Defense Mechanism and Diverse Actions of Fungal Biological Control Agents Against Plant Biotic Stresses

  • Mostafa Abdelrahman
  • Sudisha JogaiahEmail author


The terms “biological control” or its abbreviation “biocontrol” is an environmentally sound and effective means of mitigating or reducing of pathogen/pests by interference with their ecological status, as by introducing a natural enemy into their environment. The concept of biological control have been used in various fields of research, most notably plant pathology and entomology. In plant pathology, it has been used to describe the use of microbial antagonists to suppress plant diseases. In entomology, the term applies to the use of insects’ predators, or microbial agents to suppress populations of various pest insects. In both fields, the living organism that used to suppresses the pathogen or pest is referred to as the biological control agent (BCA). With regards to plant pathology, the plant host responds to various environmental stimuli, including non-pathogenic and pathogenic, thus induced host resistance, considered outstanding formula of biological control. In this chapter we will discuss the mechanism and mode of actions of different fungal BCA for induction of crop disease resistance and specific advantages of using this control method in integrated disease management (IDM) in crop plants.


Biocontrol agents Trichoderma spp Induced systemic resistance Different mechanism 


  1. Abdelrahman, M., Abdel-Motaal, F., El-Sayes, M., Jogaiah, S., Shigyo, M., Ito, S., & Tran, L. P. (2016). Dissection of Trichoderma longibrachiatum-induced defense in onion (Allium cepa L.) against Fusarium oxysporum f. sp. cepa by target metabolite profiling. Plant Science, 246, 128–138.CrossRefGoogle Scholar
  2. Agosin, E., Volpe, D., Mun~oz, G., San Martin, R., & Crawford, A. (1997). Effect of culture conditions on spore shelf life of the biocontrol agent Trichoderma harzianum. World Journal of Microbiology and Biotechnology, 13, 225–232.CrossRefGoogle Scholar
  3. Al-Naemi, F. A., Ahmed, T. A., Nishad, R., & Radwan, O. (2016). Antagonistic effects of Trichoderma harzianum isolates against Ceratocystis radicicola: Pioneering a biocontrol strategy against black scorch disease in date palm trees. Journal of Phytopathology, 164, 464–475.CrossRefGoogle Scholar
  4. Al-Sadi, A. M., Al-Alawi, Z. A., & Patzelt, A. (2015). Association of Alternaria alternata and Cladosporium cladosporioides with leaf spot in Cissus quadrangularis and Ficus sycomorus. Plant Pathology Journal, 14, 44–47.CrossRefGoogle Scholar
  5. Altomare, C., Norvell, W. A., Bjorkman, T., & Harman, G. E. (1999). Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum rifai 1295-22. Applied and Environmental Microbiology, 65, 2926–2933.PubMedPubMedCentralGoogle Scholar
  6. Andrade-Linares, D. R., Grosch, R., Franken, P., Rexer, K. H., Kost, G., Restrepo, S., Cepero de Garcia, M. C., & Maximova, E. (2011). Colonization of roots of cultivated Solanum lycopersicum by dark septate and other ascomycetous endophytes. Mycologia, 103, 710–721.CrossRefGoogle Scholar
  7. Anita, S., Ponmurugan, P., & Ganesh Babu, R. (2012). Significance of secondary metabolites and enzymes secreted by Trichoderma atroviride isolates for the biological control of Phomopsis canker disease. African Journal of Biotechnology, 11, 10350–10357.CrossRefGoogle Scholar
  8. Anupama, N. B., Jogaiah, S., Ito, S., Amruthesh, K. N., & Tran, P. L. S. (2015). Improvement of growth, fruit weight and early blight disease protection of tomato plants by rhizoshpere bacteria is correlated with their beneficial traits and induced biosynthesis of antioxidant peroxidase and polyphenol oxidase. Plant Science, 231, 62–73.CrossRefGoogle Scholar
