Advertisement

The Model Legume Medicago truncatula: Past, Present, and Future

  • Kaustav BandyopadhyayEmail author
  • Jerome Verdier
  • Yun Kang
Chapter

Abstract

Legumes are indispensable as food for us, feed for our livestock, and as a major contributor towards sustainable agricultural practices. Seed development, and root nodule symbiosis in legumes are the two main areas where majority of research is focused. Though Arabidopsis thaliana is a plant model with huge publicly-available resources, a model for legumes is always needed to study the unique characteristics of this family. Since last few decades, Medicago truncatula is being used as a model for studying plant-microbe interaction, seed development, and abiotic stress on plants. Many genomic resources have been developed, including the genome sequence, spatio-temporal gene expression data, germplasm collection, and collection of different types of mutants. This chapter describes the path followed by Medicago truncatula to become a model legume, along with all the above-mentioned genomic resources in detail. We have also discussed the ways of utilizing these resources in forward and reverse genetic studies. Concerted use of these resources with genome-wide analyses, molecular breeding programmes, and latest targeted genetic editing techniques has limit-less potential of empowering legumes as future food security.

Keywords

Medicago truncatula Legumes Model plants Genomic resources 

References

  1. Anders, S., & Huber, W. (2010). Differential expression analysis for sequence count data. Genome Biology, 11(10), R106.  https://doi.org/10.1186/gb-2010-11-10-r106.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Barker, D. G., Gallusci, P., Lullien, V., Khan, H., Gherardi, M., & Huguet, T. (1988). Identification of two groups of leghemoglobin genes in alfalfa (Medicago sativa) and a study of their expression during root nodule development. Plant Molecular Biology, 11(6), 761–772.  https://doi.org/10.1007/BF00019516.CrossRefPubMedGoogle Scholar
  3. Barker, D. G., Bianchi, S., Blondon, F., Dattée, Y., Duc, G., Essad, S., Flament, P., Gallusci, P., Génier, G., Guy, P., Muel, X., Tourneur, J., Dénarié, J., & Huguet, T. (1990). Medicago truncatula, a model plant for studying the molecular genetics of the Rhizobium-legume symbiosis. Plant Molecular Biology Reporter, 8(1), 40–49.CrossRefGoogle Scholar
  4. Barnett, M. J., Toman, C. J., Fisher, R. F., & Long, S. R. (2004). A dual-genome Symbiosis Chip for coordinate study of signal exchange and development in a prokaryote-host interaction. Proceedings of the National Academy of Sciences of the United States of America, 101(47), 16636–16641.  https://doi.org/10.1073/pnas.0407269101.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bell, C. J., Dixon, R. A., Farmer, A. D., Flores, R., Inman, J., Gonzales, R. A., Harrison, M. J., Paiva, N. L., Scott, A. D., Weller, J. W., & May, G. D. (2001). The Medicago Genome Initiative: A model legume database. Nucleic Acids Research, 29(1), 114–117.CrossRefGoogle Scholar
  6. Benaben, V., Duc, G., Lefebvre, V., & Huguet, T. (1995). TE7, an inefficient symbiotic mutant of Medicago truncatula Gaertn. cv Jemalong. Plant Physiology, 107(1), 53–62.CrossRefGoogle Scholar
