Dale GE, Langen H, Page MG, Then RL, Stüber D (1995) Cloning and characterization of a novel, plasmid-encoded trimethoprim-resistant dihydrofolate reductase from Staphylococcus haemolyticus MUR313. Antimicrob Agents Chemother 39:1920–1924PubMedPubMedCentralCrossRefGoogle Scholar
  20. Dancer SJ, Shears P, Platt DJ (1997) Isolation and characterization of coliforms from glacial ice and waters in Canadas High Arctic. J Appl Bacteriol 82:597–609CrossRefGoogle Scholar
  21. Deshpande LM, Jones RN, Fritsche TR, Sader HS (2006) Occurrence and characterization of carbapenemase-producing Enterobacteriaceae: report from the SENTRY Antimicrobial Surveillance Program (2000–2004). Microb Drug Resist 12:223–230PubMedCrossRefPubMedCentralGoogle Scholar
  22. Di Pilato V, Pollini S, Rossolini GM (2014) Characterization of plasmid pAX22, encoding VIM-1 metallo-betalactamase, reveals a new putative mechanism of In70 integron mobilization. J Antimicrob Chemother 69(1):67–71PubMedCrossRefPubMedCentralGoogle Scholar
  23. Diestra K, Juan C, Curiao T, Moya B, Miro E et al (2009) Characterization of plasmids encoding blaESBL and surrounding genes in Spanish clinical isolates of Escherichia coli and Klebsiella pneumoniae. J Antimicrob Chemother 63:60–66PubMedCrossRefPubMedCentralGoogle Scholar
  24. El Salabi A, Walsh TR, Chouchani C (2013) Extended spectrum beta lactamases, carbapenemases and mobile genetic elements responsible for antibiotics resistance in gram negative bacteria. Crit Rev Microbiol 39:113–122Google Scholar
  25. Espedido BA, Partridge SR, Iredell JR (2008) blaIMP-4 in different genetic contexts in Enterobacteriaceae isolates from Australia. Antimicrob Agents Chemother 52:2984–2987PubMedPubMedCentralCrossRefGoogle Scholar
  26. Feβler AT, Kadlec K, Schwarz S (2011) Novel apramycin resistance gene apmA in bovine and porcine methicillin-resistant Staphylococcus aureus ST398 isolates. Antimicrob Agents Chemother 55:373–375CrossRefGoogle Scholar
  27. Forsberg KJ, Reyes A, Wang B, Selleck EM, Sommer MOA, Dantas G (2012) The shared antibiotic resistome of soil bacteria and human pathogens. Science 337(6098):1107–1111PubMedPubMedCentralCrossRefGoogle Scholar
  28. Gill SR, Fouts DE, Archer GL, Mongodin EF, Deboy RT et al (2005) Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermidis strain. J Bacteriol 187:2426–2438PubMedPubMedCentralCrossRefGoogle Scholar
  29. Gillespie MT, Skurray RA (1986) Plasmids in multiresistant Staphylococcus aureus. Microbiol Sci 3:53–58PubMedPubMedCentralGoogle Scholar
  30. Gyles C, Boerlin P (2014) Horizontally transferred genetic elements and their role in pathogenesis of bacterial disease. Vet Pathol 51:328–340PubMedCrossRefPubMedCentralGoogle Scholar
  31. Haaber J, Penadés JR, Ingmer H (2017) Transfer of antibiotic resistance in Staphylococcus aureus. Trends Microbiol 25(11):893–905PubMedCrossRefPubMedCentralGoogle Scholar
  32. Hamidian M, Holt KE, Pickard D, Dougan G, Hall RM (2014) A GC1 Acinetobacter baumannii isolate carrying AbaR3 and the aminoglycoside resistance transposon TnaphA6 in a conjugative plasmid. J Antimicrob Chemother 69:955–958PubMedCrossRefPubMedCentralGoogle Scholar
  33. Hamidian M, Ambrose SJ, Hall RM (2016) A large conjugative Acinetobacter baumannii plasmid carrying the sul2 sulphonamide and strAB streptomycin resistance genes. Plasmid 87:43–50PubMedCrossRefPubMedCentralGoogle Scholar
  34. Harrison EM, Carter ME, Luck S, Ou HY, He X, Deng Z et al (2010) Pathogenicity islands PAPI-1 and PAPI-2 contribute individually and synergistically to the virulence of Pseudomonas aeruginosa strain PA14. Infect Immun 78(4):1437–1446PubMedPubMedCentralCrossRefGoogle Scholar
