Nanotechnological Interventions for Improving Plant Health and Productivity

  • Anjali Pande
  • Sandeep Arora


Green revolution was responsible for ushering in a significant enhancement in crop productivity. It turned agriculture in India from a household occupation to an industrial system. This phase of rapid industrialization was brought about by the use of improved crop varieties, modern methods of cultivation and use of pesticides and herbicides. However, uncontrolled and excessive use of synthetic growth enhancers, pesticides and fungicide chemicals, has given rise to problems related with soil health, sustainability of productivity, environment stability and health etc. As a result, novel alternative approaches utilizing environmentally benign bio-fertilizers/bio-pesticides, as substitutes to harmful agro-chemicals, came into use so as to ensure human health and environment safety. In more recent times, population explosion and climate changes due to global warming have put additional strain on agricultural scientists to grow sufficient food from less arable land. Therefore, the present era focuses on innovative technologies which are oriented towards addressing the current challenges of sustainability, food safety and security and environment health. Researchers all over the world are exploring the feasibility of various innovative approaches, including nano-technological interventions, for improvement in agricultural sector. State-of-art research has identified the potential of highly innovative nano-material applications in food production. Nanotechnology, though not a recent concept, offers a diverse array of conceptual applications in the field of agriculture aimed at improving plant health and productivity. Nano-based products like nano-fertilizers, nano-diagnostics, nano-fertigation products and nano-pesticides, etc. offer multifaceted advantage over their macro-chemical counterparts. Nano-fertilizers and fertigation based products intend to optimize nutrient use by crops through exploiting properties unique to nanoparticles. Their application is more effective and at lower concentrations than the huge amounts of chemical fertilizers which are responsible for soil degradation and contribute to pollution of surface and underground water resources. The use of smart delivery system enables nutrient management with minimal nutrient losses and maximal yield optimization. Additionally, nano-based smart sensors are useful in precision farming thus enabling maximum productivity from crops while reducing the input costs incurred on excessive nitrogen, phosphorus and potassium fertilizers, irrigation, etc., through rigorous monitoring of physical growth variables and regulated release mechanisms. Moreover, nano-sensors and nano-biosensors are useful for monitoring of soil pH, and soil composition parameters. Other interesting areas of scientific investigations are genetic manipulation of plants through nano-based gene delivery systems and enhancing the nutraceutical value of crops through nano-biofortification. Despite the huge amount of patents and published data on the numerous benefits of nanotechnology in farming sector, this technology has not yet been exploited to its fullest potential. However, it is apparent that nanotechnology marks a new horizon and is a promising technology for revolutionizing modern agriculture.


Nanofertilzers Nano-bio-fortification Nano-biotechnology Plant stress Precision farming Sustainable agriculture 


  1. Abd-Elsalam K. A. & Alghuthaymi, M. A. (2015). Nanobiofungicides: are they the Next-Generation of Fungicides? Journal of Nanotechnology and Materials Science, 2(2), 38–40.CrossRefGoogle Scholar
  2. Agrios, G. N. (2005). Plant pathology. San Diego: Elsevier Academic Press.Google Scholar
  3. Aktar, W., Sengupta, D., & Chowdhury, A. (2009). Impact of pesticides use in agriculture: Their benefits and hazards. Interdisciplinary Toxicology, 2(1), 1–12.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Androvitsaneas, P., Young, A. B., Schneider, C., Maier, S., Kamp, M., Höfling, S., & Oulton, R. (2016). Charged quantum dot micro-pillar system for deterministic light-matter interactions. Physical Review B, 93(24), 241409.Google Scholar
