Active Compounds and Bacteria Harbouring Capacity of Lichens and Its Medicinal Use in Bacterial and Cancer Infections

  • Narendra Kumar
  • S. M. Paul Khurana


Lichens are composite organisms formed upon symbiotic association of fungi and algae doing photosynthesis (blue green algae). Lichenized fungi produce unique secondary metabolites which bears a wide spectrum in biological activities viz., anti-HIV, production of antibiotics, anti-protozoan, anticancer etc. This review focuses primarily on the antibacterial activity of lichen’s secondary chemicals related to major antibacterial activity and highlights of each study. The literature published clearly demonstrates that the lichen extracts and their constituent compounds have potential of significant inhibitory activity against various pathogenic bacteria viz., Bacillus cereus, Bacillus subtilis, Chrysobacterium indolthecium, Clavibacter michiganensis subsp. Michiganensis, Enterococcus faecalis, Erwinia carotovora sub sp. carotovora, Escherichia coli, Methicillin-resistant S. aureus, Pseudomonas aeruginosa. Pseudomonas cichorii, Pseudomonas savastoni pv. Fraxinus, Pseudomonas syringae pv. syringae, Pseudomonas vesicularis, Staphylococcus aureus, Staphylococcus aureus, Streptococcus pneumoniae, Xanthomonas axanopodis pv. Malvecearum, Xanthomonas hortanum pv. pelargonii, Xanthomonas phaseoli, Yersiniapseudotuberculosis, even at low concentrations. The literature records however shows no studies reported anything on the specific mechanism of action against pathogenic bacteria. Lichens harbours many biologically active compounds in which less numbers have been experimentally tested. It needs very deep studies for search of active compounds. It needs to do more clinical trials and search of mechanism of action for potent compounds in lichens.


Antibacterial activity Secondary metabolites Lichens Biological activity 



Authors are thankful to the Amity University, Haryana authorities for the facilities and constant encouragement.

Conflict of Interest Statement

We declare that we have no conflict of interest.