  35. Hidron AI, Edwards JR, Patel J et al (2008) NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006–2007. Infect Control Hosp Epidemiol 29:996–1011PubMedCrossRefGoogle Scholar
  36. Hopkins KL, Liebana E, Villa L, Batchelor M, Threlfall EJ, Carattoli A (2006) Replicon typing of plasmids carrying CTX-M or CMY β-lactamases circulating among Salmonella and Escherichia coli isolates. Antimicrob Agents Chemother 50:3203–3206PubMedPubMedCentralCrossRefGoogle Scholar
  37. Hrabak J, Empel J, Gniadkowski M, Halbhuber Z, Rebl K, Urbaskova P (2008) CTX-M-15-producing Shigella sonnei strain from a Czech patient who traveled in Asia. J Clin Microbiol 46:2147–2148PubMedPubMedCentralCrossRefGoogle Scholar
  38. Jensen SO, Lyon BR (2009) Genetics of antimicrobial resistance in Staphylococcus aureus. Future Microbiol 4:565–582PubMedCrossRefGoogle Scholar
  39. Johnson CM, Grossman AD (2015) Integrative and conjugative elements (ICEs): what they do and how they work. Ann Rev Genetics 49:577–601CrossRefGoogle Scholar
  40. Johnson TJ, Wannemuehler YM, Johnson SJ, Logue CM, White DG, Doetkott C, Nolan LK (2007) Plasmid replicon typing of commensal and pathogenic Escherichia coli isolates. Appl Environ Microbiol 73:1976–1983PubMedPubMedCentralCrossRefGoogle Scholar
  41. Johnson TA, Stedtfeld RD, Wang Q, Cole JR, Hashsham SA, Looft T et al (2016) Clusters of antibiotic resistance genes enriched together stay together in swine agriculture. MBio 7:e02214–e02215PubMedPubMedCentralGoogle Scholar
  42. Jones RN, Masterton R (2001) Determining the value of antimicrobial surveillance programs. Diagn Microbiol Infect Dis 41:171–175PubMedCrossRefGoogle Scholar
  43. Jovcic B, Lepsanovic Z, Begovic J, Rakonjac B, Perovanovic J, Topisirovic L et al (2013) The clinical isolate Pseudomonas aeruginosa MMA83 carries two copies of the blaNDM-1 gene in a novel genetic context. Antimicrob Agents Chemother 57(7):3405–3407PubMedPubMedCentralCrossRefGoogle Scholar
  44. Kadlec K, Schwarz S (2009) Identification of a novel trimethoprim resistance gene, dfrK, in a methicillin-resistant Staphylococcus aureus ST398 strain and its physical linkage to the tetracycline resistance gene tet(L). Antimicrob Agents Chemother 53:776–778PubMedCrossRefGoogle Scholar
  45. Kallen AJ, Hidron AI, Patel J, Srinivasan A (2010) Multidrug resistance among gram-negative pathogens that caused healthcare-associated infections reported to the National Healthcare Safety Network, 2006–2008. Infect Control Hosp Epidemiol 31:528–531PubMedCrossRefGoogle Scholar
  46. Kapitonov VV, Jurka J (2008) A universal classification of eukaryotic transposable elements implemented in Repbase. Nat Rev Gent 9:411–412PubMedCrossRefPubMedCentralGoogle Scholar
  47. Kehrenberg C, Ojo KK, Schwarz S (2004) Nucleotide sequence and organization of the multiresistance plasmid pSCFS1 from Staphylococcus sciuri. J Antimicrob Chemother 54:936–939PubMedCrossRefGoogle Scholar
  48. Kennedy AD, Porcella SF, Martens C, Whitney AR, Braughton KR et al (2010) Complete nucleotide sequence analysis of plasmids in strains of Staphylococcus aureus clone USA300 reveals a high level of identity among isolates with closely related core genome sequences. J Clin Microbiol 48:4504–4511PubMedPubMedCentralCrossRefGoogle Scholar
  49. Kobayashi K, Hayashi I, Kouda S, Kato F, Fujiwara T, Kayama S et al (2013) Identification and characterization of a novel aac(6′)-Iag associated with the blaIMP-1-integron in a multidrug-resistant Pseudomonas aeruginosa. PLoS One 8(8):e70557PubMedPubMedCentralCrossRefGoogle Scholar