  7. Benedito, V. A., Torres-Jerez, I., Murray, J. D., Andriankaja, A., Allen, S., Kakar, K., Wandrey, M., Verdier, J., Zuber, H., Ott, T., Moreau, S., Niebel, A., Frickey, T., Weiller, G., He, J., Dai, X., Zhao, P. X., Tang, Y., & Udvardi, M. K. (2008). A gene expression atlas of the model legume Medicago truncatula. The Plant Journal, 55(3), 504–513.  https://doi.org/10.1111/j.1365-313X.2008.03519.x.CrossRefPubMedGoogle Scholar
  8. Benlloch, R., d’Erfurth, I., Ferrandiz, C., Cosson, V., Beltran, J. P., Canas, L. A., Kondorosi, A., Madueno, F., & Ratet, P. (2006). Isolation of mtpim proves Tnt1 a useful reverse genetics tool in Medicago truncatula and uncovers new aspects of AP1-like functions in legumes. Plant Physiology, 142(3), 972–983.  https://doi.org/10.1104/pp.106.083543.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Boscari, A., Del Giudice, J., Ferrarini, A., Venturini, L., Zaffini, A. L., Delledonne, M., & Puppo, A. (2013). Expression dynamics of the Medicago truncatula transcriptome during the symbiotic interaction with Sinorhizobium meliloti: Which role for nitric oxide? Plant Physiology, 161(1), 425–439.  https://doi.org/10.1104/pp.112.208538.CrossRefPubMedGoogle Scholar
  10. Broeckling, C. D., Huhman, D. V., Farag, M. A., Smith, J. T., May, G. D., Mendes, P., Dixon, R. A., & Sumner, L. W. (2005). Metabolic profiling of Medicago truncatula cell cultures reveals the effects of biotic and abiotic elicitors on metabolism. Journal of Experimental Botany, 56(410), 323–336.  https://doi.org/10.1093/jxb/eri058.CrossRefPubMedGoogle Scholar
  11. Brummer, E. C., Bouton, J. H., & Kochert, G. (1995). Analysis of annual Medicago species using RAPD markers. Genome, 38(2), 362–367.CrossRefGoogle Scholar
  12. Burghardt, L. T., Young, N. D., & Tiffin, P. (2017). A guide to genome-wide association studies (GWAS) in plants. Current Opinion in Plant Biology, 2, 22–38.CrossRefGoogle Scholar
  13. Catoira, R., Galera, C., de Billy, F., Penmetsa, R. V., Journet, E. P., Maillet, F., Rosenberg, C., Cook, D., Gough, C., & Denarie, J. (2000). Four genes of Medicago truncatula controlling components of a nod factor transduction pathway. Plant Cell, 12(9), 1647–1666.CrossRefGoogle Scholar
  14. Cermak, T., Curtin, S. J., Gil-Humanes, J., Cegan, R., Kono, T. J. Y., Konecna, E., Belanto, J. J., Starker, C. G., Mathre, J. W., Greenstein, R. L., & Voytas, D. F. (2017). A multipurpose toolkit to enable advanced genome engineering in plants. Plant Cell, 29(6), 1196–1217.  https://doi.org/10.1105/tpc.16.00922.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chabaud, M., de Carvalho-Niebel, F., & Barker, D. G. (2003). Efficient transformation of Medicago truncatula cv. Jemalong using the hypervirulent Agrobacterium tumefaciens strain AGL1. Plant Cell Reports, 22(1), 46–51.  https://doi.org/10.1007/s00299-003-0649-y.CrossRefPubMedGoogle Scholar
  16. Chang, C., Bowman, J. L., & Meyerowitz, E. M. (2016). Field guide to plant model systems. Cell, 167(2), 325–339.  https://doi.org/10.1016/j.cell.2016.08.031.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Cheng, X., Wang, M., Lee, H. K., Tadege, M., Ratet, P., Udvardi, M., Mysore, K. S., & Wen, J. (2014). An efficient reverse genetics platform in the model legume Medicago truncatula. The New Phytologist, 201(3), 1065–1076.  https://doi.org/10.1111/nph.12575.CrossRefPubMedGoogle Scholar
  18. Cheng, X., Krom, N., Zhang, S., Mysore, K. S., Udvardi, M., & Wen, J. (2017). Enabling reverse genetics in Medicago truncatula using high-throughput sequencing for Tnt1 flanking sequence recovery. Methods in Molecular Biology, 1610, 25–37.  https://doi.org/10.1007/978-1-4939-7003-2_3.CrossRefPubMedGoogle Scholar
