Advertisement

Genomics and Molecular Mechanisms of Plant’s Response to Abiotic and Biotic Stresses

  • Avinash Marwal
  • Rajesh Kumar
  • Rakesh Kumar Verma
  • Megha Mishra
  • R. K. Gaur
  • S. M. Paul Khurana
Chapter

Abstract

Previous two to three decades have witnessed Abiotic (temperature, light, water, salt etc.) and Biotic (bacteria, fungi, viruses etc.) stresses in crop plants to be increasing and documented as a severe menace to global food security, making it hard for the plants to endure in such circumstances. With the fast-growing population, it is now mandatory to pace with the yield and productivity accordingly, thus protection of crop plants from the abiotic and biotic stresses is a priority. The expansion of stress-tolerant crops will be significantly profitable for the poor farmers in regions of the globe that are affected by such stresses. Similarly, a number of transcription factors/regulators play crucial roles in plant stress responses. This chapter emphasizes on the genes involved in plant’s response to abiotic and biotic stresses with their molecular mechanisms to summarize the current knowledge and a step further for their better understanding. Such genes need to be properly utilized to generate resistant crop plants for future generations.

Keywords

Plant stresses Genes Mechanisms Stress combination Nanotechnology 

Notes

Acknowledgement

The authors are thankful to Science and Engineering Research Board – Department of Science and Technology, New Delhi, India for the financial assistance (File No. YSS/2015/000265 and EMR/2016/000579). Thanks, are also due to the Amity University Haryana authorities for their encouragement and facilities.

References

  1. Agrawal, G. K., Rakwal, R., & Iwahashi, H. (2002). Isolation of novel rice (Oryza sativa L.) multiple stress responsive MAP kinase gene, OsMSRMK2, whose mRNA accumulates rapidly in response to environmental cues. Biochemical and Biophysical Research Communications, 294, 1009–1016.CrossRefGoogle Scholar
  2. Ainsworth, E. A., Rogers, A., & Leakey, A. D. B. (2008). Targets for crop biotechnology in a future high-CO2 and high-O3 world. Plant Physiology, 147, 13–19.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Alfano, J. R., & Collmer, A. (1996). Bacterial pathogens in plants: Life up against the Wall. The Plant Cell, 8, 1683–1698.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Algar, W. R., & Krull, U. J. (2008). Quantum dots as donors in fluorescence resonance energy transfer for the bioanalysis of nucleic acids, proteins, and other biological molecules. Analytical and Bioanalytical Chemistry, 391(5), 1609–1618.CrossRefGoogle Scholar
  5. Aslani, F., Bagheri, S., MuhdJulkapli, N., Juraimi, A. S., Hashemi, F. S. G., & Baghdadi, A. (2014). Effects of engineered nanomaterials on plants growth: An overview. The Scientific World Journal, 2014, 1–28.CrossRefGoogle Scholar
  6. Barnes, J. D., & Davison, A. W. (1988). The influence of ozone on the winter hardiness of Norway Spruce [Piceaabies (L) Karst]. The New Phytologist, 108, 159–166.CrossRefGoogle Scholar
  7. Belisario, A., Maccaroni, M., Corazza, L., Balmas, V., & Valier, A. (2002). Occurrence and etiology of brown apical necrosis on Persian (English) walnut fruit. Plant Disease, 86, 599–602.CrossRefGoogle Scholar
  8. Bender, C. L., Alarcón-Chaidez, F., & Gross, D. C. (1999). Pseudomonas syringae phytotoxins: Mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiology and Molecular Biology Reviews: MMBR, 63(2), 266–292.PubMedGoogle Scholar
  9. Besant, P. G., Tan, E., & Attwood, P. V. (2003). Mammalian protein histidine kinases. The International Journal of Biochemistry & Cell Biology, 35(3), 297–309.CrossRefGoogle Scholar
  10. Blumwald, E. (2000). Sodium transport and salt tolerance in plants. Current Opinion in Cell Biology, 12(4), 431–434.CrossRefGoogle Scholar
  11. Bowler, C., & Fluhr, R. (2000). The role of calcium and activated oxygens as signals for controlling cross-tolerance. Trends in Plant Science, 5, 241–246.CrossRefGoogle Scholar
  12. Bray, E. A. (2004). Genes commonly regulated by water-deficit stress in Arabidopsis thaliana. Journal of Experimental Botany, 55, 2331–2341.CrossRefGoogle Scholar
  13. Bray, E. A., Bailey-Serres, J., & Weretilnyk, E. (2000). Responses to abiotic stresses. In W. Gruissem, B. Buchannan, & R. Jones (Eds.), Biochemistry and molecular biology of plants (pp. 1158–1249). Rockville: American Society of Plant Physiologists.Google Scholar
