Advertisement

Plant Platform for Therapeutic Monoclonal Antibody Production

  • Yuri L. DorokhovEmail author
  • Ekaterina V. Sheshukova
  • Tatiana V. Komarova
Chapter

Abstract

Plant cells have protein synthesis and post-translational modification (glycosylation and phosphorylation) mechanisms similar to those of animal cells therefore the development of biotechnology allows considering plants as factories for therapeutic proteins, including therapeutic monoclonal antibodies (TMAs). The plant monoclonal antibody production platform has attracted researchers’ attention due to its flexibility, speed, scalability, low production costs, and absence of a risk of contamination by pathogens of animal origin. Modern methods for the production of therapeutic proteins are based on stably transformed transgenic plants and the transient expression of foreign genes. This chapter considers modern methods for obtaining TMAs produced in plants (P-TMA), features of the carbohydrate composition and methods for humanising the carbohydrate profile of P-TMAs. Examples of P-TMAs that have successfully passed preclinical trials and have a perspective in clinical use are given. The prospects of P-TMAs are determined by the economic benefits and speed of production, which are especially important for individualised cancer therapy, as well as cases of bioterrorism and pandemics.

Keywords

Monoclonal antibody Immunoglobulin G Antibody N-glycosylation Therapeutic antibody Immunotherapy Plant viruses Transient expression 

References

  1. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P., (2002). Studying gene expression and function. In Mol. Biol. Cell 4th ed.Google Scholar
  2. Almaraz-Delgado, A. L., Flores-Uribe, J., Pérez-España, V. H., Salgado-Manjarrez, E., & Badillo-Corona, J. A. (2014). Production of therapeutic proteins in the chloroplast of Chlamydomonas reinhardtii. AMB Express, 4, 57.  https://doi.org/10.1186/s13568-014-0057-4.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Almquist, K. C., McLean, M. D., Niu, Y., Byrne, G., Olea-Popelka, F. C., Murrant, C., Barclay, J., & Hall, J. C. (2006). Expression of an anti-botulinum toxin A neutralizing single-chain Fv recombinant antibody in transgenic tobacco. Vaccine, 24, 2079–2086.  https://doi.org/10.1016/j.vaccine.2005.11.014.CrossRefPubMedGoogle Scholar
  4. Alsayyari, A. A., Pan, X., Dalm, C., van der Veen, J. W., Vriezen, N., Hageman, J. A., Wijffels, R. H., & Martens, D. E. (2018). Transcriptome analysis for the scale-down of a CHO cell fed-batch process. Journal of Biotechnology, 279, 61–72.  https://doi.org/10.1016/j.jbiotec.2018.05.012.CrossRefPubMedGoogle Scholar
  5. Altshuler, E. P., Serebryanaya, D. V., & Katrukha, A. G. (2010). Generation of recombinant antibodies and means for increasing their affinity. Biochemistry (Moscow), 75, 1584–1605.CrossRefGoogle Scholar
  6. Anthony, R. M., Nimmerjahn, F., Ashline, D. J., Reinhold, V. N., Paulson, J. C., & Ravetch, J. V. (2008). Recapitulation of IVIG anti-inflammatory activity with a recombinant IgG Fc. Science, 320, 373–376.  https://doi.org/10.1126/science.1154315.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Barbieri, R., Coppo, E., Marchese, A., Daglia, M., Sobarzo-Sánchez, E., Nabavi, S. F., & Nabavi, S. M. (2017). Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity. Microbiological Research, 196, 44–68.  https://doi.org/10.1016/j.micres.2016.12.003.CrossRefPubMedGoogle Scholar
  8. Bardor, M., Faveeuw, C., Fitchette, A.-C., Gilbert, D., Galas, L., Trottein, F., Faye, L., & Lerouge, P. (2003). Immunoreactivity in mammals of two typical plant glyco-epitopes, core α(1,3)-fucose and core xylose. Glycobiology, 13, 427–434.  https://doi.org/10.1093/glycob/cwg024.CrossRefPubMedGoogle Scholar
  9. Beck, A., Wagner-Rousset, E., Ayoub, D., Van Dorsselaer, A., & Sanglier-Cianférani, S. (2013). Characterization of therapeutic antibodies and related products. Analytical Chemistry, 85, 715–736.  https://doi.org/10.1021/ac3032355.CrossRefPubMedGoogle Scholar
  10. Beltramello, M., Williams, K. L., Simmons, C. P., Macagno, A., Simonelli, L., Quyen, N. T. H., Sukupolvi-Petty, S., Navarro-Sanchez, E., Young, P. R., de Silva, A. M., Rey, F. A., Varani, L., Whitehead, S. S., Diamond, M. S., Harris, E., Lanzavecchia, A., & Sallusto, F. (2010). The human immune response to dengue virus is dominated by highly cross-reactive antibodies endowed with neutralizing and enhancing activity. Cell Host & Microbe, 8, 271–283.  https://doi.org/10.1016/j.chom.2010.08.007.CrossRefGoogle Scholar
  11. Bendandi, M., Marillonnet, S., Kandzia, R., Thieme, F., Nickstadt, A., Herz, S., Fröde, R., Inogés, S., Lòpez-Dìaz de Cerio, A., Soria, E., Villanueva, H., Vancanneyt, G., McCormick, A., Tusé, D., Lenz, J., Butler-Ransohoff, J.-E., Klimyuk, V., & Gleba, Y. (2010). Rapid, high-yield production in plants of individualized idiotype vaccines for non-Hodgkin’s lymphoma. Annals of Oncology: Official Journal European Society Medical Oncology, 21, 2420–2427.  https://doi.org/10.1093/annonc/mdq256.CrossRefGoogle Scholar
  12. Bennett, L. D., Yang, Q., Berquist, B. R., Giddens, J. P., Ren, Z., Kommineni, V., Murray, R. P., White, E. L., Holtz, B. R., Wang, L.-X., & Marcel, S. (2018). Implementation of glycan remodeling to plant-made therapeutic antibodies. International Journal of Molecular Sciences, 19, 421.  https://doi.org/10.3390/ijms19020421.CrossRefPubMedCentralGoogle Scholar
  13. Bevan, M. (1984). Binary agrobacterium vectors for plant transformation. Nucleic Acids Research, 12, 8711–8721.CrossRefGoogle Scholar
  14. Blondeel, E. J. M., & Aucoin, M. G. (2018). Supplementing glycosylation: A review of applying nucleotide-sugar precursors to growth medium to affect therapeutic recombinant protein glycoform distributions. Biotechnology Advances, 36, 1505–1523.  https://doi.org/10.1016/j.biotechadv.2018.06.008.CrossRefPubMedGoogle Scholar
  15. Bock, R. (2015). Engineering plastid genomes: Methods, tools, and applications in basic research and biotechnology. Annual Review of Plant Biology, 66, 211–241.  https://doi.org/10.1146/annurev-arplant-050213-040212.CrossRefPubMedGoogle Scholar
  16. Bosch, D., Castilho, A., Loos, A., Schots, A., & Steinkellner, H. (2013). N-glycosylation of plant-produced recombinant proteins. Current Pharmaceutical Design, 19, 5503–5512.CrossRefGoogle Scholar
  17. Bosques, C. J., Collins, B. E., Meador, J. W., Sarvaiya, H., Murphy, J. L., Dellorusso, G., Bulik, D. A., Hsu, I.-H., Washburn, N., Sipsey, S. F., Myette, J. R., Raman, R., Shriver, Z., Sasisekharan, R., & Venkataraman, G. (2010). Chinese hamster ovary cells can produce galactose-α-1,3-galactose antigens on proteins. Nature Biotechnology, 28, 1153–1156.  https://doi.org/10.1038/nbt1110-1153.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Butler, M., & Spearman, M. (2014). The choice of mammalian cell host and possibilities for glycosylation engineering. Current Opinion in Biotechnology, 30, 107–112.  https://doi.org/10.1016/j.copbio.2014.06.010.CrossRefPubMedGoogle Scholar
  19. Buyel, J. F. (2018). Plants as sources of natural and recombinant anti-cancer agents. Biotechnology Advances, 36, 506–520.  https://doi.org/10.1016/j.biotechadv.2018.02.002.CrossRefPubMedGoogle Scholar
  20. Buyel, J. F., & Fischer, R. (2012). Predictive models for transient protein expression in tobacco (Nicotiana tabacum L.) can optimize process time, yield, and downstream costs. Biotechnology and Bioengineering, 109, 2575–2588.  https://doi.org/10.1002/bit.24523.CrossRefPubMedGoogle Scholar