  5. Badran, A., & Savin, I. (2018). Effect of nano-fertilizer on seed germination and first stages of bitter almond seedlings’ growth under saline conditions. BioNanoScience, 8, 1–10.CrossRefGoogle Scholar
  6. Bakalova, R., Ohba, H., Zhelev, Z., Nagase, T., Jose, R., Ishikawa, M., & Baba, Y. (2004). Quantum dot anti-CD conjugates: Are they potential photosensitizers or potentiators of classical photosensitizing agents in photodynamic therapy of cancer? Nano Letters, 4(9), 1567–1573.Google Scholar
  7. Berger, M. (2016). Nanotechnology: The future is tiny. Cambridge: Royal Society of Chemistry.Google Scholar
  8. Bergeson, L. L. (2010). Nanosilver: US EPA’s pesticide office considers how best to proceed. Environmental Quality Management, 19(3), 79–85.CrossRefGoogle Scholar
  9. Bhattacharyya, A., Duraisamy, P., Govindarajan, M., Buhroo, A. A., Prasad, R. (2016). Nano-biofungicides: Emerging trend in insect pest control. In Advances and applications through fungal nanobiotechnology (pp. 307–319). Cham: Springer.Google Scholar
  10. bin Hussein, M. Z., Yahaya, A. H., Zainal, Z., & Kian, L. H. (2005). Nanocomposite-based controlled release formulation of an herbicide, 2, 4-dichlorophenoxyacetate incapsulated in zinc–aluminium-layered double hydroxide. Science and Technology of Advanced Materials, 6(8), 956.CrossRefGoogle Scholar
  11. Biyela, P. T., Lin, J., & Bezuidenhout, C. C. (2004). The role of aquatic ecosystems as reservoirs of antibiotic resistant bacteria and antibiotic resistance genes. Water Science and Technology, 50(1), 45–50.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Brock, D. A., Douglas, T. E., Queller, D. C., & Strassmann, J. E. (2011). Primitive agriculture in a social amoeba. Nature, 469(7330), 393.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Brune, H., Ernst, H., Grunwald, A., Grünwald, W., Hofmann, H., Krug, H., Janich, P., Mayor, M., Rathgeber, W., Schmid, G., Simon, U. (2006). Nanotechnology: Assessment and perspectives (Vol. 27). New York: Springer.Google Scholar
  14. Calabi-Floody, M., Medina, J., Rumpel, C., Condron, L. M., Hernandez, M., Dumont, M., & de la Luz Mora, M. (2018). Smart fertilizers as a strategy for sustainable agriculture. In Advances in agronomy (Vol. 147, pp. 119–157). Academic.Google Scholar
  15. Celis, R., Adelino, M. A., Hermosín, M. C., & Cornejo, J. (2012). Montmorillonite–chitosan bionanocomposites as adsorbents of the herbicide clopyralid in aqueous solution and soil/water suspensions. Journal of Hazardous Materials, 209, 67–76.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Chakravarthy, A. K., Kandakoor, S. B., Atanu, B., Dhanabala, K., Gurunatha, K., & Ramesh, P. (2012). Bio efficacy of inorganic nanoparticles CdS, Nano-Ag and Nano-TiO2 against Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Current Biotica, 6(3), 271–281.Google Scholar
  17. Chandra, J. H., Raj, L. A., Namasivayam, S. K. R., Bharani, R. A. (2013). Improved pesticidal activity of fungal metabolite from Nomureae rileyi with chitosan nanoparticles. In Advanced nanomaterials and emerging engineering technologies (ICANMEET), 2013 international conference on (pp. 387–390). IEEE.Google Scholar
  18. Chandrashekharaiah, M., Kandakoor, S. B., Gowda, G. B., Kammar, V., & Chakravarthy, A. K. (2015). Nanomaterials: A review of their action and application in pest management and evaluation of DNA-tagged particles. In New horizons in insect science: Towards sustainable pest management (pp. 113–126). New Delhi: Springer.Google Scholar
  19. Cioffi, N., Torsi, L., Ditaranto, N., Sabbatini, L., Zambonin, P. G., Tantillo, G., Ghibelli, L., D’Alessio, M., Bleve-Zacheo, T., & Traversa, E. (2004). Antifungal activity of polymer-based copper nanocomposite coatings. Applied Physics Letters, 85(12), 2417–2419.CrossRefGoogle Scholar
  20. Densilin, D. M., Srinivasan, S., Manju, P., & Sudha, S. (2011). Effect of individual and combined application of Biofertilizers, Inorganic fertilizer and Vermi compost on the biochemical constituents of Chilli (Ns – 1701). Journal of Biofertilizers & Biopesticides, 2, 106.Google Scholar
  21. Dhaliwal, G. S., Vikas, J., & Dhawan, A. K. (2010). Insect pest problems and crop losses: Changing trends. Indian Journal of Ecology, 37(1), 1–7.Google Scholar