  14. Brouder, S. M., & Volenec, J. J. (2008). Impact of climate change on crop nutrient and water use efficiencies. Physiologia Plantarum, 133, 705–724.CrossRefGoogle Scholar
  15. Busemeyer, L., Mentrup, D., Möller, K., Wunder, E., Alheit, K., Hahn, V., Maurer, H., Reif, J., Würschum, T., Müller, J., Rahe, F., & Ruckelshausen, A. (2013). BreedVision – A multi-sensor platform for non-destructive field-based phenotyping in plant breeding. Sensors, 13(3), 2830–2847.CrossRefGoogle Scholar
  16. Carrari, F., Fernie, A. R., & Iusem, N. D. (2004). Heard it through the grapevine? ABA and sugar cross-talk: The ASR story. Trends in Plant Science, 9(2), 57–59.CrossRefGoogle Scholar
  17. Casadevall, A., & Pirofski, L. A. (1999). Host-pathogen interactions: Redefining the basic concepts of virulence and pathogenicity. Infection and Immunity, 67(8), 3703–3713.PubMedPubMedCentralGoogle Scholar
  18. Chandra Babu, R., Zhang, J., Blum, A., David Ho, T. H., Wu, R., & Nguyen, H. (2004). HVA1, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection. Plant Science, 166(4), 855–862.CrossRefGoogle Scholar
  19. Cho, U. H., & Seo, N. H. (2005). Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Science, 168(1), 113–120.CrossRefGoogle Scholar
  20. Collmer, A., Lindeberg, M., Petnicki-Ocwieja, T., Schneider, D. J., & Alfano, J. R. (2002). Genomic mining type III secretion system effectors in Pseudomonas syringae yields new picks for all TTSS prospectors. Trends in Microbiology, 10(10), 462–469.CrossRefGoogle Scholar
  21. Cordes, R. C., & Bauman, T. T. (1984). Field competition between ivy leaf morning glory (Ipomoea hederacea) and soybeans (Glycine max). Weed Science, 32, 364–370.CrossRefGoogle Scholar
  22. Das, S., Marwal, A., Choudhary, D. K., Gupta, V. K., & Gaur, R. K. (2011). Mechanism of RNA interference (RNAi): Current concept. International Proceedings of Chemical, Biological & Environmental Engineering, 9, 240–245. ISSN: 2010-4618.Google Scholar
  23. Das, A. K., Marwal, A., & Sain, D. (2014a). One-step green synthesis and characterization of flower extract-mediated mercuric oxide (HgO) nanoparticles from Callistemon viminalis. Research and Reviews: Journal of Pharmaceutics and Nanotechnology, 2(2), 25–28.Google Scholar
  24. Das, A. K., Marwal, A., & Verma, R. (2014b). Bio-reductive synthesis and characterization of plant protein coated magnetite nanoparticles. Nano Hybridsand Composites, 7, 69–86.Google Scholar
  25. Das, A. K., Marwal, A., & Verma, R. (2014c). Datura inoxia leaf extract mediated one step green synthesis and characterization of magnetite (Fe3O4) nanoparticles. Research and Reviews: Journal of Pharmaceutics and Nanotechnology, 2(2), 21–24.Google Scholar
  26. Das, A. K., Marwal, A., Sain, D., & Pareek, V. (2015). One-step green synthesis and characterization of plant protein-coated mercuric oxide (HgO) nanoparticles: Antimicrobial studies. International Nano Letters, 5(3), 125–132.CrossRefGoogle Scholar
  27. Dean, R., Van Kan, J. A. L., Pretorius, Z. A., Hammond-Kosack, K. E., Di Pietro, A., Spanu, P. D., Rudd, J. J., Dickman, M., Kahmann, R., Ellis, J., & Foster, G. D. (2012). The top 10 fungal pathogens in molecular plant pathology: Top 10 fungal pathogens. Molecular Plant Pathology, 13(4), 414–430.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Dewey, R. E., Siedow, J. N., Timothy, D. H., & Levings, C. S. (1988). A 13-kilodalton maize mitochondrial protein in E. coli confers sensitivity to Bipolaris maydis toxin. Science (New York, N.Y.), 239(4837), 293–295.CrossRefGoogle Scholar
  29. Ding, Y., Liu, N., Virlouvet, L., Riethoven, J. J., Fromm, M., & Avramova, Z. (2013). Four distinct types of dehydration stress memory genes in Arabidopsis thaliana. BMC Plant Biology, 13(1), 229.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Doi, K., Izawa, T., Fuse, T., Yamanouchi, U., Kubo, T., Shimatani, Z., et al. (2004). Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes & Development, 18, 926–936.CrossRefGoogle Scholar
  31. Du, L., Jiao, F., Chu, J., Jin, G., Chen, M., & Wu, P. (2007). The two-component signal system in rice (Oryza sativa L.): A genome-wide study of cytokinin signal perception and transduction. Genomics, 89(6), 697–707.CrossRefGoogle Scholar
  32. El-Ramady, H., Alshaal, T., Elhawat, N., et al. (2018). Plant nutrients and their roles under saline soil conditions. In Plant nutrients and abiotic stress tolerance (pp. 297–324). Singapore: Springer.Google Scholar
  33. Falkow, S. (1990). The “zen” of bacterial pathogenicity. In B. H. Iglewski & V. L. Clark (Eds.), Molecular basis of bacterial pathogenesis (pp. 3–9). San Diego: Academic.Google Scholar