  21. Buyel, J. F., Twyman, R. M., & Fischer, R. (2017). Very-large-scale production of antibodies in plants: The biologization of manufacturing. Biotechnology Advances, 35, 458–465.  https://doi.org/10.1016/j.biotechadv.2017.03.011.CrossRefPubMedGoogle Scholar
  22. Calzolari, M., Zé-Zé, L., Vázquez, A., Sánchez Seco, M. P., Amaro, F., & Dottori, M. (2016). Insect-specific flaviviruses, a worldwide widespread group of viruses only detected in insects. Infection, Genetics, and Evolution – Journal of Molecular Epidemiology and Evolutionary Genetics of Infectious Diseases, 40, 381–388.  https://doi.org/10.1016/j.meegid.2015.07.032.CrossRefGoogle Scholar
  23. Castilho, A., Strasser, R., Stadlmann, J., Grass, J., Jez, J., Gattinger, P., Kunert, R., Quendler, H., Pabst, M., Leonard, R., Altmann, F., & Steinkellner, H. (2010). In planta protein sialylation through overexpression of the respective mammalian pathway. The Journal of Biological Chemistry, 285, 15923–15930.  https://doi.org/10.1074/jbc.M109.088401.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Castilho, A., Gruber, C., Thader, A., Oostenbrink, C., Pechlaner, M., Steinkellner, H., & Altmann, F. (2015). Processing of complex N-glycans in IgG Fc-region is affected by core fucosylation. mAbs, 7, 863–870.  https://doi.org/10.1080/19420862.2015.1053683.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Chan, K. R., Ong, E. Z., Mok, D. Z. L., & Ooi, E. E. (2015). Fc receptors and their influence on efficacy of therapeutic antibodies for treatment of viral diseases. Expert Review of Anti-Infective Therapy, 13, 1351–1360.  https://doi.org/10.1586/14787210.2015.1079127.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Chargelegue, D., Vine, N. D., van Dolleweerd, C. J., Drake, P. M., & Ma, J. K. (2000). A murine monoclonal antibody produced in transgenic plants with plant-specific glycans is not immunogenic in mice. Transgenic Research, 9, 187–194.CrossRefGoogle Scholar
  27. Chen, L., Yang, X., Luo, D., & Yu, W. (2016). Efficient production of a bioactive bevacizumab monoclonal antibody using the 2A self-cleavage peptide in transgenic Rice Callus. Frontiers in Plant Science, 7, 1156.  https://doi.org/10.3389/fpls.2016.01156.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Chung, C. H., Mirakhur, B., Chan, E., Le, Q.-T., Berlin, J., Morse, M., Murphy, B. A., Satinover, S. M., Hosen, J., Mauro, D., Slebos, R. J., Zhou, Q., Gold, D., Hatley, T., Hicklin, D. J., & Platts-Mills, T. A. E. (2008). Cetuximab-induced anaphylaxis and IgE specific for galactose-alpha-1,3-galactose. The New England Journal of Medicine, 358, 1109–1117.  https://doi.org/10.1056/NEJMoa074943.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Concha, C., Cañas, R., Macuer, J., Torres, M. J., Herrada, A. A., Jamett, F., & Ibáñez, C. (2017). Disease prevention: An opportunity to expand edible plant-based vaccines? Vaccines, 5, 14.  https://doi.org/10.3390/vaccines5020014.CrossRefPubMedCentralGoogle Scholar
  30. Cymer, F., Beck, H., Rohde, A., & Reusch, D. (2018). Therapeutic monoclonal antibody N-glycosylation – Structure, function and therapeutic potential. Journal of BiologyInternational Association of Biological Standardization, 52, 1–11.  https://doi.org/10.1016/j.biologicals.2017.11.001.CrossRefGoogle Scholar
  31. De Muynck, B., Navarre, C., & Boutry, M. (2010). Production of antibodies in plants: Status after twenty years. Plant Biotechnology Journal, 8, 529–563.  https://doi.org/10.1111/j.1467-7652.2009.00494.x.CrossRefPubMedGoogle Scholar
  32. De Neve, M., De Buck, S., De Wilde, C., Van Houdt, H., Strobbe, I., Jacobs, A., Van Montagu., null, Depicker, A., 1999. Gene silencing results in instability of antibody production in transgenic plants. Molecular and General Genetics MGG 260, 582–592.CrossRefGoogle Scholar
  33. De Wilde, C. (1996). Intact antigen-binding MAK33 antibody and Fab fragment accumulate in intercellular spaces of Arabidopsis thaliana [WWW Document].Google Scholar
  34. Dent, M., Hurtado, J., Paul, A. M., Sun, H., Lai, H., Yang, M., Esqueda, A., Bai, F., Steinkellner, H., & Chen, Q. (2016). Plant-produced anti-dengue virus monoclonal antibodies exhibit reduced antibody-dependent enhancement of infection activity. The Journal of General Virology, 97, 3280–3290.  https://doi.org/10.1099/jgv.0.000635.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Diamos, A. G., Rosenthal, S. H., & Mason, H. S. (2016). 5′ and 3′ untranslated regions strongly enhance performance of geminiviral replicons in Nicotiana benthamiana leaves. Frontiers in Plant Science, 7, 200.  https://doi.org/10.3389/fpls.2016.00200.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Dicker, M., Tschofen, M., Maresch, D., König, J., Juarez, P., Orzaez, D., Altmann, F., Steinkellner, H., & Strasser, R. (2016). Transient glyco-engineering to produce recombinant IgA1 with defined N- and O-Glycans in plants. Frontiers in Plant Science, 7, 18.  https://doi.org/10.3389/fpls.2016.00018.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Dingjan, T., Spendlove, I., Durrant, L. G., Scott, A. M., Yuriev, E., & Ramsland, P. A. (2015). Structural biology of antibody recognition of carbohydrate epitopes and potential uses for targeted cancer immunotherapies. Molecular Immunology, 67, 75–88.  https://doi.org/10.1016/j.molimm.2015.02.028.CrossRefPubMedGoogle Scholar
  38. Dorokhov, Y. L., Sheshukova, E. V., Kosobokova, E. N., Shindyapina, A. V., Kosorukov, V. S., & Komarova, T. V. (2016). Functional role of carbohydrate residues in human immunoglobulin G and therapeutic monoclonal antibodies. Biochemistry (Moscow), 81, 835–857.  https://doi.org/10.1134/S0006297916080058.CrossRefGoogle Scholar
  39. Ecker, D. M., Jones, S. D., & Levine, H. L. (2015). The therapeutic monoclonal antibody market. MAbs, 7, 9–14.  https://doi.org/10.4161/19420862.2015.989042.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Engelman, A., & Cherepanov, P. (2012). The structural biology of HIV-1: Mechanistic and therapeutic insights. Nature Reviews. Microbiology, 10, 279–290.  https://doi.org/10.1038/nrmicro2747.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Evans, S. S., & Clemmons, A. B. (2015). Obinutuzumab: A novel anti-CD20 monoclonal antibody for chronic lymphocytic leukemia. Journal of the Advanced Practitioner Oncology, 6, 370–374.Google Scholar
  42. Ferrara, N., Hillan, K. J., & Novotny, W. (2005). Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. Biochemical and Biophysical Research Communications, 333, 328–335.  https://doi.org/10.1016/j.bbrc.2005.05.132.CrossRefPubMedGoogle Scholar
  43. Ferrara, C., Brünker, P., Suter, T., Moser, S., Püntener, U., & Umaña, P. (2006). Modulation of therapeutic antibody effector functions by glycosylation engineering: Influence of Golgi enzyme localization domain and co-expression of heterologous beta1, 4-N-acetylglucosaminyltransferase III and Golgi alpha-mannosidase II. Biotechnology and Bioengineering, 93, 851–861.  https://doi.org/10.1002/bit.20777.CrossRefPubMedGoogle Scholar
  44. Fischer, R., Schillberg, S., Hellwig, S., Twyman, R. M., & Drossard, J. (2012). GMP issues for recombinant plant-derived pharmaceutical proteins. Biotechnology Advances, 30, 434–439.  https://doi.org/10.1016/j.biotechadv.2011.08.007.CrossRefPubMedGoogle Scholar