  22. Dhekney, S. A., Li, Z. T., Van Aman, M., Dutt, M., Tattersall, J., Kelley, K. T., & Gray, D. J. (2005). Genetic transformation of embryogenic cultures and recovery of transgenic plants in Vitis vinifera, Vitis rotundifolia and Vitis hybrids. In International symposium on biotechnology of temperate fruit crops and tropical species (Vol. 738, pp. 743–748).Google Scholar
  23. dos Santos Silva, M., Cocenza, D. S., Grillo, R., de Melo, N. F. S., Tonello, P. S., de Oliveira, L. C., Cassimiro, D. L., Rosa, A. H., & Fraceto, L. F. (2011). Paraquat-loaded alginate/chitosan nanoparticles: Preparation, characterization and soil sorption studies. Journal of Hazardous Materials, 190(1–3), 366–374.CrossRefGoogle Scholar
  24. Dwivedi, S., Saquib, Q., Al-Khedhairy, A. A., Musarrat, J. (2016). Understanding the role of nanomaterials in agriculture. In Microbial inoculants in sustainable agricultural productivity (pp. 271–288). New Delhi: Springer.Google Scholar
  25. Elek, N., Hoffman, R., Raviv, U., Resh, R., Ishaaya, I., & Magdassi, S. (2010). Novaluron nanoparticles: Formation and potential use in controlling agricultural insect pests. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 372(1–3), 66–72.CrossRefGoogle Scholar
  26. El-Shenawy, N. S., El-Ahmary, B., & Al-Eisa, R. A. (2011). Mitigating effect of ginger against oxidative stress induced by atrazine herbicides in mice liver and kidney. Journal Biofertilizers & Biopesticides, 2, 107.Google Scholar
  27. Frederick, B. A., & Caesar, A. J. (2000). Analysis of bacterial communities associated with insect biological control agents using molecular techniques. In R. Neal & N. R. Spencer (Eds.), Proceedings of the X international symposium on biological control of weeds (pp. 261–267). Bozeman: Montana State University.Google Scholar
  28. Gangloff, W. J., Westfall, D. G., Peterson, G. A., & Mortvedt, J. J. (2006). Mobility of organic and inorganic zinc fertilizers in soils. Communications in Soil Science and Plant Analysis, 37(1–2), 199–209.CrossRefGoogle Scholar
  29. Gogoi, R., Dureja, P., & Singh, P. K. (2009). Nanoformulations-A safer and effective option for agrochemicals. Indian Farming, 59(8), 7–12.Google Scholar
  30. Grillo, R., Pereira, A. E., Nishisaka, C. S., de Lima, R., Oehlke, K., Greiner, R., & Fraceto, L. F. (2014). Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: An environmentally safer alternative for weed control. Journal of Hazardous Materials, 278, 163–171.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Grillo, R., Abhilash, P. C., & Fraceto, L. F. (2016). Nanotechnology applied to bio-encapsulation of pesticides. Journal of Nanoscience and Nanotechnology, 16(1), 1231–1234.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Gutierrez, F. J., Mussons, M. L., Gaton, P., & Rojo, R. (2011). Nanotechnology and food industry. Scientific, health and social aspects of the food industry. Croatia: In Tech. Book Chapter.Google Scholar
  33. Hajirostamlo, B., Mirsaeedghazi, N., Arefnia, M., Shariati, M. A., Fard, E. A. (2015). The role of research and development in agriculture and its dependent concepts in agriculture [short review]. Asian Journal of Applied Science and Engineering, 4.
  34. Hett, A. (2004). Nanotechnology: Small matters, many unknown. Zurich: Swiss Reinsurance Co.Google Scholar
  35. Hua, K. H., Wang, H. C., Chung, R. S., & Hsu, J. C. (2015). Calcium carbonate nanoparticles can enhance plant nutrition and insect pest tolerance. Journal of Pesticide Science, 40(4), 208–213.CrossRefGoogle Scholar
  36. Huang, J., Li, Q., Sun, D., Lu, Y., Su, Y., Yang, X., Wang, H., Wang, Y., Shao, W., He, N., & Hong, J. (2007). Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology, 18(10), 105104.CrossRefGoogle Scholar
  37. Joseph, T., & Morrison, M. (2006). Nanotechnology in agriculture and food: A nanoforum report. Accessed 19 Nov 2011.
  38. Kah, M. (2015). Nanopesticides and nanofertilizers: Emerging contaminants or opportunities for risk mitigation? Frontiers in Chemistry, 3, 64.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Khot, L. R., Sankaran, S., Maja, J. M., Ehsani, R., & Schuster, E. W. (2012). Applications of nanomaterials in agricultural production and crop protection: A review. Crop Protection, 35, 64–70.CrossRefGoogle Scholar