  19. Choi, H. K., Kim, D., Uhm, T., Limpens, E., Lim, H., Mun, J. H., Kalo, P., Penmetsa, R. V., Seres, A., Kulikova, O., Roe, B. A., Bisseling, T., Kiss, G. B., & Cook, D. R. (2004). A sequence-based genetic map of Medicago truncatula and comparison of marker colinearity with M. sativa. Genetics, 166(3), 1463–1502.CrossRefGoogle Scholar
  20. Comai, L., & Henikoff, S. (2006). TILLING: Practical single-nucleotide mutation discovery. The Plant Journal, 45(4), 684–694.  https://doi.org/10.1111/j.1365-313X.2006.02670.x.CrossRefPubMedGoogle Scholar
  21. Cook, D. R. (1999). Medicago truncatula – a model in the making!: Commentary. Current Opinion in Plant Biology, 2(4), 310–304.CrossRefGoogle Scholar
  22. Covitz, P. A., Smith, L. S., & Long, S. R. (1998). Expressed sequence tags from a root-hair-enriched medicago truncatula cDNA library. Plant Physiology, 117(4), 1325–1332.CrossRefGoogle Scholar
  23. Curtin, S. J., Tiffin, P., Guhlin, J., Trujillo, D. I., Burghart, L. T., Atkins, P., Baltes, N. J., Denny, R., Voytas, D. F., Stupar, R. M., & Young, N. D. (2017). Validating genome-wide association candidates controlling quantitative variation in nodulation. Plant Physiology, 173(2), 921–931.  https://doi.org/10.1104/pp.16.01923.CrossRefPubMedPubMedCentralGoogle Scholar
  24. d’Erfurth, I., Cosson, V., Eschstruth, A., Lucas, H., Kondorosi, A., & Ratet, P. (2003). Efficient transposition of the Tnt1 tobacco retrotransposon in the model legume Medicago truncatula. The Plant Journal, 34(1), 95–106.CrossRefGoogle Scholar
  25. Dixon, R. A., & Pasinetti, G. M. (2010). Flavonoids and isoflavonoids: From plant biology to agriculture and neuroscience. Plant Physiology, 154(2), 453–457.  https://doi.org/10.1104/pp.110.161430.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Dixon, R. A., & Sumner, L. W. (2003). Legume natural products: Understanding and manipulating complex pathways for human and animal health. Plant Physiology, 131(3), 878–885.  https://doi.org/10.1104/pp.102.017319.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Dona, M., Confalonieri, M., Minio, A., Biggiogera, M., Buttafava, A., Raimondi, E., Delledonne, M., Ventura, L., Sabatini, M. E., Macovei, A., Giraffa, G., Carbonera, D., & Balestrazzi, A. (2013). RNA-Seq analysis discloses early senescence and nucleolar dysfunction triggered by Tdp1alpha depletion in Medicago truncatula. Journal of Experimental Botany, 64(7), 1941–1951.  https://doi.org/10.1093/jxb/ert063.CrossRefPubMedGoogle Scholar
  28. Frugoli, J., & Harris, J. (2001). Medicago truncatula on the move! Plant Cell, 13(3), 458–463.CrossRefGoogle Scholar
  29. Gallardo, K., Le Signor, C., Vandekerckhove, J., Thompson, R. D., & Burstin, J. (2003). Proteomics of Medicago truncatula seed development establishes the time frame of diverse metabolic processes related to reserve accumulation. Plant Physiology, 133(2), 664–682.  https://doi.org/10.1104/pp.103.025254.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Gamas, P., Niebel Fde, C., Lescure, N., & Cullimore, J. (1996). Use of a subtractive hybridization approach to identify new Medicago truncatula genes induced during root nodule development. Molecular Plant-Microbe Interactions, 9(4), 233–242.CrossRefGoogle Scholar