  45. Forthal, D. N., Gach, J. S., Landucci, G., Jez, J., Strasser, R., Kunert, R., & Steinkellner, H. (2010). Fc-glycosylation influences Fcγ receptor binding and cell-mediated anti-HIV activity of monoclonal antibody 2G12. The Journal of Immunology (Baltimore, MD: 1950), 185, 6876–6882.  https://doi.org/10.4049/jimmunol.1002600.CrossRefGoogle Scholar
  46. Frey, A. D., Karg, S. R., & Kallio, P. T. (2009). Expression of rat beta(1,4)-N-acetylglucosaminyltransferase III in Nicotiana tabacum remodels the plant-specific N-glycosylation. Plant Biotechnology Journal, 7, 33–48.  https://doi.org/10.1111/j.1467-7652.2008.00370.x.CrossRefPubMedGoogle Scholar
  47. Garabagi, F., McLean, M. D., & Hall, J. C. (2012). Transient and stable expression of antibodies in Nicotiana species. Methods in Molecular Biology (Clifton NJ), 907, 389–408.  https://doi.org/10.1007/978-1-61779-974-7_23.CrossRefGoogle Scholar
  48. Giritch, A., Marillonnet, S., Engler, C., van Eldik, G., Botterman, J., Klimyuk, V., & Gleba, Y. (2006). Rapid high-yield expression of full-size IgG antibodies in plants coinfected with noncompeting viral vectors. Proceedings of the National Academy of Sciences of the United States of America, 103, 14701–14706.  https://doi.org/10.1073/pnas.0606631103.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Gleba, Y. Y., Tusé, D., & Giritch, A. (2014). Plant viral vectors for delivery by agrobacterium. Current Topics in Microbiology and Immunology, 375, 155–192.  https://doi.org/10.1007/82_2013_352.CrossRefPubMedGoogle Scholar
  50. Gomord, V., Fitchette, A.-C., Menu-Bouaouiche, L., Saint-Jore-Dupas, C., Plasson, C., Michaud, D., & Faye, L. (2010). Plant-specific glycosylation patterns in the context of therapeutic protein production. Plant Biotechnology Journal, 8, 564–587.  https://doi.org/10.1111/j.1467-7652.2009.00497.x.CrossRefPubMedGoogle Scholar
  51. Goodin, M. M., Zaitlin, D., Naidu, R. A., & Lommel, S. A. (2008). Nicotiana benthamiana: Its history and future as a model for plant-pathogen interactions. Molecular Plant-Microbe Interactions MPMI, 21, 1015–1026.  https://doi.org/10.1094/MPMI-21-8-1015.CrossRefPubMedGoogle Scholar
  52. Grabowski, G. A. (2008). Phenotype, diagnosis, and treatment of Gaucher’s disease. Lancet (London England), 372, 1263–1271.  https://doi.org/10.1016/S0140-6736(08)61522-6.CrossRefGoogle Scholar
  53. Gül, N., & van Egmond, M. (2015). Antibody-dependent phagocytosis of tumor cells by macrophages: A potent effector mechanism of monoclonal antibody therapy of cancer. Cancer Research, 75, 5008–5013.  https://doi.org/10.1158/0008-5472.CAN-15-1330.CrossRefPubMedGoogle Scholar
  54. Habibi, P., Prado, G. S., Pelegrini, P. B., Hefferon, K. L., Soccol, C. R., & Grossi-de-Sa, M. F. (2017). Optimization of inside and outside factors to improve recombinant protein yield in plant. Plant Cell Tissue Organ Culture PCTOC, 130, 449–467.  https://doi.org/10.1007/s11240-017-1240-5.CrossRefGoogle Scholar
  55. Hamorsky, K. T., Grooms-Williams, T. W., Husk, A. S., Bennett, L. J., Palmer, K. E., & Matoba, N. (2013). Efficient single tobamoviral vector-based bioproduction of broadly neutralizing anti-HIV-1 monoclonal antibody VRC01 in Nicotiana benthamiana plants and utility of VRC01 in combination microbicides. Antimicrobial Agents and Chemotherapy, 57, 2076–2086.  https://doi.org/10.1128/AAC.02588-12.CrossRefPubMedPubMedCentralGoogle Scholar
  56. He, Y., Ning, T., Xie, T., Qiu, Q., Zhang, L., Sun, Y., Jiang, D., Fu, K., Yin, F., Zhang, W., Shen, L., Wang, H., Li, J., Lin, Q., Sun, Y., Li, H., Zhu, Y., & Yang, D. (2011). Large-scale production of functional human serum albumin from transgenic rice seeds. Proceedings of the National Academy of Sciences of the United States of America, 108, 19078–19083.  https://doi.org/10.1073/pnas.1109736108.CrossRefPubMedPubMedCentralGoogle Scholar
  57. He, J., Lai, H., Engle, M., Gorlatov, S., Gruber, C., Steinkellner, H., Diamond, M. S., & Chen, Q. (2014). Generation and analysis of novel plant-derived antibody-based therapeutic molecules against West Nile virus. PLoS One, 9, e93541.  https://doi.org/10.1371/journal.pone.0093541.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Hehle, V. K., Paul, M. J., Roberts, V. A., van Dolleweerd, C. J., & Ma, J. K.-C. (2016). Site-targeted mutagenesis for stabilization of recombinant monoclonal antibody expressed in tobacco (Nicotiana tabacum) plants. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 30, 1590–1598.  https://doi.org/10.1096/fj.15-283226.CrossRefGoogle Scholar
  59. Hiatt, A., Cafferkey, R., & Bowdish, K. (1989). Production of antibodies in transgenic plants. Nature, 342, 76–78.  https://doi.org/10.1038/342076a0.CrossRefPubMedGoogle Scholar
  60. Hiatt, A., Bohorova, N., Bohorov, O., Goodman, C., Kim, D., Pauly, M. H., Velasco, J., Whaley, K. J., Piedra, P. A., Gilbert, B. E., & Zeitlin, L. (2014). Glycan variants of a respiratory syncytial virus antibody with enhanced effector function and in vivo efficacy. Proceedings of the National Academy of Sciences of the United States of America, 111, 5992–5997.  https://doi.org/10.1073/pnas.1402458111.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Ho, Y., Kiparissides, A., Pistikopoulos, E. N., & Mantalaris, A. (2012). Computational approach for understanding and improving GS-NS0 antibody production under hyperosmotic conditions. Journal of Bioscience and Bioengineering, 113, 88–98.  https://doi.org/10.1016/j.jbiosc.2011.08.022.CrossRefPubMedGoogle Scholar
  62. Holland, T., & Buyel, J. F. (2018). Bioreactor-based production of glycoproteins in plant cell suspension cultures. Methods in Molecular Biology (Clifton, N.J.), 1674, 129–146.  https://doi.org/10.1007/978-1-4939-7312-5_11.CrossRefGoogle Scholar
  63. Holtz, B. R., Berquist, B. R., Bennett, L. D., Kommineni, V. J. M., Munigunti, R. K., White, E. L., Wilkerson, D. C., Wong, K.-Y. I., Ly, L. H., & Marcel, S. (2015). Commercial-scale biotherapeutics manufacturing facility for plant-made pharmaceuticals. Plant Biotechnology Journal, 13, 1180–1190.  https://doi.org/10.1111/pbi.12469.CrossRefPubMedGoogle Scholar
  64. Hossler, P. (2012). Protein glycosylation control in mammalian cell culture: Past precedents and contemporary prospects. Advances in Biochemical Engineering/Biotechnology, 127, 187–219.  https://doi.org/10.1007/10_2011_113.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Houde, D., Peng, Y., Berkowitz, S. A., & Engen, J. R. (2010). Post-translational modifications differentially affect IgG1 conformation and receptor binding. Molecular & Cellular Proteomics (MCP), 9, 1716–1728.  https://doi.org/10.1074/mcp.M900540-MCP200.CrossRefGoogle Scholar
  66. Huang, Z., Phoolcharoen, W., Lai, H., Piensook, K., Cardineau, G., Zeitlin, L., Whaley, K. J., Arntzen, C. J., Mason, H. S., & Chen, Q. (2010). High-level rapid production of full-size monoclonal antibodies in plants by a single-vector DNA replicon system. Biotechnology and Bioengineering, 106, 9–17.  https://doi.org/10.1002/bit.22652.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Hull, A. K., Criscuolo, C. J., Mett, V., Groen, H., Steeman, W., Westra, H., Chapman, G., Legutki, B., Baillie, L., & Yusibov, V. (2005). Human-derived, plant-produced monoclonal antibody for the treatment of anthrax. Vaccine, 23, 2082–2086.  https://doi.org/10.1016/j.vaccine.2005.01.013.CrossRefPubMedGoogle Scholar
