Advertisement

Current Trends in Biotechnology: From Genome Sequence to Crop Improvement

  • Swarup Kumar ChakrabartiEmail author
  • Hemant Kardile
  • Jagesh Kumar Tiwari
Chapter

Abstract

Rapid progress has been made in the field of biotechnology since its inception from the tissue culture to now next-generation sequencing technology. The tools of biotechnology now routinely used to assist the conventional approaches of crop improvement and other field of science. Understanding the genetic make of crop species is more important for devising the strategies for the improvement. Advances in the sequencing technologies have helped in rapid discovery and genotyping of molecular markers and shifted the focus of molecular markers from the DNA fragment polymorphism to the sequence based polymorphism. The sequence information is also valuable source for identification of the function of the genes with functional genomics approaches. Over the time, a large amount of genomic information have been generated which can be good source for understanding the biological phenomenon by developing the simulation models. This has opened era of systems biology wherein biological phenomenon can be studied at the systems level. This will help in understanding and translating the genomic information for devising the strategies for the crop improvement. Here we have discussed the advances made in the structural and functional genomics and how this information can be integrated to understand the biological mechanism at system levels. We have also discussed the advances made in the molecular breeding and the transgenic approaches for crop improvement. At the end we have discussed the concern over the genetically modified crops and possibilities to develop the next generation crops using genomics approaches.