  50. Korfhagen TR, Ferrel JA, Menefee CL, Loper JC (1976) Resistance plasmids of Pseudomonas aeruginosa:change from conjugative to nonconjugative in a hospital population. Antimicrob Agents Chemother 9(5):810–816PubMedPubMedCentralCrossRefGoogle Scholar
  51. Lafond M, Couture F, Vezina G, Levesque RC (1989) Evolutionary perspectives on multiresistance beta lactam transposons. J Bactriol 171:6423–6429Google Scholar
  52. Lambert T, Gerbaud G, Courvalin P (1988) Transferable amikacin resistance in Acinetobacter spp. due to a new type of 3′-aminoglycoside phosphotransferase. Antimicrob Agents Chemother 32:15–19PubMedPubMedCentralCrossRefGoogle Scholar
  53. Lean SS, Yeo CC (2017) Small, enigmatic plasmids of the nosocomial pathogen, Acinetobacter baumannii: good, bad, who knows? Front Microbiol 8:1547PubMedPubMedCentralCrossRefGoogle Scholar
  54. Leflon-Guibout V, Blanco J, Amaqdouf K, Mora A, Guize L, Nicolas-Chanoine MH (2008) Absence of CTX-M enzymes but a high prevalence of clones, including clone ST131, among the fecal Escherichia coli isolates of healthy subjects living in the Paris area. J Clin Microbiol 46:3900–3905PubMedPubMedCentralCrossRefGoogle Scholar
  55. Leungtongkam U, Thummeepak R, Tasanapak K, Sitthisak S (2018) Acquisition and transfer of antibiotic resistance genes in association with conjugative plasmid or class 1 integrons of Acinetobacter baumannii. PLoS One 13(12):e0208468PubMedPubMedCentralCrossRefGoogle Scholar
  56. Li H, Toleman MA, Bennett PM, Jones RN, Walsh TR (2008) Complete sequence of p07-406, a 24,179-basepair plasmid harboring the blaVIM-7 metallo-beta-lactamase gene in a Pseudomonas aeruginosa isolate from the United States. Antimicrob Agents Chemother 52(9):3099–3105PubMedPubMedCentralCrossRefGoogle Scholar
  57. Li B, Wendlandt S, Yao J, Liu Y, Zhang Q, Shi Z, Wei J, Shao D, Schwarz S, Wang S, Ma Z (2013) Detection and new genetic environment of the pleuromutilin-lincosamide-streptogramin A resistance gene lsa(E) in methicillin-resistant Staphylococcus aureus of swine origin. J Antimicrob Chemother 68:1251–1255PubMedCrossRefPubMedCentralGoogle Scholar
  58. Lindsay JA (2010) Genomic variation and evolution of Staphylococcus aureus. Int J Med Microbiol 300:98–103PubMedCrossRefPubMedCentralGoogle Scholar
  59. Liu J, Yang L, Chen D, Peters BM, Li L, Li B, Xu Z, Shirtliff ME (2018) Complete sequence of pBM413, a novel multidrug resistance megaplasmid carrying qnrVC6 and blaIMP-45 from Pseudomonas aeruginosa. Int J Antimicrob Agents 51:145–150PubMedCrossRefPubMedCentralGoogle Scholar
  60. Lozano C, Aspiroz C, Sáenz Y, Ruiz-García M, Royo-García G et al (2012) Genetic environment and location of the lnu(A) and lnu(B) genes in methicillin resistant Staphylococcus aureus and other staphylococci of animal and human origin. J Antimicrob Chemother 67:2804–2808PubMedCrossRefGoogle Scholar
  61. Lyon BR, Skurray R (1987) Antimicrobial resistance of Staphylococcus aureus: genetic basis. Microbiol Rev 51:88–134PubMedPubMedCentralGoogle Scholar
  62. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME et al (2012) Multidrug- resistant, extensively drug- resistant and pan drug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18:268–281PubMedCrossRefGoogle Scholar
  63. Marcade G, Deschamps C, Boyd A, Gautier V, Picard B, Branger C, Denamur E, Arlet G (2009) Replicon typing of plasmids in Escherichia coli producing extended-spectrum β-lactamases. J Antimicrob Chemother 63:67–71PubMedCrossRefGoogle Scholar