  31. Graham, P. H., & Vance, C. P. (2003). Legumes: Importance and constraints to greater use. Plant Physiology, 131(3), 872–877.  https://doi.org/10.1104/pp.017004.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Grandbastien, M. A., Spielmann, A., & Caboche, M. (1989). Tnt1, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics. Nature, 337(6205), 376–380.  https://doi.org/10.1038/337376a0.CrossRefPubMedGoogle Scholar
  33. Jardinaud, M. F., Boivin, S., Rodde, N., Catrice, O., Kisiala, A., Lepage, A., Moreau, S., Roux, B., Cottret, L., Sallet, E., Brault, M., Emery, R. J., Gouzy, J., Frugier, F., & Gamas, P. (2016). A laser dissection-RNAseq analysis highlights the activation of cytokinin pathways by nod factors in the Medicago truncatula root epidermis. Plant Physiology, 171(3), 2256–2276.  https://doi.org/10.1104/pp.16.00711.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Jiang, C., Chen, C., Huang, Z., Liu, R., & Verdier, J. (2015). ITIS, a bioinformatics tool for accurate identification of transposon insertion sites using next-generation sequencing data. BMC Bioinformatics, 16, 72.  https://doi.org/10.1186/s12859-015-0507-2.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kang, Y., Sakiroglu, M., Krom, N., Stanton-Geddes, J., Wang, M., Lee, Y. C., Young, N. D., & Udvardi, M. (2015). Genome-wide association of drought-related and biomass traits with HapMap SNPs in Medicago truncatula. Plant, Cell & Environment, 38(10), 1997–2011.  https://doi.org/10.1111/pce.12520.CrossRefGoogle Scholar
  36. Koornneef, M., & Meinke, D. (2010). The development of Arabidopsis as a model plant. The Plant Journal, 61(6), 909–921.  https://doi.org/10.1111/j.1365-313X.2009.04086.x.CrossRefPubMedGoogle Scholar
  37. Le Signor, C., Aime, D., Bordat, A., Belghazi, M., Labas, V., Gouzy, J., Young, N. D., Prosperi, J. M., Leprince, O., Thompson, R. D., Buitink, J., Burstin, J., & Gallardo, K. (2017). Genome-wide association studies with proteomics data reveal genes important for synthesis, transport and packaging of globulins in legume seeds. The New Phytologist, 214(4), 1597–1613.  https://doi.org/10.1111/nph.14500.CrossRefPubMedGoogle Scholar
  38. Liu, H., Trieu, A. T., Blaylock, L. A., & Harrison, M. J. (1998). Cloning and characterization of two phosphate transporters from Medicago truncatula roots: Regulation in response to phosphate and to colonization by arbuscular mycorrhizal (AM) fungi. Molecular Plant-Microbe Interactions, 11(1), 14–22.  https://doi.org/10.1094/MPMI.1998.11.1.14.CrossRefPubMedGoogle Scholar
  39. Manthey, K., Krajinski, F., Hohnjec, N., Firnhaber, C., Puhler, A., Perlick, A. M., & Kuster, H. (2004). Transcriptome profiling in root nodules and arbuscular mycorrhiza identifies a collection of novel genes induced during Medicago truncatula root endosymbioses. Molecular Plant-Microbe Interactions, 17(10), 1063–1077.  https://doi.org/10.1094/MPMI.2004.17.10.1063.CrossRefPubMedGoogle Scholar
  40. Meng, Y., Hou, Y., Wang, H., Ji, R., Liu, B., Wen, J., Niu, L., & Lin, H. (2017). Targeted mutagenesis by CRISPR/Cas9 system in the model legume Medicago truncatula. Plant Cell Reports, 36(2), 371–374.  https://doi.org/10.1007/s00299-016-2069-9.CrossRefPubMedGoogle Scholar
  41. Nam, Y. W. P., Erend, R. V., Kim, G. P., Cook, D., & R, D. (1999). Construction of a bacterial artificial chromosome library of Medicago truncatula and identification of clones containing ethylene-response genes. Theoretical and Applied Genetics, 98(3–4), 338–346.Google Scholar