  34. Feregrino-Perez, A. A., Magaña-López, E., Guzmán, C., & Esquivel, K. (2018). A general overview of the benefits and possible negative effects of the nanotechnology in horticulture. Scientia Horticulturae, 238, 126–137.CrossRefGoogle Scholar
  35. Fraire-Velázquez, S., Rodríguez-Guerra, R., & Sánchez-Calderón, L. (2011). Abiotic and biotic stress response crosstalk in plants. In R. Rodríguez-Guerra (Ed.), Abiotic stress response in plants. Rijeka: IntechOpen. p.Ch. 1.Google Scholar
  36. Frank, W. (2000). Water deficit triggers phospholipase D activity in the resurrection plant Craterostigmaplantagineum. The Plant Cell Online, 12(1), 111–124.CrossRefGoogle Scholar
  37. Frasco, M., & Chaniotakis, N. (2009). Semiconductor quantum dots in chemical sensors and biosensors. Sensors, 9(9), 7266–7286.CrossRefGoogle Scholar
  38. Fujita, M., Fujita, Y., Noutoshi, Y., Takahashi, F., Narusaka, Y., Yamaguchi-Shinozaki, K., & Shinozaki, K. (2006). Crosstalk between abiotic and biotic stress responses: A current view from the points of convergence in the stress signaling networks. Current Opinion in Plant Biology, 9(4), 436–442.CrossRefGoogle Scholar
  39. Gaur, R. K., Prajapat, R., Marwal, A., Sahu, A., & Rathore, M. S. (2012). First report of a Begomovirus infecting Mimosa pudica in India. Journal of Plant Pathology, 93(4), S4.80. Available at: http://www.sipav.org/main/jpp/index.php/jpp/article/view/2394.Google Scholar
  40. Giraud, E., Ho, L. H., Clifton, R., Carroll, A., Estavillo, G., Tan, Y. F., Howell, K. A., Ivanova, A., Pogson, B. J., Millar, A. H., et al. (2008). The absence of ALTERNATIVE OXIDASE1a in Arabidopsis results in acute sensitivity to combined light and drought stress. Plant Physiology, 147, 595–610.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Goodman, R. N., & Novacky, A. J. (1994). The hypersensitive reaction in plants to pathogens: A resistance phenomenon. St Paul: American Phytopathological Society (APS).Google Scholar
  42. Guerriero, G., & Cai, G. (2018). Interaction of Nano-sized nutrients with plant biomass: A review. In M. Faisal, Q. Saquib, A. Alatar, & A. Al-Khedhairy (Eds.), Phytotoxicity of nanoparticles (pp. 135–149). Cham: Springer.CrossRefGoogle Scholar
  43. Haghjou, M. M., Shariati, M., & Smirnoff, N. (2009). The effect of acute high light and low temperature stresses on the ascorbate–glutathione cycle and superoxide dismutase activity in two Dunaliellasalina strains. Physiologia Plantarum, 135, 272–280.CrossRefGoogle Scholar
  44. Halford, N. G., & Hey, S. J. (2009). Snf1-related protein kinases (SnRKs) act within an intricate network that links metabolic and stress signalling in plants. Biochemical Journal, 419(2), 247–259.CrossRefGoogle Scholar
  45. Hewezi, T., Leger, M., & Gentzbittel, L. (2008). A comprehensive analysis of the combined effects of high light and high temperature stresses on gene expression in sunflower. Annals of Botany, 102, 127–140.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Huang, H. J., Fu, S. F., Tai, Y. H., Chou, W. C., & Huang, D. D. (2002). Expression of Oryza sativa MAP kinase gene is developmentally regulated and stress-responsive. Physiologia Plantarum, 114(4), 572–580.CrossRefGoogle Scholar
  47. Hwang, Y. S. (2005). A gibberellin-regulated calcineurin B in rice localizes to the tonoplast and is implicated in vacuole function. Plant Physiology, 138(3), 1347–1358.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Hwang, I., & Sheen, J. (2001). Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature, 413, 383.CrossRefGoogle Scholar
  49. Iyer, N. J., Tang, Y., & Mahalingam, R. (2013). Physiological, biochemical and molecular responses to a combination of drought and ozone in Medicago truncatula. Plant, Cell & Environment, 36, 706–720.CrossRefGoogle Scholar
  50. Janda, J. M., & Abbott, S. L. (2010). The genus aeromonas: Taxonomy, pathogenicity, and infection. Clinical Microbiology Reviews, 23(1), 35–73.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Joo, J., Lee, Y. H., Kim, Y.-K., Nahm, B. H., & Song, S. I. (2013). Abiotic stress responsive rice ASR1 and ASR3 exhibit different tissue dependent sugar and hormone-sensitivities. Molecules and Cells, 35(5), 421–435.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Kasurinen, A., Biasi, C., Holopainen, T., Rousi, M., Maenpaa, M., & Oksanen, E. (2012). Interactive effects of elevated ozone and temperature on carbon allocation of silver birch (Betula pendula) genotypes in an open-air field exposure. Tree Physiology, 32, 737–751.CrossRefGoogle Scholar