Keywords

Structural genomics Functional genomics Omics Marker Transgenic 

References

  1. Andersson, M., Turesson, H., Nicolia, A., Fält, A.-S., Samuelsson, M., & Hofvander, P. (2017). Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts. Plant Cell Reports, 36(1), 117–128.CrossRefGoogle Scholar
  2. Ashton, P. M., Nair, S., Dallman, T., Rubino, S., Rabsch, W., & Mwaigwisya, S. (2015). MinIONnanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island. Nature Biotechnology, 33, 296–300.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Barabaschi, D., Tondelli, A., Desiderio, F., Volante, A., Vaccino, P., Valè, G., & Cattivelli, L. (2016). Next generation breeding. Plant Science, 242, 3–13.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Barrangou, R., & Doudna, J. A. (2016). Applications of CRISPR technologies in research and beyond. Nature Biotechnology, 34(9), 933–941.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bennardo, N., Cheng, A., Huang, N., & Stark, J. M. (2008). Alternative-NHEJ is a mechanistically distinct pathway of mammalian chromosome break repair. PLoS Genetics, 4(6), e1000110.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bennett, M. D., & Leitch, I. J. (2011). Nuclear DNA amounts in angiosperms: Targets, trends and tomorrow. Annals of Botany, 107, 467–590.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bevan, A., Colledge, S., Fuller, D., Fyfe, R., Shennan, S., & Stevens, C. (2017). Holocene fluctuations in human population demonstrate repeated links to food production and climate. Proceedings of the National Academy of Sciences of the United States of America, 114(49), E10524–E10531.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Breitling, R., Li, Y., Tesson, B. M., Fu, J., Wu, C., & Wiltshire, T. (2008). Genetical genomics: Spotlight on QTL hotspots. PLoS Genetics, 4, e1000232.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Butler, N. M., Atkins, P. A., Voytas, D. F., & Douches, D. S. (2015). Generation and inheritance of targeted mutations in potato (Solanum tuberosum L.) using the CRISPR/Cas system. PLoS One, 10(12), e0144591.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Campbell, R., Pont, S. D., Morris, J. A., McKenzie, G., Sharma, S. K., Hedley, P. E., Ramsay, G., Bryan, G. J., & Taylor, M. A. (2014). Genome-wide QTL and bulked transcriptomic analysis reveals new candidate genes for the control of tuber carotenoid content in potato (Solanum tuberosum L.). Theoretical and Applied Genetics, 127(9), 1917–1933.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Civelek, M., & Lusis, A. J. (2014). Systems genetics approaches to understand complex traits. Nature Reviews Genetics, 1, 34–48.CrossRefGoogle Scholar
  12. Danan, S., Veyrieras, J. B., & Lefebvre, V. (2011). Construction of a potato consensus map and QTL meta-analysis offer new insights into the genetic architecture of late blight resistance and plant maturity traits. BMC Plant Biology, 11, 11–16.CrossRefGoogle Scholar
  13. Dean, F. B., Nelson, J. R., Giesler, T. L., & Lasken, R. S. (2001). Rapid amplification of plasmid and phage DNA using Phi 29 DNA polymerase and multiplyprimed rolling circle amplification. Genome Research, 11, 1095–1099.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Dean, F. B., Hosono, S., Fang, L., Wu, X., Faruqi, A. F., Bray-Ward, P., Sun, Z., Zong, Q., Du, Y., Du, J., Driscoll, M., Song, W., Kingsmore, S. F., Egholm, M., & Lasken, R. S. (2002). Comprehensive human genome amplification using multiple displacement amplification. Proceedings of the National Academy of Sciences of the United States of America, 99, 5261–5266.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Decottignies, A. (2013). Alternative end-joining mechanisms: A historical perspective. Front Genet, 4, 48.  https://doi.org/10.3389/fgene.2013.00048.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dodsworth, J. A., Blainey, P. C., Senthil, W., Murugapiran, K., Swingley, W. D., Christian, W., Ross, A., Tringe, S. G., Patrick, S., Chain, G., Scholz, M. B., Lo, C. C., Raymond, J., Quake, S., & Brian, H. P. (2013). Single-cell and metagenomic analyses indicate a fermentative and saccharolytic lifestyle for members of the OP9 lineage. Nature Communications, 4, 1854.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Dupont, C. L., Rusch, D. B., Yooseph, S., Lombardo, M. J., Richter, R. A., Valas, R., Novotny, M., Greenbaum, J. Y., Selengut, J. D., Haft, D. H., Halpern, A. L., Lasken, R. S., Nealson, K., Friedman, R., & Venter, J. C. (2012). Genomic insights to SAR86, an abundant and uncultivated marine bacterial lineage. The ISME Journal, 6, 1186–1199.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Eloe-Fadrosh, E. A., Espino, D. P., Jarett, J., Dunfield, P. F., Hedlund, B. P., Dekas, A. E., Grasby, S. E., Brady, A. L., Dong, H., Briggs, B. R., Li, W. J., Goudeau, D., Malmstrom, R., Pati, A., Ridge, J. P., Rubin, E. M., Woyke, T., Kyrpides, N. C., & Ivanova, N. N. (2016). Global metagenomic survey reveals a new bacterial candidate phylum in geothermal springs. Nature Communications, 7, 10476.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gabriel, S. B., Schaffner, S. F., Nguyen, H., Moore, J. M., Roy, J., Blumenstiel, B., Higgins, J., DeFelice, M., Lochner, A., Faggart, M., Liu-Cordero, S. N., Rotimi, C., Adeyemo, A., Cooper, R., Ward, R., Lander, E. S., Daly, M. J., & Altshuler, D. (2002). The structure of haplotype blocks in the human genome. Science, 21, 2225–2229.CrossRefGoogle Scholar