  42. Nolan, K. E., Rose, R. J., & Gorst, J. R. (1989). Regeneration of Medicago truncatula from tissue culture: Increased somatic embryogenesis using explants from regenerated plants. Plant Cell Reports, 8(5), 278–281.  https://doi.org/10.1007/BF00274129.CrossRefPubMedGoogle Scholar
  43. Ohyanagi, H., Takano, T., Terashima, S., Kobayashi, M., Kanno, M., Morimoto, K., Kanegae, H., Sasaki, Y., Saito, M., Asano, S., Ozaki, S., Kudo, T., Yokoyama, K., Aya, K., Suwabe, K., Suzuki, G., Aoki, K., Kubo, Y., Watanabe, M., Matsuoka, M., & Yano, K. (2015). Plant Omics Data Center: An integrated web repository for interspecies gene expression networks with NLP-based curation. Plant & Cell Physiology, 56(1), e9.  https://doi.org/10.1093/pcp/pcu188.CrossRefGoogle Scholar
  44. Penmetsa, R. V., & Cook, D. R. (2000). Production and characterization of diverse developmental mutants of Medicago truncatula. Plant Physiology, 123(4), 1387–1398.CrossRefGoogle Scholar
  45. van Rensburg, H. J., & Strijdom, B. W. (1982). Competitive abilities of rhizobium meliloti strains considered to have potential as inoculants. Applied and Environmental Microbiology, 44(1), 98–106.PubMedPubMedCentralGoogle Scholar
  46. Rogers, C., Wen, J., Chen, R., & Oldroyd, G. (2009). Deletion-based reverse genetics in Medicago truncatula. Plant Physiology, 151(3), 1077–1086.  https://doi.org/10.1104/pp.109.142919.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Rose, R. J. (2008). Medicago truncatula as a model for understanding plant interactions with other organisms, plant development and stress biology: Past, present and future. Functional Plant Biology, 35, 253–264.CrossRefGoogle Scholar
  48. Roux, B., Rodde, N., Moreau, S., Jardinaud, M. F., & Gamas, P. (2018). Laser capture micro-dissection coupled to RNA sequencing: A powerful approach applied to the model legume Medicago truncatula in interaction with Sinorhizobium meliloti. Methods in Molecular Biology, 1830, 191–224.  https://doi.org/10.1007/978-1-4939-8657-6_12.CrossRefPubMedGoogle Scholar
  49. Sandhu, D., Ghosh, J., Johnson, C., Baumbach, J., Baumert, E., Cina, T., Grant, D., Palmer, R. G., & Bhattacharyya, M. K. (2017). The endogenous transposable element Tgm9 is suitable for generating knockout mutants for functional analyses of soybean genes and genetic improvement in soybean. PLoS One, 12(8), e0180732.  https://doi.org/10.1371/journal.pone.0180732.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Stanton-Geddes, J., Paape, T., Epstein, B., Briskine, R., Yoder, J., Mudge, J., Bharti, A. K., Farmer, A. D., Zhou, P., Denny, R., May, G. D., Erlandson, S., Yakub, M., Sugawara, M., Sadowsky, M. J., Young, N. D., & Tiffin, P. (2013). Candidate genes and genetic architecture of symbiotic and agronomic traits revealed by whole-genome, sequence-based association genetics in Medicago truncatula. PLoS One, 8(5), e65688.  https://doi.org/10.1371/journal.pone.0065688.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Starker, C. G., Parra-Colmenares, A. L., Smith, L., Mitra, R. M., & Long, S. R. (2006). Nitrogen fixation mutants of Medicago truncatula fail to support plant and bacterial symbiotic gene expression. Plant Physiology, 140(2), 671–680.  https://doi.org/10.1104/pp.105.072132.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Szybiak-Strozycka, U., Lescure, N., Cullimore, J. V., & Gamas, P. (1995). A cDNA encoding a PR-1-like protein in the model legume Medicago truncatula. Plant Physiology, 107(1), 273–274.CrossRefGoogle Scholar