  68. Irani, V., Guy, A. J., Andrew, D., Beeson, J. G., Ramsland, P. A., & Richards, J. S. (2015). Molecular properties of human IgG subclasses and their implications for designing therapeutic monoclonal antibodies against infectious diseases. Molecular Immunology, 67, 171–182.  https://doi.org/10.1016/j.molimm.2015.03.255.CrossRefPubMedGoogle Scholar
  69. Jarczowski, F., Kandzia, R., Thieme, F., Klimyuk, V., Gleba, Y. (2016). Methods of modulating N-glycosylation site occupancy of plant-produced glycoproteins and recombinant glycoproteins. United States Patent Application 20160115498. Kind Code: A1.Google Scholar
  70. Jefferis, R. (2009). Glycosylation as a strategy to improve antibody-based therapeutics. Nature Reviews. Drug Discovery, 8, 226–234.  https://doi.org/10.1038/nrd2804.CrossRefPubMedGoogle Scholar
  71. Jennewein, M. F., & Alter, G. (2017). The immunoregulatory roles of antibody glycosylation. Trends in Immunology, 38, 358–372.  https://doi.org/10.1016/j.it.2017.02.004.CrossRefPubMedGoogle Scholar
  72. Jez, J., Castilho, A., Grass, J., Vorauer-Uhl, K., Sterovsky, T., Altmann, F., & Steinkellner, H. (2013). Expression of functionally active sialylated human erythropoietin in plants. Biotechnology Journal, 8, 371–382.  https://doi.org/10.1002/biot.201200363.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Jiang, L., & Rogers, J. C. (1999). Functional analysis of a Golgi-localized Kex2p-like protease in tobacco suspension culture cells. The Plant Journal for Cell and Molecular Biology, 18, 23–32.CrossRefGoogle Scholar
  74. Jin, C., Altmann, F., Strasser, R., Mach, L., Schähs, M., Kunert, R., Rademacher, T., Glössl, J., & Steinkellner, H. (2008). A plant-derived human monoclonal antibody induces an anti-carbohydrate immune response in rabbits. Glycobiology, 18, 235–241.  https://doi.org/10.1093/glycob/cwm137.CrossRefPubMedGoogle Scholar
  75. Köhler, G., & Milstein, C. (1975). Continuous cultures of fused cells secreting antibody of predefined specificity. Nature, 256, 495–497.CrossRefGoogle Scholar
  76. Komarova, T. V., Baschieri, S., Donini, M., Marusic, C., Benvenuto, E., & Dorokhov, Y. L. (2010). Transient expression systems for plant-derived biopharmaceuticals. Expert Review of Vaccines, 9, 859–876.  https://doi.org/10.1586/erv.10.85.CrossRefPubMedGoogle Scholar
  77. Komarova, T. V., Kosorukov, V. S., Frolova, O. Y., Petrunia, I. V., Skrypnik, K. A., Gleba, Y. Y., & Dorokhov, Y. L. (2011). Plant-made trastuzumab (herceptin) inhibits HER2/Neu+ cell proliferation and retards tumor growth. PLoS One, 6, e17541.  https://doi.org/10.1371/journal.pone.0017541.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Komarova, T. V., Sheshukova, E. V., & Dorokhov, Y. L. (2017a). Plant-made antibodies: Properties and therapeutic applications. Current Medicinal Chemistry.  https://doi.org/10.2174/0929867325666171212093257.
  79. Komarova, T. V., Sheshukova, E. V., Kosobokova, E. N., Serebryakova, M. V., Kosorukov, V. S., Tashlitsky, V. N., & Dorokhov, Y. L. (2017b). Trastuzumab and Pertuzumab plant biosimilars: Modification of Asn297-linked glycan of the mAbs produced in a plant with Fucosyltransferase and Xylosyltransferase gene knockouts. Biochemistry (Moscow), 82, 510–520.  https://doi.org/10.1134/S0006297917040137.CrossRefGoogle Scholar
  80. Kunert, R., & Casanova, E. (2013). Recent advances in recombinant protein production: BAC-based expression vectors, the bigger the better. Bioengineered, 4, 258–261.  https://doi.org/10.4161/bioe.24060.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Kunert, R., & Reinhart, D. (2016). Advances in recombinant antibody manufacturing. Applied Microbiology and Biotechnology.  https://doi.org/10.1007/s00253-016-7388-9.
  82. Lai, H., Engle, M., Fuchs, A., Keller, T., Johnson, S., Gorlatov, S., Diamond, M. S., & Chen, Q. (2010). Monoclonal antibody produced in plants efficiently treats West Nile virus infection in mice. Proceedings of the National Academy of Sciences of the United States of America, 107, 2419–2424.  https://doi.org/10.1073/pnas.0914503107.CrossRefPubMedPubMedCentralGoogle Scholar
  83. Lai, H., He, J., Hurtado, J., Stahnke, J., Fuchs, A., Mehlhop, E., Gorlatov, S., Loos, A., Diamond, M. S., & Chen, Q. (2014). Structural and functional characterization of an anti-West Nile virus monoclonal antibody and its single-chain variant produced in glycoengineered plants. Plant Biotechnology Journal, 12, 1098–1107.  https://doi.org/10.1111/pbi.12217.CrossRefPubMedPubMedCentralGoogle Scholar
  84. Lalonde, M.-E., & Durocher, Y. (2017). Therapeutic glycoprotein production in mammalian cells. Journal of Biotechnology, 251, 128–140.  https://doi.org/10.1016/j.jbiotec.2017.04.028.CrossRefPubMedGoogle Scholar
  85. Lam, E. (1994). Analysis of tissue-specific elements in the CaMV 35S promoter. Results and Problems in Cell Differentiation, 20, 181–196.CrossRefGoogle Scholar
  86. Le Fourn, V., Girod, P.-A., Buceta, M., Regamey, A., & Mermod, N. (2014). CHO cell engineering to prevent polypeptide aggregation and improve therapeutic protein secretion. Metabolic Engineering, 21, 91–102.  https://doi.org/10.1016/j.ymben.2012.12.003.CrossRefPubMedGoogle Scholar
  87. Lerouge, P., Cabanes-Macheteau, M., Rayon, C., Fischette-Lainé, A. C., Gomord, V., & Faye, L. (1998). N-glycoprotein biosynthesis in plants: Recent developments and future trends. Plant Molecular Biology, 38, 31–48.CrossRefGoogle Scholar
  88. Liebminger, E., Hüttner, S., Vavra, U., Fischl, R., Schoberer, J., Grass, J., Blaukopf, C., Seifert, G. J., Altmann, F., Mach, L., & Strasser, R. (2009). Class I alpha-mannosidases are required for N-glycan processing and root development in Arabidopsis thaliana. Plant Cell, 21, 3850–3867.  https://doi.org/10.1105/tpc.109.072363.CrossRefPubMedPubMedCentralGoogle Scholar
  89. Lindorfer, M. A., Köhl, J., & Taylor, R. P. (2014). Chapter 3 – Interactions between the complement system and Fcγ receptors A2. In F. Nimmerjahn & M. E. Ackerman (Eds.), Antibody Fc (pp. 49–74). Boston: Academic.CrossRefGoogle Scholar
  90. Loh, H.-S., Green, B. J., & Yusibov, V. (2017). Using transgenic plants and modified plant viruses for the development of treatments for human diseases. Current Opinion in Virology, 26, 81–89.  https://doi.org/10.1016/j.coviro.2017.07.019.CrossRefPubMedGoogle Scholar
  91. Loos, A., & Castilho, A. (2015). Transient Glyco-engineering of N. benthamiana aiming at the synthesis of multi-antennary sialylated proteins. Methods in Molecular Biology (Clifton, N.J.), 1321, 233–248.  https://doi.org/10.1007/978-1-4939-2760-9_17.CrossRefGoogle Scholar
  92. Loos, A., & Steinkellner, H. (2014). Plant glyco-biotechnology on the way to synthetic biology. Frontiers in Plant Science, 5, 523.  https://doi.org/10.3389/fpls.2014.00523.CrossRefPubMedPubMedCentralGoogle Scholar
  93. Lyon, G. M., Mehta, A. K., Varkey, J. B., Brantly, K., Plyler, L., McElroy, A. K., Kraft, C. S., Towner, J. S., Spiropoulou, C., Ströher, U., Uyeki, T. M., Ribner, B. S., & Emory Serious Communicable Diseases Unit. (2014). Clinical care of two patients with Ebola virus disease in the United States. The New England Journal of Medicine, 371, 2402–2409.  https://doi.org/10.1056/NEJMoa1409838.CrossRefPubMedGoogle Scholar
  94. Ma, J. K., Hiatt, A., Hein, M., Vine, N. D., Wang, F., Stabila, P., van Dolleweerd, C., Mostov, K., & Lehner, T. (1995). Generation and assembly of secretory antibodies in plants. Science, 268, 716–719.CrossRefGoogle Scholar