  40. Kitherian, S. (2017). Nano and bio-nanoparticles for insect control. Research Journal of Nanoscience Nanotechnology.
  41. Kottegoda, N., Munaweera, I., Madusanka, N., & Karunaratne, V. (2011). A green slow-release fertilizer composition based on urea-modified hydroxyapatite nanoparticles encapsulated wood. Current Science, 101, 73–78.Google Scholar
  42. Kumar, G. D., Natarajan, N., & Nakkeeran, S. (2016). Antifungal activity of nanofungicide Trifloxystrobin 25%+ Tebuconazole 50% against Macrophomina phaseolina. African Journal of Microbiology Research, 10(4), 100–105.CrossRefGoogle Scholar
  43. Liu, R., & Lal, R. (2015). Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of the Total Environment, 514, 131–139.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Manczinger, L., Antal, Z., & Kredics, L. (2002). Ecophysiology and breeding of mycoparasitic Trichoderma strains. Acta Microbiologica et Immunologica Hungarica, 49(1), 1–14.PubMedCrossRefPubMedCentralGoogle Scholar
  45. McBratney, A. B., & Pringle, M. J. (1999). Estimating average and proportional variograms of soil properties and their potential use in precision agriculture. Precision Agriculture, 1(2), 125–152.CrossRefGoogle Scholar
  46. Milani, N., McLaughlin, M. J., Stacey, S. P., Kirby, J. K., Hettiarachchi, G. M., Beak, D. G., & Cornelis, G. (2012). Dissolution kinetics of macronutrient fertilizers coated with manufactured zinc oxide nanoparticles. Journal of Agricultural and Food Chemistry, 60(16), 3991–3998.PubMedCrossRefPubMedCentralGoogle Scholar
  47. Mortvedt, J. J. (1992). Crop response to level of water-soluble zinc in granular zinc fertilizers. Fertilizer Research, 33(3), 249–255.CrossRefGoogle Scholar
  48. Nair, R., Varghese, S. H., Nair, B. G., Maekawa, T., Yoshida, Y., & Kumar, D. S. (2010). Nanoparticulate material delivery to plants. Plant Science, 179(3), 154–163.CrossRefGoogle Scholar
  49. Nayan, R., Rawat, M., Negi, B., Pande, A., & Arora, S. (2016). Zinc sulfide nanoparticle mediated alterations in growth and anti-oxidant status of Brassica juncea. Biologia, 71(8), 896–902.CrossRefGoogle Scholar
  50. Nuruzzaman, M., Rahman, M. M., Liu, Y., & Naidu, R. (2016). Nanoencapsulation, nano-guard for pesticides: A new window for safe application. Journal of Agricultural and Food Chemistry, 64(7), 1447–1483.PubMedCrossRefPubMedCentralGoogle Scholar
  51. Ombódi, A., & Saigusa, M. (2000). Broadcast application versus band application of polyolefin-coated fertilizer on green peppers grown on andisol. Journal of Plant Nutrition, 23(10), 1485–1493.CrossRefGoogle Scholar
  52. Parisi, C., Vigani, M., & Rodríguez-Cerezo, E. (2015). Agricultural nanotechnologies: What are the current possibilities? Nano Today, 10(2), 124–127.CrossRefGoogle Scholar
  53. Pavela, R. (2014). Limitation of plant biopesticides. In Advances in plant biopesticides (pp. 347–359). New Delhi: Springer.Google Scholar
  54. Pérez-de-Luque, A., & Hermosín, M. C. (2013). Nanotechnology and its use in agriculture. In Bio-nanotechnology: A revolution in food, biomedical and health sciences (pp. 383–398). West Sussex: Wiley-Blackwell.Google Scholar
  55. Prasad, R., Bhattacharyya, A., & Nguyen, Q. D. (2017). Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives. Frontiers in Microbiology, 8, 1014.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Purohit, R., Mittal, A., Dalela, S., Warudkar, V., Purohit, K., & Purohit, S. (2017). Social, environmental and ethical impacts of nanotechnology. Materials Today: Proceedings, 4(4), 5461–5467.Google Scholar
  57. Qureshi, A., Singh, D. K., & Dwivedi, S. (2018). Nano-fertilizers: A novel way for enhancing nutrient use efficiency and crop productivity. International Journal of Current Microbiology and Applied Sciences, 7(2), 3325–3335.CrossRefGoogle Scholar
  58. Rai, V., Acharya, S., & Dey, N. (2012). Implications of nanobiosensors in agriculture. Journal of Biomaterials and Nanobiotechnology, 3(2A), 315.CrossRefGoogle Scholar