  53. Tadege, M., Wen, J., He, J., Tu, H., Kwak, Y., Eschstruth, A., Cayrel, A., Endre, G., Zhao, P. X., Chabaud, M., Ratet, P., & Mysore, K. S. (2008). Large-scale insertional mutagenesis using the Tnt1 retrotransposon in the model legume Medicago truncatula. The Plant Journal, 54(2), 335–347.  https://doi.org/10.1111/j.1365-313X.2008.03418.x.CrossRefPubMedGoogle Scholar
  54. Tang, H., Krishnakumar, V., Bidwell, S., Rosen, B., Chan, A., Zhou, S., Gentzbittel, L., Childs, K. L., Yandell, M., Gundlach, H., Mayer, K. F., Schwartz, D. C., & Town, C. D. (2014). An improved genome release (version Mt4.0) for the model legume Medicago truncatula. BMC Genomics, 15, 312.  https://doi.org/10.1186/1471-2164-15-312.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Thomas, M. R., Rose, R. J., & Nolan, K. E. (1992). Genetic transformation of Medicago truncatula using Agrobacterium with genetically modified Ri and disarmed Ti plasmids. Plant Cell Reports, 11(3), 113–117.  https://doi.org/10.1007/BF00232161.CrossRefPubMedGoogle Scholar
  56. Thoquet, P., Gherardi, M., Journet, E. P., Kereszt, A., Ane, J. M., Prosperi, J. M., & Huguet, T. (2002). The molecular genetic linkage map of the model legume Medicago truncatula: An essential tool for comparative legume genomics and the isolation of agronomically important genes. BMC Plant Biology, 2, 1.CrossRefGoogle Scholar
  57. Veerappan, V., Jani, M., Kadel, K., Troiani, T., Gale, R., Mayes, T., Shulaev, E., Wen, J., Mysore, K. S., Azad, R. K., & Dickstein, R. (2016). Rapid identification of causative insertions underlying Medicago truncatula Tnt1 mutants defective in symbiotic nitrogen fixation from a forward genetic screen by whole genome sequencing. BMC Genomics, 17, 141.  https://doi.org/10.1186/s12864-016-2452-5.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Verdier, J., Lalanne, D., Pelletier, S., Torres-Jerez, I., Righetti, K., Bandyopadhyay, K., Leprince, O., Chatelain, E., Vu, B. L., Gouzy, J., Gamas, P., Udvardi, M. K., & Buitink, J. (2013). A regulatory network-based approach dissects late maturation processes related to the acquisition of desiccation tolerance and longevity of Medicago truncatula seeds. Plant Physiology, 163(2), 757–774.  https://doi.org/10.1104/pp.113.222380.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Vu, W. T., Chang, P. L., Moriuchi, K. S., & Friesen, M. L. (2015). Genetic variation of transgenerational plasticity of offspring germination in response to salinity stress and the seed transcriptome of Medicago truncatula. BMC Evolutionary Biology, 15, 59.  https://doi.org/10.1186/s12862-015-0322-4.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Wang, T. L., Domoney, C., Hedley, C. L., Casey, R., & Grusak, M. A. (2003). Can we improve the nutritional quality of legume seeds? Plant Physiology, 131(3), 886–891.  https://doi.org/10.1104/pp.102.017665.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Wang, M., Verdier, J., Benedito, V. A., Tang, Y., Murray, J. D., Ge, Y., Becker, J. D., Carvalho, H., Rogers, C., Udvardi, M., & He, J. (2013). LegumeGRN: A gene regulatory network prediction server for functional and comparative studies. PLoS One, 8(7), e67434.  https://doi.org/10.1371/journal.pone.0067434.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Wilson, R. C., Long, F., Maruoka, E. M., & Cooper, J. B. (1994). A new proline-rich early nodulin from Medicago truncatula is highly expressed in nodule meristematic cells. Plant Cell, 6(9), 1265–1275.  