  95. Ma, J. K.-C., Drossard, J., Lewis, D., Altmann, F., Boyle, J., Christou, P., Cole, T., Dale, P., van Dolleweerd, C. J., Isitt, V., Katinger, D., Lobedan, M., Mertens, H., Paul, M. J., Rademacher, T., Sack, M., Hundleby, P. A. C., Stiegler, G., Stoger, E., Twyman, R. M., Vcelar, B., & Fischer, R. (2015). Regulatory approval and a first-in-human phase I clinical trial of a monoclonal antibody produced in transgenic tobacco plants. Plant Biotechnology Journal, 13, 1106–1120.  https://doi.org/10.1111/pbi.12416.CrossRefPubMedGoogle Scholar
  96. Marillonnet, S., Thoeringer, C., Kandzia, R., Klimyuk, V., & Gleba, Y. (2005). Systemic agrobacterium tumefaciens-mediated transfection of viral replicons for efficient transient expression in plants. Nature Biotechnology, 23, 718–723.  https://doi.org/10.1038/nbt1094.CrossRefPubMedGoogle Scholar
  97. Marusic, C., Novelli, F., Salzano, A. M., Scaloni, A., Benvenuto, E., Pioli, C., & Donini, M. (2016). Production of an active anti-CD20-hIL-2 immunocytokine in Nicotiana benthamiana. Plant Biotechnology Journal, 14, 240–251.  https://doi.org/10.1111/pbi.12378.CrossRefPubMedGoogle Scholar
  98. Marusic, C., Pioli, C., Stelter, S., Novelli, F., Lonoce, C., Morrocchi, E., Benvenuto, E., Salzano, A. M., Scaloni, A., & Donini, M. (2018). N-glycan engineering of a plant-produced anti-CD20-hIL-2 immunocytokine significantly enhances its effector functions. Biotechnology and Bioengineering, 115, 565–576.  https://doi.org/10.1002/bit.26503.CrossRefPubMedGoogle Scholar
  99. Matsuo, K., Kagaya, U., Itchoda, N., Tabayashi, N., & Matsumura, T. (2014). Deletion of plant-specific sugar residues in plant N-glycans by repression of GDP-D-mannose 4,6-dehydratase and β-1,2-xylosyltransferase genes. Journal of Bioscience and Bioengineering, 118, 448–454.  https://doi.org/10.1016/j.jbiosc.2014.04.005.CrossRefPubMedGoogle Scholar
  100. McCarthy, M. (2014). US signs contract with ZMapp maker to accelerate development of the Ebola drug. BMJ, 349, g5488.CrossRefGoogle Scholar
  101. McCormick, A. A., Corbo, T. A., Wykoff-Clary, S., Nguyen, L. V., Smith, M. L., Palmer, K. E., & Pogue, G. P. (2006). TMV-peptide fusion vaccines induce cell-mediated immune responses and tumor protection in two murine models. Vaccine, 24, 6414–6423.  https://doi.org/10.1016/j.vaccine.2006.06.003.CrossRefPubMedGoogle Scholar
  102. Mett, V., Chichester, J. A., Stewart, M. L., Musiychuk, K., Bi, H., Reifsnyder, C. J., Hull, A. K., Albrecht, M. T., Goldman, S., Baillie, L. W. J., & Yusibov, V. (2011). A non-glycosylated, plant-produced human monoclonal antibody against anthrax protective antigen protects mice and non-human primates from B. anthracis spore challenge. Human Vaccines, 7. Suppl, 183–190.CrossRefGoogle Scholar
  103. Mimura, Y., Kelly, R. M., Unwin, L., Albrecht, S., Jefferis, R., Goodall, M., Mizukami, Y., Mimura-Kimura, Y., Matsumoto, T., Ueoka, H., & Rudd, P. M. (2016). Enhanced sialylation of a human chimeric IgG1 variant produced in human and rodent cell lines. Journal of Immunological Methods, 428, 30–36.  https://doi.org/10.1016/j.jim.2015.11.009.CrossRefPubMedGoogle Scholar
  104. Morris, G. C., Wiggins, R. C., Woodhall, S. C., Bland, J. M., Taylor, C. R., Jespers, V., Vcelar, B. A., & Lacey, C. J. (2014). MABGEL 1: First phase 1 trial of the anti-HIV-1 monoclonal antibodies 2F5, 4E10 and 2G12 as a vaginal microbicide. PLoS One, 9, e116153.  https://doi.org/10.1371/journal.pone.0116153.CrossRefPubMedPubMedCentralGoogle Scholar
  105. Moustafa, K., Makhzoum, A., & Trémouillaux-Guiller, J. (2016). Molecular farming on rescue of pharma industry for next generations. Critical Reviews in Biotechnology, 36, 840–850.  https://doi.org/10.3109/07388551.2015.1049934.CrossRefPubMedGoogle Scholar
  106. Nagels, B., Van Damme, E. J. M., Pabst, M., Callewaert, N., & Weterings, K. (2011). Production of complex multiantennary N-glycans in Nicotiana benthamiana plants. Plant Physiology, 155, 1103–1112.  https://doi.org/10.1104/pp.110.168773.CrossRefPubMedPubMedCentralGoogle Scholar
  107. Nandi, S., Kwong, A. T., Holtz, B. R., Erwin, R. L., Marcel, S., McDonald, K. A. (2016). Techno-economic analysis of a transient plant-based platform for monoclonal antibody production. mAbs, 0.  https://doi.org/10.1080/19420862.2016.1227901
  108. Nezlin, R. (1998). Chapter 1 – General characteristics of immunoglobulin molecules. In The immunoglobulins (pp. 3–73). New York: Academic.CrossRefGoogle Scholar
  109. Nimmerjahn, F., & Ravetch, J. V. (2008). Fcgamma receptors as regulators of immune responses. Nature Reviews. Immunology, 8, 34–47.  https://doi.org/10.1038/nri2206.CrossRefPubMedGoogle Scholar
  110. Niwa, R., & Satoh, M. (2015). The current status and prospects of antibody engineering for therapeutic use: Focus on glycoengineering technology. Journal of Pharmaceutical Sciences, 104, 930–941.  https://doi.org/10.1002/jps.24316.CrossRefPubMedGoogle Scholar
  111. Norkunas, K., Harding, R., Dale, J., & Dugdale, B. (2018). Improving agroinfiltration-based transient gene expression in Nicotiana benthamiana. Plant Methods, 14, 71.  https://doi.org/10.1186/s13007-018-0343-2.CrossRefPubMedPubMedCentralGoogle Scholar
  112. Ocampo, C. G., & Petruccelli, S. (2018). Vacuolar targeting and characterization of recombinant antibodies. Methods in Molecular Biology (Clifton, N.J.), 1789, 65–80.  https://doi.org/10.1007/978-1-4939-7856-4_6.CrossRefGoogle Scholar
  113. Olinger, G. G., Pettitt, J., Kim, D., Working, C., Bohorov, O., Bratcher, B., Hiatt, E., Hume, S. D., Johnson, A. K., Morton, J., Pauly, M., Whaley, K. J., Lear, C. M., Biggins, J. E., Scully, C., Hensley, L., & Zeitlin, L. (2012). Delayed treatment of Ebola virus infection with plant-derived monoclonal antibodies provides protection in rhesus macaques. Proceedings of the National Academy of Sciences of the United States of America, 109, 18030–18035.  https://doi.org/10.1073/pnas.1213709109.CrossRefPubMedPubMedCentralGoogle Scholar
  114. Oliphant, T., Engle, M., Nybakken, G. E., Doane, C., Johnson, S., Huang, L., Gorlatov, S., Mehlhop, E., Marri, A., Chung, K. M., Ebel, G. D., Kramer, L. D., Fremont, D. H., & Diamond, M. S. (2005). Development of a humanized monoclonal antibody with therapeutic potential against West Nile virus. Nature Medicine, 11, 522–530.  https://doi.org/10.1038/nm1240.CrossRefPubMedPubMedCentralGoogle Scholar
  115. Padler-Karavani, V., & Varki, A. (2011). Potential impact of the non-human sialic acid N-glycolylneuraminic acid on transplant rejection risk. Xenotransplantation, 18, 1–5.  https://doi.org/10.1111/j.1399-3089.2011.00622.x.CrossRefPubMedPubMedCentralGoogle Scholar
  116. Patel, D., Guo, X., Ng, S., Melchior, M., Balderes, P., Burtrum, D., Persaud, K., Luna, X., Ludwig, D. L., & Kang, X. (2010). IgG isotype, glycosylation, and EGFR expression determine the induction of antibody-dependent cellular cytotoxicity in vitro by cetuximab. Human Antibodies, 19, 89–99.  https://doi.org/10.3233/HAB-2010-0232.CrossRefPubMedGoogle Scholar
  117. Paul, M., Reljic, R., Klein, K., Drake, P. M. W., van Dolleweerd, C., Pabst, M., Windwarder, M., Arcalis, E., Stoger, E., Altmann, F., Cosgrove, C., Bartolf, A., Baden, S., & Ma, J. K.-C. (2014). Characterization of a plant-produced recombinant human secretory IgA with broad neutralizing activity against HIV. MAbs, 6, 1585–1597.  https://doi.org/10.4161/mabs.36336.CrossRefPubMedPubMedCentralGoogle Scholar