  64. Matanovic K, Pérez-Roth E, Pintarić S, Šeol Martinec B (2013) Molecular characterization of high-level mupirocin resistance in Staphylococcus pseudintermedius. J Clin Microbiol 51:1005–1007PubMedPubMedCentralCrossRefGoogle Scholar
  65. McCarthy AJ, Lindsay JA (2012) The distribution of plasmids that carry virulence and resistance genes in Staphylococcus aureus is lineage associated. BMC Microbiol 12:104PubMedPubMedCentralCrossRefGoogle Scholar
  66. Millan AS, Toll-Riera M, Escudero JA, Canto’n R, Coque TM, MacLean RC (2015) Sequencing of plasmids pAMBL1 and pAMBL2 from Pseudomonas aeruginosa reveals a blaVIM-1 amplification causing high-level carbapenem resistance. J Antimicrob Chemother 70:3000–3003CrossRefGoogle Scholar
  67. Miriagou V, Douzinas EE, Papagiannitsis CC, Piperaki E, Legakis NJ, Tzouvelekis LS (2008) Emergence of Serratia liquefaciens and Klebsiella oxytoca with metallo-beta-lactamase-encoding IncW plasmids: further spread of the blaVIM-1-carrying integron in-e541. Int J Antimicrob Agents 32:540–541PubMedCrossRefPubMedCentralGoogle Scholar
  68. Mulvey MR, Susky E, McCracken M, Morck DW, Read RR (2009) Similar cefoxitin-resistance plasmids circulating in Escherichia coli from human and animal sources. Vet Microbiol 134:279–287PubMedCrossRefPubMedCentralGoogle Scholar
  69. Naas T, Bonnin RA, Cuzon G, Villegas MV, Nordmann P (2013) Complete sequence of two KPC-harbouring plasmids from Pseudomonas aeruginosa. J Antimicrob Chemother 68(8):1757–1762PubMedCrossRefPubMedCentralGoogle Scholar
  70. Normark BH, Normark S (2002) Evolution and spread of antibiotic resistance. J Intern Med 252(2):91–106PubMedCrossRefPubMedCentralGoogle Scholar
  71. Novick RP, Edelman I, Schwesinger MD, Gruss AD, Swanson EC, Pattee PA (1979) Genetic translocation in Staphylococcus aureus. Proc Natl Acad Sci U S A 76:400–404PubMedPubMedCentralCrossRefGoogle Scholar
  72. O’Brien FG, Price C, Grubb WB, Gustafson JE (2002) Genetic characterization of the fusidic acid and cadmium resistance determinants of Staphylococcus aureus plasmid pUB101. J Antimicrob Chemother 50:313–321PubMedCrossRefPubMedCentralGoogle Scholar
  73. O’Mahony R, Quinn T, Drudy D, Walsh C, Whyte P, Mattar S, Fanning S (2006) Antimicrobial resistance in nontyphoidal Salmonella from food sources in Colombia: evidence for an unusual plasmid-localized class1 integron in serotypes Typhimurium and Anatum. Microb Drug Resist 12:269–277PubMedCrossRefPubMedCentralGoogle Scholar
  74. Ochi S, Shimizu T, Ohtani K (2009) Nucleotide sequence analysis of the enterotoxigenic Escherichia coli Ent plasmid. DNA Res 16:299–309PubMedPubMedCentralCrossRefGoogle Scholar
  75. Odumosu BT, Adeniyi BA, Chandra R (2013) Analysis of integrons and associated gene cassettes in clinical isolates of multidrug resistant Pseudomonas aeruginosa from Southwest Nigeria. Ann Clin Microbiol Antimicrob 12:29PubMedPubMedCentralCrossRefGoogle Scholar
  76. Olsen JE, Christensen H, Aarestrup FM (2006) Diversity and evolution of blaZ from Staphylococcus aureus and coagulase-negative staphylococci. J Antimicrob Chemother 57:450–460PubMedCrossRefPubMedCentralGoogle Scholar
  77. Pansegrau W, Lanka E, Barth PT, Figurski DH, Guiney DG, Haas D et al (1994) Complete nucleotide sequence of Birmingham IncP alpha plasmids. Compilation and comparative analysis. J Mol Biol 239(5):623–663PubMedCrossRefPubMedCentralGoogle Scholar
  78. Paterson DL, Bonomo RA (2005) Extended-spectrum β-lactamases: a clinical update. Clin Microbiol Rev 18:657–686PubMedPubMedCentralCrossRefGoogle Scholar