  53. Katou, S., Kuroda, K., Seo, S., Yanagawa, Y., Tsuge, T., Yamazaki, M., Miyao, A., Hirochika, H., & Ohashi, Y. (2007). A calmodulin-binding mitogen-activated protein kinase phosphatase is induced by wounding and regulates the activities of stress-related mitogen-activated protein kinases in rice. Plant and Cell Physiology, 48(2), 332–344.CrossRefGoogle Scholar
  54. Khodakovskaya, M., Dervishi, E., Mahmood, M., Xu, Y., Li, Z., Watanabe, F., & Biris, A. S. (2009). Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano, 3(10), 3221–3227.Google Scholar
  55. Khurana, S. M. P., & Marwal, A. (2016). Recent developments towards detection & diagnosis for management of plant viruses. Indian Phytopathology, 69(4s), 30–34.Google Scholar
  56. Kiba, T., Yamada, H., Sato, S., Kato, T., Tabata, S., Yamashino, T., & Mizuno, T. (2003). The type-A response regulator, ARR15, acts as a negative regulator in the cytokinin-mediated signal transduction in Arabidopsis thaliana. Plant & Cell Physiology, 44(8), 868–874.CrossRefGoogle Scholar
  57. Klement, Z. (1982). Hypersensitivity. In M. S. Mount & G. H. Lacy (Eds.), Phytopathogenic prokaryotes (Vol. 2, pp. 149–177). New York: Academic.CrossRefGoogle Scholar
  58. Kono, Y., Takeuchi, S., Kawarada, A., Daly, J., & Knoche, H. (1981). Studies on the host specific phytotoxins produced in minor amounts by Helminthosporium maydis, race T. Bioorganic Chemistry, 10, 206–218.CrossRefGoogle Scholar
  59. Laloi, C., Apel, K., & Danon, A. (2004). Reactive oxygen signalling: The latest news. Current Opinion in Plant Biology, 7(3), 323–328.CrossRefGoogle Scholar
  60. Levings, C. S., & Siedow, J. N. (1992). Molecular basis of disease susceptibility in the Texas cytoplasm of maize. In R. A. Schilperoort & L. Dure (Eds.), 10 years plant molecular biology (pp. 135–147). Dordrecht: Springer.CrossRefGoogle Scholar
  61. Liu, J. (2000). The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proceedings of the National Academy of Sciences, 97(7), 3730–3734.CrossRefGoogle Scholar
  62. Liu, J., & Zhu, J. K. (1998). A calcium sensor homolog required for plant salt tolerance. Science (New York, N.Y.), 280(5371), 1943–1945.CrossRefGoogle Scholar
  63. Loreto, F., & Bongi, G. (1989). Combined low temperature-high light effect on gas-exchange properties of jojoba leaves. Plant Physiology, 91, 1580–1585.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Ludwig, A., Romeis, T., & Jones, J. D. (2004). CDPK mediated signalling pathways: Specificity and cross-talk. Journal of Experimental Botany, 55, 181–188.CrossRefGoogle Scholar
  65. Ma, X., & Yan, J. (2018). Plant uptake and accumulation of engineered metallic nanoparticles from lab to field conditions. Current Opinion in Environmental Science & Health, 6, 16–20.CrossRefGoogle Scholar
  66. Mahajan-Miklos, S., Tan, M. W., Rahme, L. G., & Ausubel, F. M. (1999). Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa-Caenorhabditis elegans pathogenesis model. Cell, 96(1), 47–56.CrossRefGoogle Scholar
  67. Mahmood, S., Lakra, N., Marwal, A., Sudheep, N. M., & Anwar, K. (2017). Crop genetic engineering: An approach to improve fungal resistance in plant system. In: D. P. Singh, H. B. Singh, & R. Prabha (Eds.), Plant-microbe interactions in agro-ecological perspectives (pp. 581–591). Available at: http://link.springer.com/10.1007/978-981-10-6593-4_23. ISBN: 978-981-10-5812-7.
  68. Mansfield, J., Genin, S., Magori, S., Citovsky, V., Sriariyanum, M., Ronald, P., Dow, M., Verdier, V., Beer, S. V., Machado, M. A., Toth, I., Salmond, G., & Foster, G. D. (2012). Top 10 plant pathogenic bacteria in molecular plant pathology: Top 10 plant pathogenic bacteria. Molecular Plant Pathology, 13(6), 614–629.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Marwal, A., & Gaur, R. K. (2017). Understanding functional genomics of PTGS silencing mechanisms for Tobacco streak virus and other ilarviruses mediated by RNAi and VIGS. In: D. P. Singh, H. B. Singh, & R. Prabha (Eds.), Plant-microbe interactions in agro-ecological perspectives (Chapter 24. pp. 489–499). ISBN: 978-981-10-5812-7.Google Scholar
  70. Marwal, A., Prajapat, R., Sahu, A. K., & Gaur, R. K. (2012). Current status of geminivirus in India: RNAi technology, a challenging cure. Asian Journal of Biological Sciences, 5(6), 273–293.CrossRefGoogle Scholar
  71. Marwal, A., Kumar Sahu, A., & Gaur, R. K. (2013a). Molecular characterization of Begomoviruses and DNA satellites associated with a new host Spanish flag (Lantana camara) in India. ISRN Virology, 2013, 1–5.  https://doi.org/10.5402/2013/915703.