  118. Petruccelli, S., Otegui, M. S., Lareu, F., Tran Dinh, O., Fitchette, A.-C., Circosta, A., Rumbo, M., Bardor, M., Carcamo, R., Gomord, V., & Beachy, R. N. (2006). A KDEL-tagged monoclonal antibody is efficiently retained in the endoplasmic reticulum in leaves, but is both partially secreted and sorted to protein storage vacuoles in seeds. Plant Biotechnology Journal, 4, 511–527.  https://doi.org/10.1111/j.1467-7652.2006.00200.x.CrossRefPubMedGoogle Scholar
  119. Phoolcharoen, W., Bhoo, S. H., Lai, H., Ma, J., Arntzen, C. J., Chen, Q., & Mason, H. S. (2011). Expression of an immunogenic Ebola immune complex in Nicotiana benthamiana. Plant Biotechnology Journal, 9, 807–816.  https://doi.org/10.1111/j.1467-7652.2011.00593.x.CrossRefPubMedGoogle Scholar
  120. Pierpont, T. M., Limper, C. B., & Richards, K. L. (2018). Past, present, and future of rituximab-the World’s first oncology monoclonal antibody therapy. Frontiers in Oncology, 8, 163.  https://doi.org/10.3389/fonc.2018.00163.CrossRefPubMedPubMedCentralGoogle Scholar
  121. Pierson, T. C., Xu, Q., Nelson, S., Oliphant, T., Nybakken, G. E., Fremont, D. H., & Diamond, M. S. (2007). The stoichiometry of antibody-mediated neutralization and enhancement of West Nile virus infection. Cell Host & Microbe, 1, 135–145.  https://doi.org/10.1016/j.chom.2007.03.002.CrossRefGoogle Scholar
  122. Plomp, R., Dekkers, G., Rombouts, Y., Visser, R., Koeleman, C. A. M., Kammeijer, G. S. M., Jansen, B. C., Rispens, T., Hensbergen, P. J., Vidarsson, G., & Wuhrer, M. (2015). Hinge-region O-glycosylation of human immunoglobulin G3 (IgG3). Molecular & Cellular Proteomics (MCP), 14, 1373–1384.  https://doi.org/10.1074/mcp.M114.047381.CrossRefGoogle Scholar
  123. Qiu, X., Alimonti, J. B., Melito, P. L., Fernando, L., Ströher, U., & Jones, S. M. (2011). Characterization of Zaire ebolavirus glycoprotein-specific monoclonal antibodies. Clinical Immunology (Orlando, Fla.), 141, 218–227.  https://doi.org/10.1016/j.clim.2011.08.008.CrossRefGoogle Scholar
  124. Qiu, X., Audet, J., Wong, G., Pillet, S., Bello, A., Cabral, T., Strong, J. E., Plummer, F., Corbett, C. R., Alimonti, J. B., & Kobinger, G. P. (2012). Successful treatment of ebola virus-infected cynomolgus macaques with monoclonal antibodies. Science Translational Medicine, 4, 138ra81.  https://doi.org/10.1126/scitranslmed.3003876.CrossRefPubMedGoogle Scholar
  125. Qiu, X., Wong, G., Audet, J., Bello, A., Fernando, L., Alimonti, J. B., Fausther-Bovendo, H., Wei, H., Aviles, J., Hiatt, E., Johnson, A., Morton, J., Swope, K., Bohorov, O., Bohorova, N., Goodman, C., Kim, D., Pauly, M. H., Velasco, J., Pettitt, J., Olinger, G. G., Whaley, K., Xu, B., Strong, J. E., Zeitlin, L., & Kobinger, G. P. (2014). Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp. Nature, 514, 47–53.  https://doi.org/10.1038/nature13777.CrossRefPubMedPubMedCentralGoogle Scholar
  126. Rademacher, T., Sack, M., Arcalis, E., Stadlmann, J., Balzer, S., Altmann, F., Quendler, H., Stiegler, G., Kunert, R., Fischer, R., & Stoger, E. (2008). Recombinant antibody 2G12 produced in maize endosperm efficiently neutralizes HIV-1 and contains predominantly single-GlcNAc N-glycans. Plant Biotechnology Journal, 6, 189–201.  https://doi.org/10.1111/j.1467-7652.2007.00306.x.CrossRefPubMedGoogle Scholar
  127. Raju, T. S. (2008). Terminal sugars of Fc glycans influence antibody effector functions of IgGs. Current Opinion in Immunology, 20, 471–478.  https://doi.org/10.1016/j.coi.2008.06.007.CrossRefPubMedGoogle Scholar
  128. Rasala, B. A., & Mayfield, S. P. (2015). Photosynthetic biomanufacturing in green algae; production of recombinant proteins for industrial, nutritional, and medical uses. Photosynthesis Research, 123, 227–239.  https://doi.org/10.1007/s11120-014-9994-7.CrossRefPubMedGoogle Scholar
  129. Reusch, D., & Tejada, M. L. (2015). Fc glycans of therapeutic antibodies as critical quality attributes. Glycobiology, 25, 1325–1334.  https://doi.org/10.1093/glycob/cwv065.CrossRefPubMedPubMedCentralGoogle Scholar
  130. Román, V. R. G., Murray, J. C., Weiner, L. M. (2013). Antibody Fc: Chapter 1. Antibody-dependent cellular cytotoxicity. Academic.Google Scholar
  131. Rouwendal, G. J. A., Wuhrer, M., Florack, D. E. A., Koeleman, C. A. M., Deelder, A. M., Bakker, H., Stoopen, G. M., van Die, I., Helsper, J. P. F. G., Hokke, C. H., & Bosch, D. (2007). Efficient introduction of a bisecting GlcNAc residue in tobacco N-glycans by expression of the gene encoding human N-acetylglucosaminyltransferase III. Glycobiology, 17, 334–344.  https://doi.org/10.1093/glycob/cwl078.CrossRefPubMedGoogle Scholar
  132. Sack, M., Rademacher, T., Spiegel, H., Boes, A., Hellwig, S., Drossard, J., Stoger, E., & Fischer, R. (2015). From gene to harvest: Insights into upstream process development for the GMP production of a monoclonal antibody in transgenic tobacco plants. Plant Biotechnology Journal, 13, 1094–1105.  https://doi.org/10.1111/pbi.12438.CrossRefPubMedGoogle Scholar
  133. Sainsbury, F., Lavoie, P.-O., D’Aoust, M.-A., Vézina, L.-P., & Lomonossoff, G. P. (2008). Expression of multiple proteins using full-length and deleted versions of cowpea mosaic virus RNA-2. Plant Biotechnology Journal, 6, 82–92.  https://doi.org/10.1111/j.1467-7652.2007.00303.x.CrossRefPubMedGoogle Scholar
  134. Sainsbury, F., Thuenemann, E. C., & Lomonossoff, G. P. (2009). pEAQ: Versatile expression vectors for easy and quick transient expression of heterologous proteins in plants. Plant Biotechnology Journal, 7, 682–693.  https://doi.org/10.1111/j.1467-7652.2009.00434.x.CrossRefPubMedGoogle Scholar
  135. Sainsbury, F., Sack, M., Stadlmann, J., Quendler, H., Fischer, R., & Lomonossoff, G. P. (2010). Rapid transient production in plants by replicating and non-replicating vectors yields high quality functional anti-HIV antibody. PLoS One, 5, e13976.  https://doi.org/10.1371/journal.pone.0013976.CrossRefPubMedPubMedCentralGoogle Scholar
  136. Sanchez, A., Pifat, D. Y., Kenyon, R. H., Peters, C. J., McCormick, J. B., & Kiley, M. P. (1989). Junin virus monoclonal antibodies: Characterization and cross-reactivity with other arenaviruses. The Journal of General Virology, 70(Pt 5), 1125–1132.  https://doi.org/10.1099/0022-1317-70-5-1125.CrossRefPubMedGoogle Scholar
  137. Scallon, B. J., Tam, S. H., McCarthy, S. G., Cai, A. N., & Raju, T. S. (2007). Higher levels of sialylated Fc glycans in immunoglobulin G molecules can adversely impact functionality. Molecular Immunology, 44, 1524–1534.  https://doi.org/10.1016/j.molimm.2006.09.005.CrossRefPubMedGoogle Scholar
  138. Schähs, M., Strasser, R., Stadlmann, J., Kunert, R., Rademacher, T., & Steinkellner, H. (2007). Production of a monoclonal antibody in plants with a humanized N-glycosylation pattern. Plant Biotechnology Journal, 5, 657–663.  https://doi.org/10.1111/j.1467-7652.2007.00273.x.CrossRefPubMedGoogle Scholar
  139. Schiestl, M., Stangler, T., Torella, C., Cepeljnik, T., Toll, H., & Grau, R. (2011). Acceptable changes in quality attributes of glycosylated biopharmaceuticals. Nature Biotechnology, 29, 310–312.  https://doi.org/10.1038/nbt.1839.CrossRefPubMedGoogle Scholar
  140. Schroeder, H. W., & Cavacini, L. (2010). Structure and function of immunoglobulins. The Journal of Allergy and Clinical Immunology, 125, S41–S52.  https://doi.org/10.1016/j.jaci.2009.09.046.CrossRefPubMedPubMedCentralGoogle Scholar
  141. Sha, S., Agarabi, C., Brorson, K., Lee, D.-Y., & Yoon, S. (2016). N-glycosylation design and control of therapeutic monoclonal antibodies. Trends in Biotechnology.  https://doi.org/10.1016/j.tibtech.2016.02.013.