  9. Askew, D. J., & Laing, M. D. (1993). An adapted selective medium for the quantitative isolation of Trichoderma species. Plant Pathology, 42, 686–690.CrossRefGoogle Scholar
  10. Atanasova, L., Druzhinina, I. S., & Jaklitsch, W. M. (2013). Two hundred Trichoderma species recognized on the basis of molecular phylogeny. In P. K. Mukherjee, B. A. Horwitz, U. S. Singh, M. Mukherjee, & M. Schmoll (Eds.), Trichoderma: Biology and applications (p. 10). Wallingford: CABI.CrossRefGoogle Scholar
  11. Barbercheck, M. E. (2011). Biological control of insect pests. Extension, 18931.Google Scholar
  12. Battaglia, E., Klaubauf, S., Vallet, J., Ribot, C., Lebrun, M. H., & de Vries, R. P. (2013). Xlr1 is involved in the transcriptional control of the pentose catabolic pathway, but not hemi-cellulolytic enzymes in Magnaporthe oryzae. Fungal Genetics and Biology, 57, 76–84.CrossRefGoogle Scholar
  13. Bhagat, D., Koche, M., Ingle, R. W., & Mohod, Y. N. (2010). Evaluate the suitability of locally available substrates for mass multiplication of cellulolytic fungi and bacteria. Journal of Plant Diseases Science, 5, 27–29.Google Scholar
  14. Bita, C. E., & Gerats, T. (2013). Plant tolerance to high temperature in a changing environment: Scientific fundamentals and production of heat stress-tolerant crops. Frontiers in Plant Science, 4, 273.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Błaszczyk, L., Popiel, D., Chełkowski, J., Koczyk, G., Samuels, G. J., Sobieralski, K., & Siwulski, M. (2011). Species diversity of Trichoderma in Poland. Journal of Applied Genetics, 52, 233–243.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Brotman, Y., Lisec, J., Méret, M., Chet, I., Willmitzer, L., & Viterbo, A. (2012). Transcript and metabolite analysis of the Trichoderma-induced systemic resistance response to Pseudomonas syringae in Arabidopsis thaliana. Microbiology, 158, 139–146.CrossRefGoogle Scholar
  17. Brotman, Y., Landau, U., Cuadros-Inostroza, A., Takayuki, T., Fernie, A. R., Chet, I., Viterbo, A., & Willmitzer, L. (2013). Trichoderma-plant root colonization: Escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance. Plos Pathogens.
  18. Chaverri, P., & Samuels, G. J. (2004). Hypocrea/Trichoderma (Ascomycota, Hypocreales, Hypocreaceae): Species with green ascospores. Studies in Mycology, 48, 1–116.Google Scholar
  19. Contreras-Cornejo, H. A., Macias-Rodriguez, L., Beltran-Pena, E., Herrera Estrella, A., & Lopez-Bucio, J. (2011). Trichoderma-induced plant immunity likely involves both hormonal and camalexin dependent mechanisms in Arabidopsis thaliana and confers resistance against necrotrophic fungi Botrytis cinerea. Plant Signaling and Behavior, 6, 1554–1563.CrossRefGoogle Scholar
  20. Dababat, A. A., Sikora, R. A., & Hauschild, R. (2006). Use of Trichoderma harzianum and Trichoderma viride for the biological control of Meloidogyne incognita on tomato. Communication in Agriculture and Applied Biological Science, 71, 953–961.Google Scholar
  21. Dean, J. F. D., Gamble, H. R., & Anderson, J. D. (1989). The ethylene biosynthesis-inducing xylanase: Its induction in Trichoderma viride and certain plant pathogens. Phytopathology, 79, 1071–1078.CrossRefGoogle Scholar
  22. Deshmukh, S., Hueckelhoven, R., Schaefer, P., Imani, J., Sharma, M., Weiss, M., Waller, F., & Kogel, K. H. (2006). The root endophytic fungus Piriformospora indica requires host cell death for proliferation during mutualistic symbiosis with barley. Proceeding of the National Academy of Sciences USA, 103, 18450–18457.CrossRefGoogle Scholar