  72. Marwal, A., Sahu, A. K., Prajapat, R., Choudhary, D. K., & Gaur, R. K. (2013b). Molecular and recombinational characterization of Begomovirus infecting an ornamental plant Alternanthera sessilis: A new host of tomato leaf curl Kerala virus reported in India. Science International, 1(3), 51–56.CrossRefGoogle Scholar
  73. Marwal, A., Gaur, R. K., & Khurana, S. M. P. (2016). Chapter 11: RNAi mediated gene silencing against plant viruses. In P. Chowdappa, P. Sharma, D. Singh, & A. K. Misra (Eds.), Perspectives of plant pathology in genomic era (pp. 235–254). New Delhi: Today and Tomorrow’s Printers and Publishers. ISBN 10: 8170195268 ISBN 13: 9788170195269.Google Scholar
  74. Marwal, A., Mishra, M., Sekhsaria, C., & Gaur, R. K. (2017). Computational analysis and predicting ligand binding site in the rose leaf curl virus and its betasatellite proteins: A step forward for antiviral agent designing. In: S. Saxena, & A. K. Tiwari (Eds.), Begomoviruses: Occurrence and management in Asia and Africa (Chapter 9, pp. 157–168). ISBN: 978-981-10-5983-4.Google Scholar
  75. Masle, J., Gilmore, S. R., & Farquhar, G. D. (2005). The ERECTA gene regulates plant transpiration efficiency in Arabidopsis. Nature, 436(7052), 866–870.CrossRefGoogle Scholar
  76. Medina, J., Bargues, M., Terol, J., Pérez-Alonso, M., & Salinas, J. (1999). The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration. Plant Physiology, 119(2), 463–470.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Mingfang, Q., Yufeng, L., & Tianlai, L. (2013). Nano-TiO2 improve the photosynthesis of tomato leaves under mild heat stress. Biological Trace Element Research, 156(1–3), 323–328.Google Scholar
  78. Mittler, R., & Blumwald, E. (2010). Genetic engineering for modern agriculture: Challenges and perspectives. Annual Review of Plant Biology, 61, 443–462.CrossRefGoogle Scholar
  79. Moissiard, G., & Voinnet, O. (2004). Viral suppression of RNA silencing in plants. Molecular Plant Pathology, 5(1), 71–82.CrossRefGoogle Scholar
  80. Nehra, C., Marwal, A., Verma, R. K., & Gaur, R. K. (2018). Molecular characterization of Begomoviruses DNA-A and associated beta satellites with new host Ocimum sanctum in India. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences.  https://doi.org/10.1007/s40011-018-1006-9.
  81. Pareek, A., Singh, A., Kumar, M., Kushwaha, H. R., Lynn, A. M., & Singla-Pareek, S. L. (2006). Whole-genome analysis of Oryza sativa reveals similar architecture of two-component signaling machinery with Arabidopsis. Plant Physiology, 142(2), 380–397.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Patterson, D. T., & Flint, E. P. (1979). Effects of chilling on cotton (Gossypium hirsutum), velvetleaf (Abutilon theophrasti), and spurred anoda (Anodacristata). Weed Science, 27, 473–479.CrossRefGoogle Scholar
  83. Perez-Lopez, U., Miranda-Apodaca, J., Munoz-Rueda, A., & Mena-Petite, A. (2013). Lettuce production and antioxidant capacity are differentially modified by salt stress and light intensity under ambient and elevated CO2. Journal of Plant Physiology, 170, 1517–1525.CrossRefGoogle Scholar
  84. Petřivalský, M., Brauner, F., Luhová, L., Gagneul, D., & Šebela, M. (2007). Aminoaldehyde dehydrogenase activity during wound healing of mechanically injured pea seedlings. Journal of Plant Physiology, 164(11), 1410–1418.CrossRefGoogle Scholar
  85. Prajapat, R., Gaur, R. K., & Marwal, A. (2011a). Homology modeling and docking studies between AC1 Rep protein of Begomovirus and whey a-lactalbumin. Asian Journal of Biological Sciences, 4(4), 352–361.CrossRefGoogle Scholar
  86. Prajapat, R., Marwal, A., Sahu, A., & Gaur, R. K. (2011b). Phylogenetics and in silico docking studies between coat protein of Mimosa yellow vein virus and whey cc-lactalbumin. American Journal of Biochemistry and Molecular Biology, 1(3), 265–274.CrossRefGoogle Scholar
  87. Prajapat, R., Marwal, A., Shaikh, Z., & Gaur, R. K. (2012). Geminivirus database (GVDB): First database of family Geminiviridae and its genera Begomovirus. Pakistan Journal of Biological Sciences, 15(14), 702–706.CrossRefGoogle Scholar
  88. Prajapat, R., Marwal, A., & Jha, P. N. (2013). Erwinia carotovora associated with potato: A critical appraisal with respect to Indian perspective. International Journal of Current Microbiology and Applied Sciences, 2(10), 83–89.Google Scholar