  59. Raliya, R., Tarafdar, J. C., Gulecha, K., Choudhary, K., Ram, R., Mal, P., et al. (2013). Review article; scope of nanoscience and nanotechnology in agriculture. Journal of Applied Biology & Biotechnology, 1, 041–044.Google Scholar
  60. Rawat, M., Nayan, R., Negi, B., Zaidi, M. G. H., & Arora, S. (2017). Physio-biochemical basis of iron-sulfide nanoparticle induced growth and seed yield enhancement in B. juncea. Plant Physiology and Biochemistry, 118, 274–284.PubMedCrossRefPubMedCentralGoogle Scholar
  61. Rouhani, M., Samih, M. A., & Kalantari, S. (2012). Insecticide effect of silver and zinc nanoparticles against Aphis nerii Boyer De Fonscolombe (Hemiptera: Aphididae). Chilean Journal of Agricultural Research, 72(4), 590.CrossRefGoogle Scholar
  62. Saharan, V., Mehrotra, A., Khatik, R., Rawal, P., Sharma, S. S., & Pal, A. (2013). Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. International Journal of Biological Macromolecules, 62, 677–683.PubMedCrossRefPubMedCentralGoogle Scholar
  63. Sahayaraj, K., Roobadevi, M., Rajesh, S., & Azizi, S. (2015). Vernonia cinerea (L.) Less. silver nanocomposite and its antibacterial activity against a cotton pathogen. Research on Chemical Intermediates, 41(8), 5495–5507.CrossRefGoogle Scholar
  64. Sekhon, B. S. (2014). Nanotechnology in agri-food production: An overview. Nanotechnology, Science and Applications, 7, 31.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Subramanian, K. S., & Thirunavukkarasu, M. (2017). Nano-fertilizers and nutrient transformations in soil. In Nanoscience and plant-soil systems (pp. 305–319). Cham: Springer.Google Scholar
  66. Subramanian, K. S., Manikandan, A., Thirunavukkarasu, M., Rahale, C. S. (2015). Nano-fertilizers for balanced crop nutrition. In Nanotechnologies in food and agriculture (pp. 69–80). Cham: Springer.Google Scholar
  67. Subramanian, V., Semenzin, E., Zabeo, A., Hristozov, D., Malsch, I., Saling, P., ... Marcomini, A. (2016). Integrating the social impacts into risk governance of nanotechnology. In Managing risk in nanotechnology (pp. 51–70). Cham: Springer.Google Scholar
  68. Tabrizi, E. F. M., Yarnia, M., Khorshidi, M. B., & Ahmadzadeh, V. (2009). Effects of micronutrients and their application method on yield, crop growth rate (CGR) and net assimilation rate (NAR) of corn cv. Jeta. Journal of Food, Agriculture & Environment, 7(2), 611–615.Google Scholar
  69. Thungrabeab, M., & Tongma, S. (2007). Effect of entomopathogenic fungi, Beauveria bassiana (BALSAM) and Metarhizium anisopliae (METSCH) on non target insects. Current Applied Science and Technology, 7(1–1), 8–12.Google Scholar
  70. U.S. Environmental Protection Agency. (2007). U.S. Environmental Protection Agency nanotechnology white paper (EPA 100/B-07/001). Washington, DC: U.S. Environmental Protection Agency.Google Scholar
  71. Yan, J., Guan, H., Yu, J., & Chi, D. (2013). Acetylcholinesterase biosensor based on assembly of multiwall carbon nanotubes onto liposome bioreactors for detection of organophosphates pesticides. Pesticide Biochemistry and Physiology, 105(3), 197–202.CrossRefGoogle Scholar
  72. Yasur, J., & Rani, P. U. (2015). Lepidopteran insect susceptibility to silver nanoparticles and measurement of changes in their growth, development and physiology. Chemosphere, 124, 92–102.PubMedCrossRefPubMedCentralGoogle Scholar
  73. Zamani, S., Sendi, J. J., & Ghadamyari, M. (2011). Effect of Artemisia Annua L. (Asterales: Asteraceae) essential oil on mortality, development, reproduction and energy reserves of Plodia interpunctella (Hübner). (Lepidoptera: Pyralidae). Journal Biofertilizers & Biopesticides, 2, 105.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Anjali Pande
    • 1
  • Sandeep Arora
    • 1
  1. 1.Department of Molecular Biology and Genetic Engineering, (CBSH)G. B. Pant University of Agriculture and TechnologyPantnagarIndia

Personalised recommendations