  23. Djonovic, S., Vargas, A. W., Kolomiets, V. M., Horndeski, M., Wiest, A., & Kenerley, C. M. (2007). A proteinaceous elicitor sm1 from the beneficial fungal Trichoderma virens is required for induced systemic resistance in maize. Plant Physiology, 145, 875–889.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Druzhinina, I., & Kubicek, C. P. (2005). Species concepts and biodiversity in Trichoderma and Hypocrea: From aggregate species to species clusters. Journal of Zhejiang University (Science), 6, 100–112.CrossRefGoogle Scholar
  25. Druzhinina, I. S., Seidl-Seiboth, V., Herrera-Estrella, A., Horwitz, B. A., Kenerley, C. M., Monte, E., Mukherjee, P. K., Zeilinger, S., Grigoriev, I. V., & Kubicek, C. P. (2011). Trichoderma: The genomics of opportunistic success. Nature Reviews Microbiology, 9, 749–759.CrossRefGoogle Scholar
  26. Elad, Y., Chet, I., & Henis, Y. (1981). A selective medium for improving quanitiative isolation of Trichoderma spp. from soil. Phytoparasitica, 9, 59–67.CrossRefGoogle Scholar
  27. El_Komy, M. H., Saleh, A. A., Eranthodi, A., & Molan, Y. Y. (2015). Characterization of novel Trichoderma asperellum isolates to select effective biocontrol agents against tomato Fusarium Wilt. Plant Pathology Journal, 31, 50–60.CrossRefGoogle Scholar
  28. Friedl, M. A., & Druzhinina, I. S. (2012). The tribal dwelling in soil: Taxon-specific metagenomics of Trichoderma reveals a narrow community of opportunistic species regulating the development of each other. Microbiology, 158, 69–83.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Fu, S. F., Wei, J. Y., Chen, H. W., Liu, Y. Y., Lu, H. Y., & Chou, J. Y. (2015). Indole-3-acetic acid: A widespread physiological code in interactions of fungi with other organisms. Plant Signaling and Behavior, 10, e1048052.CrossRefGoogle Scholar
  30. Gordon, S. A., & Weber, R. P. (1951). Colorimetric estimation of Indole acetic acid. Plant Physiology, 26, 192–195.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Gil, S. V., Pastor, S., & March, G. J. (2009). Quantitative isolation of biocontrol agents Trichoderma spp., Gliocladium spp. and actinomycetes from soil with culture media. Microbiological Research, 164, 196–205.CrossRefGoogle Scholar
  32. Glick, B. R. (2012). Plant growth-promoting bacteria: Mechanisms and applications. Scientifica.
  33. Grzywacz, D., Stevenson, P. C., Mushobozi, W. L., Belmain, S., & Wilson, K. (2014). The use of indigenous ecological resources for pest control in Africa. Food Security, 6, 71–86.CrossRefGoogle Scholar
  34. Guédez, C., Gañizalez, L., Castillo, C., Olivar, R., Maffei, M., et al. (2010). Alternativas para el control de hongos postcosecha en naranja valencia (Citrus sinensis). Revista de la Sociedad Venezolana de Microbiología, 3, 43–47.Google Scholar
  35. Harman, G. E. (2006). Overview of mechanisms and uses of Trichoderma spp. Phytopathology, 96, 190–194.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Harman, G. E. (2011). Multifunctional fungal plant symbionts: New tools to enhance plant growth and productivity. New Phytologist, 189, 647–649.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species—Opportunistic a virulent plant symbionts. Nature Reviews Microbiology, 2, 43–56.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Harman, G. E., Herrera-Estrella, A. H., Benjamin, A., & Matteo, L. (2012). Special issue: Trichoderma – From basic biology to biotechnology. Microbiology, 58, 1–2.CrossRefGoogle Scholar
  39. Hermosa, M. R., Grondona, I., Iturriaga, E. A., Diaz-Minguez, J. M., Castro, C., Monte, E., & Garcia-Acha, I. (2000). Molecular characterization and identification of biocontrol isolates of Trichoderma spp. Applied and Environmental Microbiology, 66, 1890–1898.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Hermosa, R., Rubio, M. B., Cardoza, R. E., Nicolas, C., Monte, E., & Gutierrez, S. (2013). The contribution of Trichoderma to balancing the costs of plant growth and defense. International Microbiology, 16, 69–60.PubMedGoogle Scholar