  89. Prajapat, R., Marwal, A., & Gaur, R. K. (2014). Recognition of errors in the refinement and validation of three-dimensional structures of AC1 proteins of Begomovirus strains by using ProSA-Web. Journal of Viruses, 2014, 1–6.  https://doi.org/10.1155/2014/752656.CrossRefGoogle Scholar
  90. Prasad, A., Kumar, A., Suzuki, M., Kikuchi, H., Sugai, T., Kobayashi, M., Pospíšil, P., Tada, M., & Kasai, S. (2015). Detection of hydrogen peroxide in Photosystem II (PSII) using catalytic amperometric biosensor. Frontiers in Plant Science, 6, 862.PubMedPubMedCentralGoogle Scholar
  91. Prasch, C. M., & Sonnewald, U. (2013). Simultaneous application of heat, drought, and virus to Arabidopsis plants reveals significant shifts in signaling networks. Plant Physiology, 162, 1849–1866.CrossRefPubMedPubMedCentralGoogle Scholar
  92. Pruss, G., Ge, X., Shi, X. M., Carrington, J. C., & Bowman Vance, V. (1997). Plant viral synergism: The potyviral genome encodes a broad-range pathogenicity enhancer that transactivates replication of heterologous viruses. The Plant Cell, 9(6), 859–868.CrossRefPubMedPubMedCentralGoogle Scholar
  93. Rahme, L. G., Stevens, E. J., Wolfort, S. F., Shao, J., Tompkins, R. G., & Ausubel, F. M. (1995). Common virulence factors for bacterial pathogenicity in plants and animals. Science (New York, N.Y.), 268(5219), 1899–1902.CrossRefGoogle Scholar
  94. Rahme, L. G., Tan, M.-W., Le, L., Wong, S. M., Tompkins, R. G., Calderwood, S. B., & Ausubel, F. M. (1997). Use of model plant hosts to identify Pseudomonas aeruginosa virulence factors. Proceedings of the National Academy of Sciences, 94(24), 13245–13250.CrossRefGoogle Scholar
  95. Ray, S., Agarwal, P., Arora, R., Kapoor, S., & Tyagi, A. K. (2007). Expression analysis of calcium-dependent protein kinase gene family during reproductive development and abiotic stress conditions in rice (Oryza sativa L. ssp. indica). Molecular Genetics and Genomics, 278(5), 493–505.CrossRefGoogle Scholar
  96. Riechmann, J. L., Heard, J., Martin, G., Reuber, L., Jiang, C., Keddie, J., Adam, L., Pineda, O., Ratcliffe, O. J., Samaha, R. R., Creelman, R., Pilgrim, M., Broun, P., Zhang, J. Z., Ghandehari, D., Sherman, B. K., & Yu, G. (2000). Arabidopsis transcription factors: Genome-wide comparative analysis among eukaryotes. Science (New York, N.Y.), 290(5499), 2105–2110.CrossRefGoogle Scholar
  97. Rizhsky, L., Hongjian, L., & Mittler, R. (2002). The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiology, 130(3), 1143–1151.CrossRefPubMedPubMedCentralGoogle Scholar
  98. Romero, I., Fuertes, A., Benito, M. J., Malpica, J. M., Leyva, A., & Paz-Ares, J. (1998). More than 80R2R3-MYB regulatory genes in the genome of Arabidopsis thaliana. The Plant Journal: for Cell and Molecular Biology, 14(3), 273–284.CrossRefGoogle Scholar
  99. Ruiz, M. T., Voinnet, O., & Baulcombe, D. C. (1998). Initiation and maintenance of virus-induced gene silencing. The Plant Cell, 10(6), 937–946.CrossRefPubMedPubMedCentralGoogle Scholar
  100. Safarpour, H., Safarnejad, M. R., Tabatabaei, M., Mohsenifar, A., Rad, F., Basirat, M., Shahryari, F., & Hasanzadeh, F. (2012). Development of a quantum dots FRET-based biosensor for efficient detection of Polymyxabetae. Canadian Journal of Plant Pathology, 34(4), 507–515.CrossRefGoogle Scholar
  101. Sahu, A. K., Marwal, A., Nehra, C., Choudhary, D. K., Sharma, P., & Gaur, R. K. (2014a). RNAi mediated gene silencing against betasatellite associated with Croton yellow vein mosaic Begomovirus. Molecular Biology Reports, 41(11), 7631–7638.CrossRefPubMedPubMedCentralGoogle Scholar
  102. Sahu, A. K., Marwal, A., Shahid, M. S., Nehra, C., & Gaur, R. K. (2014b). First report of a Begomovirus and associated betasatellite in Rosa indica and in India. Australasian Plant Disease Notes, 9, 147.  https://doi.org/10.1007/s13314-014-0147-9.CrossRefGoogle Scholar
  103. Saijo, Y., Hata, S., Kyozuka, J., Shimamoto, K., & Izui, K. (2000). Over-expression of a single Ca2+−dependent protein kinase confers both cold and salt/drought tolerance on rice plants. The Plant Journal: for Cell and Molecular Biology, 23(3), 319–327.CrossRefGoogle Scholar