  20. Gaj, T., Gersbach, C. A., & Barbas, C. F. (2013). ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology, 31(7), 397–405.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Garcia, F., Thornsberry, S. A., & Buckler, E. S. (2003). Structure of linkage disequilibrium in plants. Annual Review of Plant Biology, 54, 357–374.CrossRefGoogle Scholar
  22. Geiss, G. K., Bumgarner, R. E., Birditt, B., Dahl, T., Dowidar, N., Dunaway, D. L., Fell, H. P., Ferree, S., George, R. D., Grogan, T., James, J. J., Maysuria, M., Mitton, J. D., Oliveri, P., Osborn, J. L., Peng, T., Ratcliffe, A. L., Webster, P. J., Davidson, E. H., Hood, L., & Dimitrov, K. (2008). Direct multiplexed measurement of gene expression with color-coded probe pairs. Nature Biotechnology, 26, 317–325.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Germini, D., Tsfasman, T., Zakharova, V. V., Sjakste, N., Lipinski, M., & Vassetzky, Y. (2018). A comparison of techniques to evaluate the effectiveness of genome editing. Trends in Biotechnology, 36, 147–159.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Gilbert, L. A., Larson, M. H., Morsut, L., Liu, Z., Brar, G. A., Torres, S. E., Stern-Ginossar, N., Brandman, O., Whitehead, E. H., Doudna, J. A., Lim, W. A., Weissman, J. S., & Qi, L. S. (2013). CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell, 154(2), 442–451.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Gilbert, L. A., Horlbeck, M. A., Adamson, B., Villalta, J. E., Chen, Y., Whitehead, E. H., Guimaraes, C., Panning, B., Ploegh, H. L., Bassik, M. C., Qi, L. S., Kampmann, M., & Weissman, J. S. (2014). Genome-scale CRISPR-mediated control of gene repression and activation. Cell, 159(3), 647–661.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hackett, C. A., McLean, K., & Bryan, G. J. (2013). Linkage analysis and QTL mapping using SNP dosage data in a tetraploid potato mapping population. PLoS One, 8(5), e63939.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hackett, C. A., Bradshaw, J. E., & Bryan, G. J. (2014). QTL mapping in autotetraploids using SNP dosage information. Theoretical and Applied Genetics, 127(9), 1885–1904.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hamilton, J. P., Hansey, C. N., Whitty, B. R., Stoffel, K., Massa, A. N., Deynze, A. V., De Jong, W. S., Douches, D. S., & Buell, C. B. (2011). Single nucleotide polymorphism discovery in elite North American potato germplasm. BMC Genomics, 12, 302.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Heller, M. J. (2002). DNA microarray technology: Devices, systems, and applications. Annual Review of Biomedical Engineering, 4, 129–153.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Hess, M., Sczyrba, A., Egan, R., Kim, T. W., Chokhawala, H., Schroth, G., Luo, S., Clark, D. S., Chen, F., Zhang, T., Mackie, R. I., Pennacchio, L. A., Tringe, S. G., Visel, A., Woyke, T., Wang, Z., & Rubin, E. M. (2011). Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science, 331, 463–467.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hoop, B. D., Paulo, M., Mank, R., Van Eck, H., & Van, E. F. (2008). Association mapping of quality traits in potato (Solanum tuberosum L.). Euphytica, 161, 47–60.CrossRefGoogle Scholar
  32. Ip, C. L., Loose, M., Tyson, J. R., de Cesare, M., Brown, B. L., & Jain, M. (2015a). MinION analysis and reference consortium: Phase 1 data release and analysis. F1000Res, 4, 1075.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Ip, P. A., Moore, K., Farbos, A., & Paszkiewic, Z. K. (2015b). Assessing the performance of the Oxford Nanopore Technologies MinION. Biomolecular Detection Quantification, 3, 1–8.CrossRefGoogle Scholar
  34. Jansen, R. C., & Nap, J. P. (2001). Genetical genomics: The added value from segregation. Trends in Genetics, 17, 388–391.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kanchiswamy, C. N., Malnoy, M., Velasco, R., Kim, J. S., & Viola, R. (2015). Non-GMO genetically edited crop plants. Trends in Biotechnology, 33(9), 489–491.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kim, S., Kim, D., Cho, S. W., Kim, J., & Kim, J. S. (2014). Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Research, 24(6), 1012–1019.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kloosterman, B., Anithakumari, A. M., Chibon, P. Y., Marian, O. M., Gerard, C., Linden, G. C., Visser, R. G. F., Christian, W. B., & Bachem, C. W. B. (2012). Organ specificity and transcriptional control of metabolic routes revealed by expression QTL profiling of source–sink tissues in a segregating potato population. BMC Plant Biology, 12, 1–12.CrossRefGoogle Scholar
  38. Larsen, P. A., Heilman, A. M., & Yoder, A. D. (2014). The utility of PacBio circular consensus sequencing for characterizing complex gene families in non-model organisms. BMC Genomics, 15, 720.Google Scholar