  41. Hetong, Y., Ryder, M., & Wenhua, T. (2005). Toxicity of fungicides and selective medium development for isolation and enumeration of Trichoderma spp. in agricultural soils. Shandong Science, 18, 113–123.Google Scholar
  42. Hirte, W. F. (1969). The use of dilution plate method for the determination of soil microflora. The qualitative demonstration of bacteria and actinomycetes. Zentrall Bakteriol Parasitenkd Infektionskr Hyg, 123, 167–178.Google Scholar
  43. Hussey, N. W., & Scopes, N. (1985). Biological pest control: The glasshouse experience. Ithaca: Cornell University Press.Google Scholar
  44. Ishihara, A., Hashimoto, Y., Tanaka, C., Dubouzet, J. G., Nakao, T., Matsuda, F., Nishioka, T., Miyagawa, H., & Wakasa, K. (2008). The tryptophan pathway is involved in the defense responses of rice against pathogenic infection via serotonine production. Plant Journal, 54, 481–495.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Isman, M. B. (2006). Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annual Review of Entomology, 51, 45–66.CrossRefGoogle Scholar
  46. Jaklitsch, W. M. (2011). European species of Hypocrea part II: Species with hyaline ascospores. Fungal Diversity, 48, 1–250.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Jaklitsch, W. M., & Voglmayr, H. (2013). New combinations in Trichoderma (Hypocreaceae, Hypocreales). Mycotaxon, 126, 143–156.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Jegathambigai, V., Karunaratne, M. D., Svinningen, A., & Mikunthan, G. (2008). Biocontrol of root-knot nematode, Meloidogyne incognita damaging queen palm, Livistona rotundifolia using Trichoderma species. Communications in Agricultural and Applied Biological Sciences, 73, 681–687.PubMedGoogle Scholar
  49. Jogaiah, S., Abdelrahman, M., Tran, L. S. P., & Ito, S. (2013). Characterization of rhizosphere fungi that mediate resistance in tomato against bacterial wilt disease. Journal of Experimental Botany, 64, 3829–3842.CrossRefGoogle Scholar
  50. Jogaiah, S., Abdelrahman, M., Ito, S.-I., & Tran, L.-S. P. (2018). Different mechanisms of Trichoderma virens-mediated resistance in tomato against Fusarium wilt involve the jasmonic and salicylic acid pathways. Molecular Plant Pathology, 19, 870–882.CrossRefGoogle Scholar
  51. John, R. P., Tyagi, R. D., Prévost, D., Brar, S. K., Pouleur, S., & Surampalli, R. Y. (2010). Mycoparasitic Trichoderma viride as a biocontrol agent against Fusarium oxysporum f. sp. adzuki and Pythium arrhenomanes and as a growth promoter of soybean. Crop Protection, 29, 1452–1459.CrossRefGoogle Scholar
  52. Khan, Z. R., Midega, C. A. O., Bruce, T. J. A., Hooper, A. M., & Pickett, J. A. (2010). Exploiting phytochemicals for developing a ‘push–pull’ crop protection strategy for cereal farmers in Africa. Journal of Experimental Botany, 61, 4185–4196.CrossRefGoogle Scholar
  53. Khan, M. R., Mohiddin, F. A., Ejaz, M. N., & Khan, M. M. (2012). Management of root-knot disease in eggplant through the application of biocontrol fungi and dry neem leaves. Turkish Journal of Biology, 36, 161–169.Google Scholar
  54. Lahlali, R., & Hijri, M. (2010). Screening, identification and evaluation of potential biocontrol fungal endophytes against Rhizoctonia solani AG3 on potato plants. FEMS Microbiology Letters, 311, 152–159.CrossRefGoogle Scholar
  55. Maina, P. K., Wachira, P. M., Okoth, S. A., & Kimenju, J. W. (2015). Distribution and diversity of indigenous Trichoderma species in Machakos County, Kenya. British Microbiology Research Journal, 9, 1–15.CrossRefGoogle Scholar
  56. Mejía, C. L., Rojas, I. E., Maynard, Z., Bael, V. S., Arnold, E. A., et al. (2008). Endophytic fungi as biocontrol agents of Theobroma cacao pathogens. Biological Control, 46, 4–14.CrossRefGoogle Scholar