  104. Santos, C. S. C., Gabriel, B., Blanchy, M., Menes, O., García, D., Blanco, M., Arconada, N., & Neto, V. (2015). Industrial applications of nanoparticles – A prospective overview. Materials Today: Proceedings, 2(1), 456–465.Google Scholar
  105. Schafer, W. (1994). Molecular mechanisms of fungal pathogenicity to plants. Annual Review of Phytopathology, 32(1), 461–477.CrossRefGoogle Scholar
  106. Schafleitner, R., Gutierrez Rosales, R. O., Gaudin, A., Alvarado Aliaga, C. A., Martinez, G. N., Tincopa Marca, L. R., Bolivar, L. A., Delgado, F. M., Simon, R., & Bonierbale, M. (2007). Capturing candidate drought tolerance traits in two native Andean potato clones by transcription profiling of field grown plants under water stress. Plant Physiology and Biochemistry, 45(9), 673–690.CrossRefPubMedPubMedCentralGoogle Scholar
  107. Scheffer, N. P., Nelson, R. R., & Ullstrup, A. J. (1967). Inheritance of toxin production and pathogenicity in Cochlioboluscarbonum and Cochliobolusvictoriae. Phytopathology, 57, 1288–1291.Google Scholar
  108. Scholthof, K. B. G., Adkins, S., Czosnek, H., Palukaitis, P., Jacquot, E., Hohn, T., Hohn, B., Saunders, K., Candresse, T., Ahlquist, P., Hemenway, C., & Foster, G. D. (2011). Top 10 plant viruses in molecular plant pathology: Top 10 plant viruses. Molecular Plant Pathology, 12(9), 938–954.CrossRefPubMedPubMedCentralGoogle Scholar
  109. Shinozaki, K., & Shinozaki, Y. K. (2000). Molecular responses to dehydration and low temperature: Differences and cross-talk between two stress signaling pathways. Current Opinion in Plant Biology, 3(3), 217–223.CrossRefPubMedPubMedCentralGoogle Scholar
  110. Shinozaki, K., & Shinozaki, K. Y. (2006). Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany, 58(2), 221–227.CrossRefGoogle Scholar
  111. Shinwari, Z. K., Nakashima, K., Miura, S., Kasuga, M., Seki, M., Yamaguchi-Shinozaki, K., & Shinozaki, K. (1998). An arabidopsis gene family encoding DRE/CRT binding proteins involved in low-temperature-responsive gene expression. Biochemical and Biophysical Research Communications, 250(1), 161–170.CrossRefGoogle Scholar
  112. Shiraishi, T., Yamada, T., Ichinose, Y., Kiba, A., & Toyoda, K. (1997). The role of suppressors in determining host-parasite specificities in plant cells. In: International review of cytology (pp. 55–93). Elsevier.Google Scholar
  113. Shpak, E. D., Berthiaume, C. T., Hill, E. J., & Torii, K. U. (2004). Synergistic interaction of three ERECTA-family receptor-like kinases controls Arabidopsis organ growth and flower development by promoting cell proliferation. Development, 131(7), 1491–1501.CrossRefGoogle Scholar
  114. Song, F., & Goodman, R. (2002). OsBIMK1, a rice MAP kinase gene involved in disease resistance responses. Planta, 215(6), 997–1005.CrossRefGoogle Scholar
  115. Spoel, S. H., & Dong, X. (2008). Making sense of hormone crosstalk during plant immune responses. Cell Host & Microbe, 3(6), 348–351.CrossRefGoogle Scholar
  116. Su, L., Dai, Z., Li, S., & Xin, H. (2015). A novel system for evaluating drought–cold tolerance of grapevines using chlorophyll fluorescence. BMC Plant Biology, 15, 82.CrossRefPubMedPubMedCentralGoogle Scholar
  117. Sudheep, N. M., Marwal, A., Lakra, N., Anwar, K., & Mahmood, S. (2017). Fascinating fungal endophytes role and possible beneficial applications: An overview. In D. P. Singh, H. B. Singh, & R. Prabha (Eds.), Plant-microbe interactions in agro-ecological perspectives (pp. 255–273). [online] Singapore: Springer. Available at: http://link.springer.com/10.1007/978-981-10-5813-4_13. ISBN: 978-981-10-5812-7. 255–273.CrossRefGoogle Scholar
  118. Szittya, G., Silhavy, D., Molnar, A., Havelda, Z., Lovas, A., Lakatos, L., Banfalvi, Z., & Burgyan, J. (2003). Low temperature inhibits RNA silencing-mediated defence by the control of siRNA generation. EMBO Journal, 22, 633–640.CrossRefGoogle Scholar
  119. Valerio, M., Lovelli, S., Perniola, M., Di Tommaso, T., & Ziska, L. (2013). The role of water availability on weed–crop interactions in processing tomato for southern Italy. Acta Agriculturae Scandinavica Section B: Soil and Plant Science, 63, 62–68.CrossRefGoogle Scholar
  120. Vance, V. B. (1991). Replication of potato virus X RNA is altered in coinfections with potato virus Y. Virology, 182(2), 486–494.CrossRefGoogle Scholar