  39. Lenhart, J. S., Pillon, M. C., Guarné, A., & Simmons, L. A. (2013). Trapping and visualizing intermediate steps in the mismatch repair pathway in vivo. Molecular Microbiology, 90(4), 680–698.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Li, J., Liu, L., Bai, Y., Finkers, R., & Wang, F. (2011). Identification and mapping of quantitative resistance to late blight (Phytophthora infestans) in Solanum habrochaites LA1777. Euphytica, 179, 427–438.CrossRefGoogle Scholar
  41. Liu, W., Yuan, J. S., & Stewart, C. N., Jr. (2013). Advanced tools for plant biotechnology. Nature Reviews Genetics, 14, 781–793.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Liu, F., Yang, Y., Gao, J., Ma, C., & Bi, Y. (2018). A comparative transcriptome analysis of a wild purple potato and its red mutant provides insight into the mechanism of anthocyanin transformation. PLoS One, 13(1), e0191406.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Lockhart, D. J., & Winzeler, E. A. (2000). Genomics, gene expression and DNA arrays. Nature, 405, 827–836.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Lovén, J., Orlando, D. A., Sigova, A., Lin, C. Y., Rahl, P. B., Burge, C. B., Levens, D. L., Lee, T. I., & Young, R. A. (2012). Revisiting global gene expression analysis. Cell, 151, 476–482.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Nagarajan, N., & Pop, M. (2013). Sequence assembly demystified. Nature Reviews Genetics, 14, 157–167.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Niedringhaus, T. P., Milanova, D., Kerby, M. B., Snyder, M. P., & Barron, A. E. (2011). Landscape of next-generation sequencing technologies. Analytical Chemistry, 83(12), 4327–4341.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Nordborg, M., & Tavaré, S. (2002). Linkage disequilibrium: What history has to tell us. Trends in Genetics, 18, 83–90.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Ozsolak, F., & Milos, P. M. (2011). RNA sequencing: Advances, challenges and opportunities. Nature Reviews Genetics, 12, 87–98.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Qi, L. S., Larson, M. H., Gilbert, L. A., Doudna, J. A., Weissman, J. S., Arkin, A. P., & Lim, W. A. (2013). Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 152(5), 1173–1183.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Raghunathan, A., Ferguson, H. R., Jr., Bornarth, C. J., Song, W., Driscoll, M., & Lasken, R. S. (2005). Genomic DNA amplification from a single bacterium. Applied and Environmental Microbiology, 71(6), 3342–3347.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Ren, X., Wang, X., Yuan, H., Weng, Q., Zhu, L., & He, G. (2004). Mapping quantitative trait loci and expressed sequence tags related to brown planthopper resistance in rice. Plant Breeding, 123, 342–348.CrossRefGoogle Scholar
  52. Sakuma, T., Nakade, S., Sakane, Y., Suzuki, K. T., & Yamamoto, T. (2016). MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCh systems. Nature Protocols, 11(1), 118–133.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Sanger, F., & Coulson, A. R. (1975). A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. Journal of Molecular Biology, 94, 441–448.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Sanger, F., Nicklen, S., & Coulson, A. R. (1977). DNA sequencing with chain terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 74, 5463–5467.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Schadt Metzker, M. L. (2010). Sequencing technologies the next generation. Nature Reviews Genetics, 11, 31–46.CrossRefGoogle Scholar
  56. Schadt, E. E., Turner, S., & Kasarskis, A. (2010). A window into third generation sequencing. Human Molecular Genetics, 19, R 227–R 240.CrossRefGoogle Scholar
  57. Schena, M., Heller, R. A., Theriault, T. P., Konrad, K., Lachenmeier, E., & Davis, R. W. (1998). Microarrays: Biotechnology’s discovery platform for functional genomics. Trends in Biotechnology, 16, 301–306.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Schwartz, D. C., Li, X., Hernandez, L. I., Ramnarain, S. P., Huff, E. J., & Wang, Y. K. (1993). Ordered restriction maps of Saccharomyces cerevisiae chromosomes constructed by optical mapping. Science, 262(5130), 110–114.CrossRefGoogle Scholar
  59. Shmakov, S., Abudayyeh, O. O., Makarova, K. S., Wolf, Y. I., Gootenberg, J. S., Semenova, E., Minakhin, L., Joung, J., Konermann, S., Severinov, K., Zhang, F., & Koonin, E. V. (2015). Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Molecular Cell, 60(3), 385–397.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Sosnowski, O., Charcosset, A., & Joets, J. (2012). BioMercator V3: An upgrade of genetic map compilation and quantitative trait loci meta-analysis algorithms. Bioinformatics, 28(15), 2082–2083.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Stich, B., Urbany, C., Hoffmann, P., & Gebhardt, C. (2013). Population structure and linkage disequilibrium in diploid and tetraploid potato revealed by genome-wide high-density genotyping using the SolCAP SNP array. Plant Breeding, 132, 718–724.CrossRefGoogle Scholar
  62. The Potato Genome Sequencing Consortium. (2011). Genome sequence and analysis of the tuber crop potato. Nature, 475, 189–195.CrossRefGoogle Scholar