  57. Morgan, S. (2015). Biofuel plants as refugia for pest biocontrol agents. Dissertation.
  58. Mukherjee, P. K., Mukherjee, A. K., & Kranthi, S. (2013). Reclassification of Trichoderma viride (TNAU), the most widely used commercial biofungicide in India, as Trichoderma asperelloides. The Open Biotechnology Journal, 7, 7–9.CrossRefGoogle Scholar
  59. Mulaw, T. B., Kubicek, C. P., & Druzhinina, I. S. (2010). The rhizosphere of Coffea arabica in its native highland forests of Ethiopia provides a niche for a distinguished diversity of Trichoderma. Fungal Diversity, 2, 527–549.CrossRefGoogle Scholar
  60. Munir, S., Jamal, Q., Bano, K., Sherwani, S. K., Bokhari, T. Z., et al. (2013). Biocontrol ability of Trichoderma. International Journal of Agriculture Crop Sciences, 6, 1246–1252.Google Scholar
  61. Naeimi, S., Kocsubé, S., Antal, Z., Okhovvat, S. M., Javan-Nikkhah, M., Vágvölgyi, C., & Kredics, L. (2011). Strain-specific SCAR markers for the detection of Trichoderma harzianum AS12-2, a biological control agent against Rhizoctonia solani, the causal agent of rice sheath blight. Acta Biologica Hungarica, 62, 73–84.CrossRefGoogle Scholar
  62. Overton, B. E., Stewart, E. L., & Geiser, D. M. (2006). Taxonomy and phylogenetic relationships of nine species of Hypocrea with anamorphs assignable to Trichoderma section Hypocreanum. Studies in Mycology, 56, 39–65.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Papavizas, G. C., & Lumsden, R. D. (1982). Improved medium for isolation of Trichoderma spp. from soil. Plant Diseases, 66, 1019–1020.CrossRefGoogle Scholar
  64. Parab, P. B., Diwakar, M. P., Sawant, U. K., & Kadam, J. J. (2008). Studies on mass multiplication, different methods of application of bioagent T. harzianum and their survival in rhizosphere and soil. Journal of Plant Disease Sciences, 3, 215–218.Google Scholar
  65. Parrella, M. L. (1990). Biological pest control in ornamentals: Status and perspectives. SROP/WPRS Bull, XIII/5, 161–168.Google Scholar
  66. Paul, B. (2003). Characterization of a new species of Phythium isolated from a wheat field in northern France and its antagonism towards Botrytis cinerea causing grey mould disease. FEMS Microbiology Letters, 224, 215–223.CrossRefGoogle Scholar
  67. Perazzolli, M., Roatti, B., Bozza, E., & Pertot, I. (2011). Trichoderma harzianum T39 induces resistance against downy mildew by priming for defense without costs for grapevine. Biological Control, 58, 74–82.CrossRefGoogle Scholar
  68. Pramod, K. T., & Palakshappa, M. G. (2009). Evaluation of suitable substrates for on farm production of antagonist Trichoderma harzianum. Karnataka Journal of Agriculture Sciences, 22, 115–117.Google Scholar
  69. Rahman, M. A., Begum, M. F., & Alam, M. F. (2009). Screening of Trichoderma isolates as a biological control agent against Ceratocystis paradoxa causing pineapple disease of sugarcane. Mycobiology, 37, 277–285.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Ramada, M. H. S., Lopes, F. A. C., Ulhoa, C. J., & Silva, R. N. (2010). Optimized microplate b-1,3-glucanase assay system for Trichoderma spp. screening. Journal of Microbiological Methods, 81, 6–1.CrossRefGoogle Scholar
  71. Rini, C. R., & Sulochana, K. K. (2007). Substrate evaluation for multiplication of Trichoderma spp. Journal of Tropical Agriculture, 45, 58–60.Google Scholar
  72. Ruocco, M., Lanzuise, S., Vinale, F., Marra, R., Turrà, D., Woo, S. L., & Lorito, M. (2009). Identification of a new biocontrol gene in Trichoderma atroviride: The role of an ABC transporter membrane pump in the interaction with different plant-pathogenic fungi. Molecular Plant Microbe Interaction, 22, 291–301.CrossRefGoogle Scholar