  121. VanEtten, H. D., Matthews, D. E., & Matthews, P. S. (1989). Phytoalexin detoxification: Importance for pathogenicity and practical implications. Annual Review of Phytopathology, 27(1), 143–164.CrossRefGoogle Scholar
  122. Verma, A. S., & Singh, A. (Eds.). (2013). Animal biotechnology: Models in discovery and translation. Amsterdam: Elsevier/AP, Academic Press is an imprint of Elsevier. ISBN: 978-0-12-416002-6.Google Scholar
  123. Volpe, V., Dell’Aglio, E., Giovannetti, M., Ruberti, C., Costa, A., Genre, A., Guether, M., & Bonfante, P. (2013). An AM-induced, MYB -family gene of Lotus japonicus (LjMAMI) affects root growth in an AM-independent manner. The Plant Journal, 73(3), 442–455.CrossRefGoogle Scholar
  124. von Bodman, S. B., Bauer, W. D., & Coplin, D. L. (2003). Quorum sensing in plant pathogenic bacteria. Annual Review of Phytopathology, 41(1), 455–482.CrossRefGoogle Scholar
  125. Walton, J. D., Earle, E. D., & Gibson, B. W. (1982). Purification and structure of the host-specific toxin from Helminthosporiumcarbonum race 1. Biochemical and Biophysical Research Communications, 107(3), 785–794.CrossRefGoogle Scholar
  126. Wang, W. X., Barak, T., Vinocur, B., Shoseyov, O., & Altman, A. (2003). Abiotic resistance and chaperones: Possible physiological role of SP1, a stable and stabilizing protein from populus. In I. K. Vasil (Ed.), Plant biotechnology 2000 and beyond (pp. 439–443). Dordrecht: Kluwer.CrossRefGoogle Scholar
  127. Welfare, K., Yeo, A. R., & Flowers, T. J. (2002). Effects of salinity and ozone, individually and in combination, on the growth and ion contents of two chickpea (Cicerarietinum L.) varieties. Environmental Pollution, 120, 397–403.CrossRefGoogle Scholar
  128. Wen, J. Q., Oono, K., & Imai, R. (2002). Two novel mitogen-activated protein signaling components, OsMEK1 and OsMAP1, are involved in a moderate low-temperature signaling pathway in Rice. Plant Physiology, 129(4), 1880–1891.CrossRefPubMedPubMedCentralGoogle Scholar
  129. White, J. C., & Gardea-Torresdey, J. (2018). Achieving food security through the very small. Nature Nanotechnology, 13, 627–629.CrossRefGoogle Scholar
  130. Wolpert, T. J., Dunkle, L. D., & Ciuffetti, L. M. (2002). Host selective toxins and a virulence determinants: What’s in a name? Annual Review of Phytopathology, 40(1), 251–285.CrossRefGoogle Scholar
  131. Wood, A. J., Saneoka, H., Rhodes, D., Joly, R. J., & Goldsbrough, P. B. (1996). Betaine aldehyde dehydrogenase in sorghum. Plant Physiology, 110(4), 1301–1308.CrossRefPubMedPubMedCentralGoogle Scholar
  132. Xiong, L., & Yang, Y. (2003). Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. The Plant Cell Online, 15(3), 745–759.CrossRefGoogle Scholar
  133. Yang, C. Y., Chen, Y. C., Jauh, G. Y., & Wang, C. S. (2005). A lily ASR protein involves abscisic acid signaling and confers drought and salt resistance in Arabidopsis. Plant Physiology, 139(2), 836–846.CrossRefPubMedPubMedCentralGoogle Scholar
  134. Ye, X., Gu, Y., & Wang, C. (2012). Fabrication of the Cu2O/polyvinyl pyrrolidone-graphene modified glassy carbon-rotating disk electrode and its application for sensitive detection of herbicide paraquat. Sensors and Actuators B: Chemical, 173, 530–539.CrossRefGoogle Scholar
  135. Zhu, J. K. (2001). Plant salt tolerance. Trends in Plant Science, 6(2), 66–71.CrossRefGoogle Scholar
  136. Zhu, J. K. (2002). Salt and drought stress signal transduction in plants. Annual Review of Plant Biology, 53(1), 247–273.CrossRefPubMedPubMedCentralGoogle Scholar
  137. Zhu, C., Gore, M., Buckler, E. S., & Yu, J. (2008). Status and prospects of association mapping in plants. The Plant Genome Journal, 1(1), 5.CrossRefGoogle Scholar
  138. Zhu, Y., Qian, W., & Hua, J. (2010). Temperature modulates plant defense responses through NB-LRR proteins. PLoS Pathogens, 6, e1000844.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Avinash Marwal
    • 1
  • Rajesh Kumar
    • 2
  • Rakesh Kumar Verma
    • 2
  • Megha Mishra
    • 2
  • R. K. Gaur
    • 3
  • S. M. Paul Khurana
    • 4
  1. 1.Department of BiotechnologyMohanlal Sukhadia UniversityUdaipurIndia
  2. 2.Department of Biosciences, School of SciencesMody University of Science and TechnologySikarIndia
  3. 3.Department of BiotechnologyDeen Dayal Upadhyaya Gorakhpur UniversityGorakhpurIndia
  4. 4.Amity Institute of BiotechnologyAmity UniversityGurgaonIndia

Personalised recommendations