  79. Planet PJ et al (2017) Architecture of a species: phylogenomics of Staphylococcus aureus. Trends Microbiol 25:153–166PubMedCrossRefPubMedCentralGoogle Scholar
  80. Poirel L, Nordmann P (2006) Carbapenem resistance in Acinetobacter baumannii: mechanisms and epidemiology. Clin Microbiol Infect 12:826–836PubMedCrossRefPubMedCentralGoogle Scholar
  81. Poirel L, Villa L, Bertini A, Pitout JD, Nordmann P, Carattoli A (2007) Expanded spectrum β-lactamase and plasmid-mediated quinolone resistance. Emerg Infect Dis 13:803–805PubMedPubMedCentralCrossRefGoogle Scholar
  82. Roberts AP, Mullany P (2011) Tn916-like genetic elements: a diverse group of modular mobile elements conferring antibiotic resistance. FEMS Microbiol Rev 35(5):856–871PubMedCrossRefPubMedCentralGoogle Scholar
  83. Roca I, Espinal P, Vila-Farrés X, Vila J (2012) The Acinetobacter baumannii oxymoron: commensal hospital dweller turned pan-drug-resistant menace. Front Microbiol 3:148PubMedPubMedCentralCrossRefGoogle Scholar
  84. Roca I, Akova M, Baquero F, Carlet J, Cavaleri M et al (2015) The global threat of antimicrobial resistance: science for intervention. New Microbes New Infect 6:22–29PubMedPubMedCentralCrossRefGoogle Scholar
  85. Rowland SJ, Dyke KG (1989) Characterization of the staphylococcal beta-lactamase transposon Tn552. EMBO J 8:2761–2773PubMedPubMedCentralCrossRefGoogle Scholar
  86. Rowland SJ, Dyke KG (1990) Tn552, a novel transposable element from Staphylococcus aureus. Mol Microbiol 4:961–975PubMedCrossRefPubMedCentralGoogle Scholar
  87. Schmitt R (1986) Molecular biology of transposable elements. J Antimicrob Chemother 18:25–34PubMedCrossRefPubMedCentralGoogle Scholar
  88. Shearer JE, Wireman J, Hostetler J, Forberger H, Borman J et al (2011) Major families of multiresistant plasmids from geographically and epidemiologically diverse staphylococci. G3 (Bethesda) 1:581–591CrossRefGoogle Scholar
  89. Shen J, Wang Y, Schwarz S (2013) Presence and dissemination of the multiresistance gene cfr in Gram-positive and Gram-negative bacteria. J Antimicrob Chemother 68:1697–1706PubMedCrossRefPubMedCentralGoogle Scholar
  90. Shi L, Liang Q, Feng J, Zhan Z, Zhao Y, Yang W, Yang H, Chen Y, Huang M, Tong Y, Li X, Yin Z, Wang J, Zhou D (2018) Coexistence of two novel resistance plasmids, blaKPC-2-carrying p14057A and tetA(A)-carrying p14057B, in Pseudomonas aeruginosa. Virulence 9(1):306–311PubMedCrossRefPubMedCentralGoogle Scholar
  91. Sifaoui F, Arthur M, Rice LB, Gutmann L (2001) Role of penicillin-binding protein 5 in expression of ampicillin resistance and peptidoglycan structure in Enterococcus faecium. Antimicrobial Agents Chemother 45:2594–2597CrossRefGoogle Scholar
  92. Siguier P, Gourbeyre E, Chandler M (2014) Bacterial insertion sequences: their genomic impact and diversity. FEMS Microbiol Rev 38(5):865–891PubMedCrossRefPubMedCentralGoogle Scholar
  93. Smith DH (1967) R factor infection of Escherichia coli lyophilized in 1946. J Bacteriol 94:2071–2072PubMedPubMedCentralGoogle Scholar
  94. Strateva T, Yordanov D (2009) Pseudomonas aeruginosa – a phenomenon of bacterial resistance. J Med Microbiol 58(9):1133–1148PubMedCrossRefPubMedCentralGoogle Scholar
  95. Sun F, Zhou D, Wang Q, Feng J, Feng W, Luo W, Zhang D, Liu Y, Qiu X, Yin Z, Chen W, Xia P (2016) The first report of detecting the blaSIM-2 gene and determining the complete sequence of the SIM-encoding plasmid. Clin Microbiol Infect 22:347–351PubMedCrossRefPubMedCentralGoogle Scholar