  73. Sahebani, N., & Hadavi, N. (2008). Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Soil Biology and Biochemistry, 40, 2016–2020.CrossRefGoogle Scholar
  74. Salas-Marina, M. A., Silva-Flores, M. A., Uresti-Rivera, E. E., Castro-Longoria, E., & Herrera-Estrella, A. (2011). Sergio Casas-Flores colonization of Arabidopsis roots by Trichoderma atroviride promotes growth and enhances systemic disease resistance through jasmonic acid/ethylene and salicylic acid pathways. European Journal of Plant Pathology, 131, 15–26.CrossRefGoogle Scholar
  75. Salas-Marina, M. A., Isordia-Jasso, M. I., Islas-Osuna, M. A., Delgado-Sánchez, P., Jiménez-Bremont, J. F., Rodríguez-Kessler, M., Rosales-Saavedra, M. T., Herrera-Estrella, A., & Casas-Flores, S. (2015). The Epl1 and Sm1 proteins from Trichoderma atroviride and Trichoderma virens differentially modulate systemic disease resistance against different life style pathogens in Solanum lycopersicum. Frontiers in Plant Science, 6, 77.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Sarasan, V., Kite, G. C., Sileshi, G. W., & Stevenson, P. C. (2011). The application of Phytochemistry and in vitro tools to the sustainable utilisation of medicinal and pesticidal plants for income generation and poverty alleviation. Plant Cell Reports, 30, 1163–1172.CrossRefGoogle Scholar
  77. Schmoll, M., Esquivel-Naranjo, E. U., & Herrera-Estrella, A. (2010). Trichoderma in the light of day – Physiology and development. Fungal Genetics and Biology, 47, 909–916.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Segarra, G., Aviles, M., Casanova, E., Borrero, C., & Trilias, I. (2013). Effectiveness of biological control of Phytophthora capsici in pepper by Trichoderma asperellum strain T34. Phytopathology Mediterranean, 52, 77–83.Google Scholar
  79. Sharma, N., & Trivedi, P. C. (2005). Microbial bioagents: Economic multiplication and management of fungal nematode complex on cumin. Indian Journal of Biotechnology, 4, 419–421.Google Scholar
  80. Sharma, A., Diwevidi, V. D., Singh, S., Pawar, K. K., Jerman, M., Singh, L. B., Singh, S., & Srivastawa, D. (2013). Biological control and its important in agriculture. International Journal of Biotechnology Bioengineering. Research, 4, 175–180.Google Scholar
  81. Shoresh, M., & Harman, G. E. (2008). The molecular basis of shoot responses of maize seedlings to Trichoderma harzianum T22 inoculation of the root: A proteomic approach. Plant Physiology, 147, 2147–2163.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Shoresh, M., Harman, G. E., & Mastouri, F. (2010). Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology, 48, 21–43.CrossRefPubMedPubMedCentralGoogle Scholar
  83. Siameto, E. N., Okoth, S., Amugune, N. O., & Chege, N. C. (2010). Antagonism of Trichoderma harzianum isolates on soil borne plant pathogenic fungi from Embu District, Kenya. Journal of Yeast and Fungal Research, 1, 47–54.Google Scholar
  84. Spiegel, Y., & Chet, I. (1998). Evaluation of Trichoderma spp. as a biocontrol agent against soilborne fungi and plant-parasitic nematodes in Israel. Integrated Pest Management Reviews, 3, 169–175.CrossRefGoogle Scholar
  85. Stevenson, P. C., Kite, G. C., Lewis, G. P., Nyrienda, S. P., Forest, F., Belmain, S. R., et al. (2012). Distinct chemotypes of Tephrosia vogelii: Implications for insect pest control and soil enrichment. Phytochemistry, 78, 135–146.CrossRefPubMedPubMedCentralGoogle Scholar