  142. Sheshukova, E. V., Komarova, T. V., & Dorokhov, Y. L. (2016). Plant factories for the production of monoclonal antibodies. Biochemistry (Moscow), 81, 1118–1135.  https://doi.org/10.1134/S0006297916100102.CrossRefGoogle Scholar
  143. Shukla, A. A., & Gottschalk, U. (2013). Single-use disposable technologies for biopharmaceutical manufacturing. Trends in Biotechnology, 31, 147–154.  https://doi.org/10.1016/j.tibtech.2012.10.004.CrossRefPubMedGoogle Scholar
  144. Smith, S. L. (1996). Ten years of Orthoclone OKT3 (muromonab-CD3): A review. Journal of Transplant Coordination: Official Publication of the North American Transplant Coordinators Organization (NATCO), 6, 109–119. quiz 120-121.CrossRefGoogle Scholar
  145. Sriraman, R., Bardor, M., Sack, M., Vaquero, C., Faye, L., Fischer, R., Finnern, R., & Lerouge, P. (2004). Recombinant anti-hCG antibodies retained in the endoplasmic reticulum of transformed plants lack core-xylose and core-alpha(1,3)-fucose residues. Plant Biotechnology Journal, 2, 279–287.  https://doi.org/10.1111/j.1467-7652.2004.00078.x.CrossRefPubMedGoogle Scholar
  146. Stoger, E., Fischer, R., Moloney, M., & Ma, J. K.-C. (2014). Plant molecular pharming for the treatment of chronic and infectious diseases. Annual Review of Plant Biology, 65, 743–768.  https://doi.org/10.1146/annurev-arplant-050213-035850.CrossRefPubMedGoogle Scholar
  147. Strasser, R. (2014). Biological significance of complex N-glycans in plants and their impact on plant physiology. Frontiers in Plant Science, 5, 363.  https://doi.org/10.3389/fpls.2014.00363.CrossRefPubMedPubMedCentralGoogle Scholar
  148. Strasser, R. (2016). Plant protein glycosylation. Glycobiology.  https://doi.org/10.1093/glycob/cww023.
  149. Strasser, R., Altmann, F., Mach, L., Glössl, J., & Steinkellner, H. (2004). Generation of Arabidopsis thaliana plants with complex N-glycans lacking beta1,2-linked xylose and core alpha1,3-linked fucose. FEBS Letters, 561, 132–136.  https://doi.org/10.1016/S0014-5793(04)00150-4.CrossRefPubMedGoogle Scholar
  150. Strasser, R., Bondili, J. S., Schoberer, J., Svoboda, B., Liebminger, E., Glössl, J., Altmann, F., Steinkellner, H., & Mach, L. (2007a). Enzymatic properties and subcellular localization of Arabidopsis beta-N-acetylhexosaminidases. Plant Physiology, 145, 5–16.  https://doi.org/10.1104/pp.107.101162.CrossRefPubMedPubMedCentralGoogle Scholar
  151. Strasser, R., Bondili, J. S., Vavra, U., Schoberer, J., Svoboda, B., Glössl, J., Léonard, R., Stadlmann, J., Altmann, F., Steinkellner, H., & Mach, L. (2007b). A unique beta1,3-galactosyltransferase is indispensable for the biosynthesis of N-glycans containing Lewis a structures in Arabidopsis thaliana. Plant Cell, 19, 2278–2292.  https://doi.org/10.1105/tpc.107.052985.CrossRefPubMedPubMedCentralGoogle Scholar
  152. Strasser, R., Stadlmann, J., Schähs, M., Stiegler, G., Quendler, H., Mach, L., Glössl, J., Weterings, K., Pabst, M., & Steinkellner, H. (2008). Generation of glyco-engineered Nicotiana benthamiana for the production of monoclonal antibodies with a homogeneous human-like N-glycan structure. Plant Biotechnology Journal, 6, 392–402.  https://doi.org/10.1111/j.1467-7652.2008.00330.x.CrossRefPubMedGoogle Scholar
  153. Strasser, R., Castilho, A., Stadlmann, J., Kunert, R., Quendler, H., Gattinger, P., Jez, J., Rademacher, T., Altmann, F., Mach, L., & Steinkellner, H. (2009). Improved virus neutralization by plant-produced anti-HIV antibodies with a homogeneous beta1,4-galactosylated N-glycan profile. The Journal of Biological Chemistry, 284, 20479–20485.  https://doi.org/10.1074/jbc.M109.014126.CrossRefPubMedPubMedCentralGoogle Scholar
  154. Strasser, R., Altmann, F., & Steinkellner, H. (2014). Controlled glycosylation of plant-produced recombinant proteins. Current Opinion in Biotechnology, 30, 95–100.  https://doi.org/10.1016/j.copbio.2014.06.008.CrossRefPubMedGoogle Scholar
  155. Sukenik, S. C., Karuppanan, K., Li, Q., Lebrilla, C. B., Nandi, S., & McDonald, K. A. (2018). Transient recombinant protein production in Glycoengineered Nicotiana benthamiana cell suspension culture. International Journal of Molecular Sciences, 19.  https://doi.org/10.3390/ijms19041205.
  156. Sun, H., Chen, Q., Lai, H. (2017). Development of antibody therapeutics against Flaviviruses. International Journal of Molecular Sciences, 19.  https://doi.org/10.3390/ijms19010054.
  157. Triguero, A., Cabrera, G., Cremata, J. A., Yuen, C.-T., Wheeler, J., & Ramírez, N. I. (2005). Plant-derived mouse IgG monoclonal antibody fused to KDEL endoplasmic reticulum-retention signal is N-glycosylated homogeneously throughout the plant with mostly high-mannose-type N-glycans. Plant Biotechnology Journal, 3, 449–457.  https://doi.org/10.1111/j.1467-7652.2005.00137.x.CrossRefPubMedGoogle Scholar
  158. Tschofen, M., Knopp, D., Hood, E., & Stöger, E. (2016). Plant molecular farming: Much more than medicines. Annual Review of Analytical Chemistry (Palo Alto Calif.).  https://doi.org/10.1146/annurev-anchem-071015-041706.