  96. Sundstrom L, Radstrom P, Swedberg G, Skold O (1988) Site specific recombination promotes linkage between trimethoprim and sulfonamide – resistance genes. Sequence characterization of dhfrV and sulI and a recombination active locus of Tn21. Mol Gen Genet 213:191–201Google Scholar
  97. Swartz MN (2000) Impact of antimicrobial agents and chemotherapy from 1972 to 1998. Antimicrob Agents Chemother 44:2009–2016PubMedPubMedCentralCrossRefGoogle Scholar
  98. Tosini F, Visca P, Luzzi I, Dionisi AM, Pezzella C, Petrucca A, Carattoli A (1998) Class 1 integron-borne multiple-antibiotic resistance carried by IncFI and IncL/M plasmids in Salmonella enterica serotype typhimurium. Antimicrob Agents Chemother 42:3053–3058PubMedPubMedCentralCrossRefGoogle Scholar
  99. Wagner A (2006) Periodic extinctions of transposable elements in bacterial lineages: evidence from intragenomic variation in multiple genomes. Mol Biol Evol 23:723–733PubMedCrossRefPubMedCentralGoogle Scholar
  100. Wagner A, Lewis C, Bichsel M (2007) A survey of bacterial insertion sequences using IScan. Nucleic Acids Res 35:5284–5293PubMedPubMedCentralCrossRefGoogle Scholar
  101. Weigel LM, Clewell DB, Gill SR, Clark NC, McDougal LK et al (2003) Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus. Science 302:1569–1571PubMedCrossRefPubMedCentralGoogle Scholar
  102. Weiss S, Kadlec K, Feβler AT, Schwarz S (2014) Complete sequence of a multiresistance plasmid from a methicillin-resistant Staphylococcus epidermidis ST5 isolated in a small animal clinic. J Antimicrob Chemother 69:847–849PubMedCrossRefPubMedCentralGoogle Scholar
  103. Welch TJ, Fricke WF, McDermott PF, White DG, Rosso ML et al (2007) Multiple antimicrobial resistance in plague: an emerging public health risk. PLoS One 2:e309PubMedPubMedCentralCrossRefGoogle Scholar
  104. Wendlandt S, Lozano C, Kadlec K, Gómez-Sanz E, Zarazaga M, Torres C, Schwarz S (2013) The enterococcal ABC transporter gene lsa(E) confers combined resistance to lincosamides, pleuromutilins and streptogramin A antibiotics in methicillin-susceptible and methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother 68:473–475PubMedCrossRefPubMedCentralGoogle Scholar
  105. White DG, McDermott PF (2001) Emergence and transfer of antibacterial resistance. J Dairy Sci 84:E151–E155CrossRefGoogle Scholar
  106. Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B et al (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982PubMedCrossRefPubMedCentralGoogle Scholar
  107. Wiedemann B, Meyer JF, Ziihlsdorf MT (1986) Insertions of resistance genes in to Tn21 like transposons. J Antimicrob Chemother 18:85–92PubMedCrossRefPubMedCentralGoogle Scholar
  108. Winokur PL, Vonstein DL, Hoffman LJ, Uhlenhopp EK, Doern GV (2001) Evidence for transfer of CMY-2 AmpC β-lactamase plasmids between Escherichia coli and Salmonella isolates from food animals and humans. Antimicrob Agents Chemother 45:2716–2722PubMedPubMedCentralCrossRefGoogle Scholar
  109. Woodford N (2008) Successful, multiresistant bacterial clones. J Antimicrob Chemother 61:233–234PubMedCrossRefPubMedCentralGoogle Scholar
  110. Xiong J, Alexander DC, Ma JH, Deraspe M, Low DE, Jamieson FB et al (2013) Complete sequence of pOZ176, a 500-kilobase IncP-2 plasmid encoding IMP-9-mediated carbapenem resistance, from outbreak isolate Pseudomonas aeruginosa 96. Antimicrob Agents Chemother 57(8):3775–3782PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Prasannadeb Women’s CollegeJalpaiguriIndia
  2. 2.OMICS Laboratory, Department of BiotechnologyUniversity of North BengalSiliguriIndia

Personalised recommendations