  86. Stratonovitch, P., & Semenov, M. A. (2015). Heat tolerance around flowering in wheat identified as a key trait for increased yield potential in Europe under climate change. Journal of Experimental Botany, 66, 3599–3609.CrossRefPubMedPubMedCentralGoogle Scholar
  87. Subash, N., Meenakshisundaram, M., Sasikumar, C., & Unnamalai, N. (2014). Mass cultivation of Trichoderma harizanum using agricultural wate as a substrate for the management of damping off disease and growth promotion in chilli plants (Capsicum Annum L.). International Journal of Pharmacy and Pharmaceutical Sciences, 6, 188–192.Google Scholar
  88. Sun, R. Y., Liu, Z. C., Fu, K., Fan, L., & Chen, J. (2012). Trichoderma biodiversity in China. Journal of Applied Genetics, 53, 343–354.CrossRefPubMedPubMedCentralGoogle Scholar
  89. Tomer, A., Singh, R., & Maurya, M. (2015). Determination of compatibility of Pseudomonas fluorescens and Trichoderma harizianum grown on deoiled cakes of neem and jatropha for mass multiplication of P. fluorescens and T. harizianum in vitro. African Journal of Agricultural Research, 10, 67–75.CrossRefGoogle Scholar
  90. Tripathi, P., & Dubey, N. (2004). Exploitation of natural products as an alternative strategy to control postharvest fungal rotting of fruit and vegetables. Postharvest Biology and Technology, 32, 235–245.CrossRefGoogle Scholar
  91. Upadhyay, J. P., & Mukhopadhyay, A. N. (2009). Biological control of Sclerotium rolfsii by Trichoderma harzianum in sugar beet. Tropical Pest Management, 32, 216–220.Google Scholar
  92. Van Driesche, R. G., & Bellows, T. S. (1996). Biological control. New York: Chapman & Hall. International Thomson Publishing Co..CrossRefGoogle Scholar
  93. Van Wees, S. C. M., Van der Ent, S., & Pieterse, C. M. J. (2008). Plant immune responses triggered by beneficial microbes. Current Opinion in Plant Biology, 11, 443–448.CrossRefGoogle Scholar
  94. Vieira, F. C. S., & Nahas, E. (2005). Comparison of microbial numbers in soils by using various culture media and temperatures. Microbiology Research, 160, 197–202.CrossRefGoogle Scholar
  95. Waghunde, R. R., Shelake, R. M., & Sabalpara, A. N. (2016). Trichoderma: A significant fungus for agriculture and environment. African Journal of Agricultural Research, 11, 1952–1965.Google Scholar
  96. Watanabe, F. S., & Olsen, S. R. (1965). Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from the soil. Soil Science Society of America Journal, 29, 677–678.CrossRefGoogle Scholar
  97. Williams, J., Clarkson, J. M., Mills, P. R., & Cooper, R. M. (2003). A selective medium for quantitative reisolation of Trichoderma harzianum from Agaricus bisporus compost. Applied and Environmental Microbiology, 69, 4190–4191.CrossRefPubMedPubMedCentralGoogle Scholar
  98. Yao, L., Tan, C., Song, J., Yang, Q., Yu, L., & Lia, X. (2015). Isolation and expression of two polyketide synthase genes from Trichoderma harzianum 88 during mycoparasitism. Brazilian Journal of Microbiology, 47, 468–479.CrossRefGoogle Scholar
  99. Yoshioka, Y., Ichikawa, H., Naznin, H. A., Kogure, A., & Hyakumachi, M. (2012). Systemic resistance induced in Arabidopsis thaliana by Trichoderma asperellum SKT-1, a microbial pesticide of seed-borne diseases of rice. Pest Management Science, 68, 60–66.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Molecular Breeding Laboratory, Arid Land Research CenterTottori UniversityTottoriJapan
  2. 2.Botany Department Faculty of ScienceAswan UniversityAswanEgypt
  3. 3.Plant Healthcare and Diagnostic Center, Department of Studies in Biotechnology and MicrobiologyKarnatak UniversityDharwadIndia

Personalised recommendations