  63. Tyson, G. W., Chapman, J., Hugenholtz, P., Allen, E. E., Ram, R. J., Richardson, P. M., Solovyev, V. V., Rubin, E. M., Rokhsar, D. S., & Banfield, J. F. (2004). Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature, 428, 37–43.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Van Os, H., Andrzejewski, S., Bakker, E., et al. (2006). Construction of a 10,000-marker ultradense genetic recombination map of potato: Providing a framework for accelerated gene isolation and a genome wide physical map. Genetics, 173(2), 1075–1087.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Venter, J. C., Remington, K., Heidelberg, J. F., Halpern, A. L., Rusch, D., Eisen, J. A., & Dongying, W. (2004). Environmental genome shotgun sequencing of the Sargasso Sea. Science, 304, 66–74.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Veyrieras, J.-B., Goffinet, B., & Charcosset, A. (2007). MetaQTL: A package of new computational methods for the meta-analysis of QTL mapping experiments. BMC Bioinformatics, 8, 49.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Wang, Z., Gerstein, M., & Snyder, M. (2009). RNA-seq: A revolutionary tool for transcriptomics. Nature Reviews Genetics, 10, 57–63.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Wang, S., Zhang, S., Wang, W., Xiong, X., Meng, F., & Cui, X. (2015). Efficient targeted mutagenesis in potato by the CRISPR/Cas9 system. Plant Cell Reports, 34, 1473.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Wilson, M. C., Mori, T., Ruckert, C., Uria, A. R., Helf, M. J., Takada, K., Gernert, C., Steffens, U. A., Heycke, N., Schmitt, S., Rinke, C., Helfrich, E. J., Brachmann, A. O., Gurgui, C., Wakimoto, T., Kracht, M., Crüsemann, M., Hentschel, U., Abe, I., Matsunaga, S., Kalinowski, J., Takeyama, H., & Piel, J. (2014). An environmental bacterial taxon with a large and distinct metabolic repertoire. Nature, 506(7486), 58–62.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Woyke, T., Xie, G., Copeland, A., Gonzalez, J. M., Han, C., Kiss, H., Saw, J. H., Senin, P., Yang, C., Chatterji, S., Jan-Fang, C., Eisen, J. A., Sieracki, M. E., & Stepanauskas, R. (2009). Assembling the marine metagenome, one cell at a time. PLoS One, 4(4), e5299.CrossRefPubMedPubMedCentralGoogle Scholar
  71. Wu, X. L., & Hu, Z. L. (2012). Meta-analysis of QTL mapping experiments. Methods in Molecular Biology, 871, 145–171.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Yan, J. Q., Zhu, J., He, C. X., Benmoussa, M., & Wu, P. (1998). Molecular dissection of developmental behavior of plant height in rice (Oryza sativa L.). Genetics, 150, 1257–1265.PubMedPubMedCentralGoogle Scholar
  73. Zetsche, B., Gootenberg, J. S., Abudayyeh, O. O., Slaymaker, I. M., Makarova, K. S., Essletzbichler, P., Volz, S. E., Joung, J., van der Oost, J., Regev, A., Koonin, E. V., & Zhang, F. (2015). Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell, 163(3), 759–771.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Zhang, L., Cui, X., Schmitt, K., Hubert, R., Navidi, W., & Arnheim, N. (1992). Whole genome amplification from a single cell: Implications for genetic analysis. Proceedings of the National Academy of Sciences of the United States of America, 89(13), 5847–5851.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Zhang, D. Y., Brandwein, M., Hsuih, T., & Li, H. B. (2001). Ramification amplification: A novel isothermal DNA amplification method. Molecular Diagnosis, 6, 141–150.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Zhang, K., Martiny, A. C., Reppas, N. B., Barry, K. W., Malek, J., Chisholm, S. W., & Church, G. M. (2006). Sequencing genomes from single cells by polymerase cloning. Nature Biotechnology, 24(6), 680–686.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Zhou, S., Deng, W., Anatharaman, T. S., Lim, A., Dimalanta, E. T., Wang, J., Wu, T., Tao, C., Creighton, R., Kile, A., Kvikstad, E., Bechner, M., Yen, G., Garic-Stankovic, A., Severin, J., Forrest, D., Runnheim, R., Churas, C., Lamers, C., Perna, N. T., Burland, V., Blattner, F. R., Mishra, B., & Schwartz, D. C. (2002). A whole-genome shotgun optical map of Yersinia pestis strain KIM. Applied and Environmental Microbiology, 68, 6321–6331.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Zhou, S., Kvikstad, E., Kile, A., Severin, J., Forrest, D., Runnheim, R., Churas, C., Hickman, J. W., Mackenzie, C., Choudhary, M., Donohue, T., Kaplan, S., & Schwartz, D. C. (2003). Whole-genome shotgun optical mapping of Rhodobacter sphaeroides strain 2.4.1 and its use for whole-genome shotgun sequence assembly. Genome Research, 13, 2142–2151.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Zhou, S., Kile, A., Bechner, M., Place, M., Kvikstad, E., Deng, W., Wei, J., Severin, J., Runnheim, R., Churas, C., Forrest, D., Dimalanta, E. T., Lamers, C., Burland, V., Blattner, F. R., & Schwartz, D. C. (2004). Single-molecule approach to bacterial genomic comparisons via optical mapping. Journal of Bacteriology, 186(22), 7773–7782.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Zhu, J. (1995). Analysis of conditional genetic effects and variance components in developmental genetics. Genetics, 141, 1633–1639.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Swarup Kumar Chakrabarti
    • 1
    Email author
  • Hemant Kardile
    • 1
  • Jagesh Kumar Tiwari
    • 1
  1. 1.ICAR-Central Potato Research InstituteShimlaIndia

Personalised recommendations