https://doi.org/10.1105/tpc.6.9.1265.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Wipf, D., Mongelard, G., van Tuinen, D., Gutierrez, L., & Casieri, L. (2014). Transcriptional responses of Medicago truncatula upon sulfur deficiency stress and arbuscular mycorrhizal symbiosis. Frontiers in Plant Science, 5, 680.  https://doi.org/10.3389/fpls.2014.00680.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Young, N. D., & Udvardi, M. (2009). Translating Medicago truncatula genomics to crop legumes. Current Opinion in Plant Biology, 12(2), 193–201.  https://doi.org/10.1016/j.pbi.2008.11.005.CrossRefPubMedGoogle Scholar
  65. Young, N. D., Cannon, S. B., Sato, S., Kim, D., Cook, D. R., Town, C. D., Roe, B. A., & Tabata, S. (2005). Sequencing the genespaces of Medicago truncatula and Lotus japonicus. Plant Physiology, 137(4), 1174–1181.  https://doi.org/10.1104/pp.104.057034.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Young, N. D., Debelle, F., Oldroyd, G. E., Geurts, R., Cannon, S. B., Udvardi, M. K., Benedito, V. A., Mayer, K. F., Gouzy, J., Schoof, H., Van de Peer, Y., Proost, S., Cook, D. R., Meyers, B. C., Spannagl, M., Cheung, F., De Mita, S., Krishnakumar, V., Gundlach, H., Zhou, S., Mudge, J., Bharti, A. K., Murray, J. D., Naoumkina, M. A., Rosen, B., Silverstein, K. A., Tang, H., Rombauts, S., Zhao, P. X., Zhou, P., Barbe, V., Bardou, P., Bechner, M., Bellec, A., Berger, A., Berges, H., Bidwell, S., Bisseling, T., Choisne, N., Couloux, A., Denny, R., Deshpande, S., Dai, X., Doyle, J. J., Dudez, A. M., Farmer, A. D., Fouteau, S., Franken, C., Gibelin, C., Gish, J., Goldstein, S., Gonzalez, A. J., Green, P. J., Hallab, A., Hartog, M., Hua, A., Humphray, S. J., Jeong, D. H., Jing, Y., Jocker, A., Kenton, S. M., Kim, D. J., Klee, K., Lai, H., Lang, C., Lin, S., Macmil, S. L., Magdelenat, G., Matthews, L., McCorrison, J., Monaghan, E. L., Mun, J. H., Najar, F. Z., Nicholson, C., Noirot, C., O’Bleness, M., Paule, C. R., Poulain, J., Prion, F., Qin, B., Qu, C., Retzel, E. F., Riddle, C., Sallet, E., Samain, S., Samson, N., Sanders, I., Saurat, O., Scarpelli, C., Schiex, T., Segurens, B., Severin, A. J., Sherrier, D. J., Shi, R., Sims, S., Singer, S. R., Sinharoy, S., Sterck, L., Viollet, A., Wang, B. B., Wang, K., Wang, M., Wang, X., Warfsmann, J., Weissenbach, J., White, D. D., White, J. D., Wiley, G. B., Wincker, P., Xing, Y., Yang, L., Yao, Z., Ying, F., Zhai, J., Zhou, L., Zuber, A., Denarie, J., Dixon, R. A., May, G. D., Schwartz, D. C., Rogers, J., Quetier, F., Town, C. D., & Roe, B. A. (2011). The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature, 480(7378), 520–524.  https://doi.org/10.1038/nature10625.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Zeng, T., Holmer, R., Hontelez, J., Te Lintel-Hekkert, B., Marufu, L., de Zeeuw, T., Wu, F., Schijlen, E., Bisseling, T., & Limpens, E. (2018). Host- and stage-dependent secretome of the arbuscular mycorrhizal fungus Rhizophagus irregularis. The Plant Journal, 94(3), 411–425.  https://doi.org/10.1111/tpj.13908.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Kaustav Bandyopadhyay
    • 1
    Email author
  • Jerome Verdier
    • 2
  • Yun Kang
    • 3
  1. 1.Amity Institute of BiotechnologyAmity UniversityGurgaonIndia
  2. 2.Research Institute of horticulture and seeds (IRHS)INRA, Agrocampus-Ouest, Universite d’AngersAngersFrance
  3. 3.Noble Research InstituteArdmoreUSA

Personalised recommendations