  159. Tusé, D., Ku, N., Bendandi, M., Becerra, C., Collins, R., Langford, N., Sancho, S. I., López-Díaz de Cerio, A., Pastor, F., Kandzia, R., Thieme, F., Jarczowski, F., Krause, D., Ma, J. K.-C., Pandya, S., Klimyuk, V., Gleba, Y., & Butler-Ransohoff, J. E. (2015). Clinical safety and immunogenicity of tumor-targeted, plant-made id-KLH conjugate vaccines for follicular lymphoma. BioMed Research International, 2015, 648143.  https://doi.org/10.1155/2015/648143.CrossRefPubMedPubMedCentralGoogle Scholar
  160. Vamvaka, E., Twyman, R. M., Murad, A. M., Melnik, S., Teh, A. Y.-H., Arcalis, E., Altmann, F., Stoger, E., Rech, E., Ma, J. K. C., Christou, P., & Capell, T. (2016). Rice endosperm produces an underglycosylated and potent form of the HIV-neutralizing monoclonal antibody 2G12. Plant Biotechnology Journal, 14, 97–108.  https://doi.org/10.1111/pbi.12360.CrossRefPubMedGoogle Scholar
  161. Vamvaka, E., Farré, G., Molinos-Albert, L. M., Evans, A., Canela-Xandri, A., Twyman, R. M., Carrillo, J., Ordóñez, R. A., Shattock, R. J., O’Keefe, B. R., Clotet, B., Blanco, J., Khush, G. S., Christou, P., & Capell, T. (2018). Unexpected synergistic HIV neutralization by a triple microbicide produced in rice endosperm. Proceedings of the National Academy of Sciences of the United States of America, 115, E7854–E7862.  https://doi.org/10.1073/pnas.1806022115.CrossRefPubMedPubMedCentralGoogle Scholar
  162. Varki, A., Cummings, R. D., Esko, J. D., Freeze, H. H., Stanley, P., Bertozzi, C. R., Hart, G. W., & Etzler, M. E. (Eds.). (2009). Essentials of glycobiology (2nd ed.). Cold Spring Harbor: Cold Spring Harbor Laboratory Press.Google Scholar
  163. Veit, C., Vavra, U., & Strasser, R. (2015). N-glycosylation and plant cell growth. Methods in Molecular Biology (Clifton, N.J.), 1242, 183–194.  https://doi.org/10.1007/978-1-4939-1902-4_16.CrossRefGoogle Scholar
  164. Vidarsson, G., Dekkers, G., & Rispens, T. (2014). IgG subclasses and allotypes: From structure to effector functions. Frontiers in Immunology, 5, 520.  https://doi.org/10.3389/fimmu.2014.00520.CrossRefPubMedPubMedCentralGoogle Scholar
  165. Wada, N., Kazuki, Y., Kazuki, K., Inoue, T., Fukui, K., & Oshimura, M. (2017). Maintenance and function of a plant chromosome in human cells. ACS Synthetic Biology, 6, 301–310.  https://doi.org/10.1021/acssynbio.6b00180.CrossRefPubMedGoogle Scholar
  166. Westerhof, L. B., Wilbers, R. H. P., van Raaij, D. R., Nguyen, D.-L., Goverse, A., Henquet, M. G. L., Hokke, C. H., Bosch, D., Bakker, J., & Schots, A. (2014). Monomeric IgA can be produced in planta as efficient as IgG, yet receives different N-glycans. Plant Biotechnology Journal, 12, 1333–1342.  https://doi.org/10.1111/pbi.12251.CrossRefPubMedGoogle Scholar
  167. Whaley, K. J., Morton, J., Hume, S., Hiatt, E., Bratcher, B., Klimyuk, V., Hiatt, A., Pauly, M., & Zeitlin, L. (2014). Emerging antibody-based products. Current Topics in Microbiology and Immunology, 375, 107–126.  https://doi.org/10.1007/82_2012_240.CrossRefPubMedGoogle Scholar
  168. Yusibov, V., Kushnir, N., & Streatfield, S. J. (2016). Antibody production in plants and green algae. Annual Review of Plant Biology.  https://doi.org/10.1146/annurev-arplant-043015-111812.
  169. Zalai, D., Hevér, H., Lovász, K., Molnár, D., Wechselberger, P., Hofer, A., Párta, L., Putics, Á., & Herwig, C. (2016). A control strategy to investigate the relationship between specific productivity and high-mannose glycoforms in CHO cells. Applied Microbiology and Biotechnology.  https://doi.org/10.1007/s00253-016-7380-4.
  170. Zboray, K., Sommeregger, W., Bogner, E., Gili, A., Sterovsky, T., Fauland, K., Grabner, B., Stiedl, P., Moll, H. P., Bauer, A., Kunert, R., & Casanova, E. (2015). Heterologous protein production using euchromatin-containing expression vectors in mammalian cells. Nucleic Acids Research, 43, e102.  https://doi.org/10.1093/nar/gkv475.CrossRefPubMedPubMedCentralGoogle Scholar
  171. Zeitlin, L., Pettitt, J., Scully, C., Bohorova, N., Kim, D., Pauly, M., Hiatt, A., Ngo, L., Steinkellner, H., Whaley, K. J., & Olinger, G. G. (2011). Enhanced potency of a fucose-free monoclonal antibody being developed as an Ebola virus immunoprotectant. Proceedings of the National Academy of Sciences of the United States of America, 108, 20690–20694.  https://doi.org/10.1073/pnas.1108360108.CrossRefPubMedPubMedCentralGoogle Scholar
  172. Zeitlin, L., Bohorov, O., Bohorova, N., Hiatt, A., Kim, D. H., Pauly, M. H., Velasco, J., Whaley, K. J., Barnard, D. L., Bates, J. T., Crowe, J. E., Piedra, P. A., & Gilbert, B. E. (2013). Prophylactic and therapeutic testing of Nicotiana-derived RSV-neutralizing human monoclonal antibodies in the cotton rat model. mAbs, 5, 263–269.  https://doi.org/10.4161/mabs.23281.CrossRefPubMedPubMedCentralGoogle Scholar
  173. Zeitlin, L., Geisbert, J.B., Deer, D.J., Fenton, K.A., Bohorov, O., Bohorova, N., Goodman, C., Kim, D., Hiatt, A., Pauly, M.H., Velasco, J., Whaley, K.J., Altmann, F., Gruber, C., Steinkellner, H., Honko, A.N., Kuehne, A.I., Aman, M.J., Sahandi, S., Enterlein, S., Zhan, X., Enria, D., Geisbert, T.W., 2016. Monoclonal antibody therapy for Junin virus infection. Proceedings of the National Academy of Sciences. 201600996.  https://doi.org/10.1073/pnas.1600996113
  174. Zeleny, R., Kolarich, D., Strasser, R., & Altmann, F. (2006). Sialic acid concentrations in plants are in the range of inadvertent contamination. Planta, 224, 222–227.  https://doi.org/10.1007/s00425-005-0206-8.CrossRefPubMedGoogle Scholar
  175. Zhang, B., Rapolu, M., Huang, L., & Su, W. W. (2011). Coordinate expression of multiple proteins in plant cells by exploiting endogenous kex2p-like protease activity. Plant Biotechnology Journal, 9, 970–981.  https://doi.org/10.1111/j.1467-7652.2011.00607.x.CrossRefPubMedGoogle Scholar
  176. Zhou, M.-L., Zhu, X.-M., Shao, J.-R., Tang, Y.-X., & Wu, Y.-M. (2011). Production and metabolic engineering of bioactive substances in plant hairy root culture. Applied Microbiology and Biotechnology, 90, 1229–1239.  https://doi.org/10.1007/s00253-011-3228-0.CrossRefPubMedGoogle Scholar
  177. Zischewski, J., Sack, M., & Fischer, R. (2016). Overcoming low yields of plant-made antibodies by a protein engineering approach. Biotechnology Journal, 11, 107–116.  https://doi.org/10.1002/biot.201500255.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Yuri L. Dorokhov
    • 1
    • 2
    Email author
  • Ekaterina V. Sheshukova
    • 1
  • Tatiana V. Komarova
    • 1
    • 2
  1. 1.N. I. Vavilov Institute of General GeneticsRussian Academy of SciencesMoscowRussia
  2. 2.A. N. Belozersky Institute of Physico-Chemical BiologyMoscow State UniversityMoscowRussia

Personalised recommendations