  1. Agboke, A. A., Esimone, C. O., Attama, A. A., & Mohmoh, M. A. (2011). In vitro evaluation of the interaction between methanol extract of the lichen, Ramalina farinacea and ampicillin against clinical isolates of Staphylococcus aureus. International Journal of Phytopharmacy Research, 2(1), 35–39.Google Scholar
  2. Ankith, G. N., Rajesh, M. R., Karthik, K. N., Avinash, H. C., Prashith Kekuda, T. R., & Vinayaka, K. S. (2017). Antibacterial and antifungal activity of three ramalina species. Journal of Drug Delivery and Therapeutics, 7(5), 27–32. Scholar
  3. Béatrice, L., Françoise, L. D., Solenn, F., Isabelle, R., Pierre, L. P., Laurence, C., Michel, B., & Joël, B. (2017). Specialized metabolites of the lichen Vulpicida pinastri act as photoprotective agents. Molecules, 22(7), 1162.CrossRefGoogle Scholar
  4. Bhaskar, C., Verma, B. N., Sonone, A., & Makhija, U. (2009). Optimization of culture conditions for lichen. Food Technology and Biotechnology, 47, 7–12.Google Scholar
  5. Bhattarai, H. D., Paudel, B., Hong, S. G., Lee, H. K., & Yim, J. H. (2008). Thin layer chromatography analysis of antioxidant constituents of lichens from Antarctica. Journal of Natural Medicines, 62, 48–48.CrossRefGoogle Scholar
  6. Bondarenko, V., Korczynski, M., & Techathaveewat, W. (2017). The antimicrobial properties of extracts isolated from lichen Parmelia vagans. The FASEB Journal, 31(1), 939.13.Google Scholar
  7. Brunauer, G., & Stocker-Wörgötter, E. (2005). Culture of lichen fungi for future production of biologically active compounds. Symbiosis, 38, 187–201.Google Scholar
  8. Bucar, F., Schneider, I., Ogmundsdottir, H., & Ingolfsdottir, K. (2004). Anti-proliferative lichen compounds with inhibitory activity on 12(S)-HETE production in human platelets. Phytomedicine, 11, 602–606.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Burkholder, P. R., Evans, A. W., McVeigh, I., & Thornton, H. K. (1944). Antibiotic activity of lichens. Proceedings of the National Academy of Sciences of the United States of America, 30, 250–255.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Burlando, B., Ranzato, E., Volante, A., Appendino, G., Pollastro, F., & Verotta, L. (2009). Antiproliferative effects on tumour cells and promotion of keratinocyte wound healing by different lichen compounds. Planta Medica, 75, 607–613.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cankılıç, M. Y., Sarıözlü, N. Y., Candan, M., & Tay, F. (2017). Screening of antibacterial, antituberculosis and antifungal effects of lichen Usnea florida and its thamnolic acid constituent. Biomedical Research, 28(7), 3108–3113.Google Scholar
  12. Cansaran, D., Kahya, D., Yurdakulola, E., & Atakol, O. (2006). Identification and quantification of usnic acid from the lichen Usnea species of Anatolia and antimicorbial activity. Zeitschrift für Naturforschung. Section C, 61, 773–776.CrossRefGoogle Scholar
  13. Cardile, V., Graziano, A. C. E., Avola, R., Piovano, M., & Russo, A. (2017). Potential anticancer activity of lichen secondary metabolite physodic acid. Chemico-Biological Interactions, 26(3), 36–45.CrossRefGoogle Scholar
  14. Chauhan, R., & Abraham, J. (2013). In vitro antimicrobial potential of the lichen Parmotrema sp. extracts against various pathogens. Iranian Journal of Basic Medical Sciences, 16(7), 882–885.PubMedPubMedCentralGoogle Scholar
  15. Coley, P. D. (1988). Effects of plant growth rate and leaf lifetime on the amount and type of anti-herbivore defense. Oeco-logia, 74, 531–536.CrossRefGoogle Scholar
  16. Crockett, M., Kageyama, S., Homen, D., Lewis, C., Osborn. J. (2003). Antibacterial properties of four pacific Northwest lichens. Lichenology group, Oregon State University: Corvallis Oregon.Google Scholar
  17. Dayan, F. E., & Romagni, J. G. (2001). Lichens as a potential source of pesticides. Pesticide Outlook, 12, 229–232.CrossRefGoogle Scholar
  18. Delebassée, S., Mambu, L., Pinault, E., Champavier, Y., Liagre, B., & Millot, M. (2017). Cytochalasin E in the lichen Pleurosticta acetabulum. Anti-proliferative activity against human HT-29 colorectal cancer cells and quantitative variability. Fitoterapia, 121, 146–151.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Devkota, S., Chaudhary, R. P., Werth, S., & Scheidegger, C. (2017). Indigenous knowledge and use of lichens by the lichenophilic communities of the Nepal Himalaya. Journal of Ethnobiology and Ethnomedicine, 13, 15.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Ernst-Russell, M. A., Elix, J. A., Chai, C. L. L., Willis, A. C., Hamada, N., & Nash, T. H. (1999). Hybocarpone, a novel cytotoxic naphthazarin derivative from mycobiont cultures of the lichen Lecanora hybocarpa. Tetrahedron Letters, 40, 6321–6324.CrossRefGoogle Scholar
  21. Esimone, C. O., Grunwald, T., Wildner, O., Nchinda, G., Tippler, B., Proksch, P., & Uberla, K. (2005). In vitro pharmacodynamic evaluation of antiviral medicinal plants using a vector-based assay technique. Journal of Applied Microbiology, 99, 1346–1355.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Felczykowska, A., Pastuszak-Skrzypczak, P., Pawlik, A., Bogucka, A., Herman-Antosiewicz, A., & Guzow-Krzemińska, B. (2017). Antibacterial and anticancer activities of acetone extracts from in vitro cultured lichen-forming. BMC Complementary and Alternative Medicine. BMC series – open, inclusive and trusted 2017, 17, 300. Scholar
  23. Fernandez-Moriano, C., Divakar, P. K., Crespo, A., & Gomez-Serranillos, M. P. (2015). Neuroprotective activity and cytotoxic potential of two Parmeliaceae lichens: Identification of active compounds. Phytomedicine, 22(9), 847–855.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Francolini, I., Norris, P., Piozzi, A., Donelli, G., & Stoodley, P. (2004). Usnic acid, a natural antimicrobial agent able to inhibit bacterial biofilm formation on polymer surfaces. Anti-microb Agents Chemother, 48, 4360–4365.CrossRefGoogle Scholar
  25. Gollapudi, S. R., Telikepalli, H., Jampani, H. B., Mirhom, Y. W., Drake, S. D., Bhattiprolu, K. R., Velde, D. V., & Mitscher, L. A. (1994). A-lectosarmentin, a new antimicrobial dibenzofuranoid lactol from the lichen, Alectoria sarmentosa. Journal of Natural Products, 57, 934–938.CrossRefPubMedPubMedCentralGoogle Scholar
  26. González-Tejero, M. R., Martínez-Lirola, M. J., CasaresPorcel, M., & Molero-Mesa, J. (1995). Three lichens used in popular medicine in Eastern Andalucia (Spain). Economic Botany, 49, 96–98.CrossRefGoogle Scholar
  27. Gordien, A. Y., Gray, A. I., Ingleby, K., Franzblau, S. G., & Seidel, V. (2010). Activity of Scottish plant, lichen and fungal endo-phyte extracts against Mycobacterium aurum and Myco-bacteriumtuberculosis. Phytotherapy Research, 24, 692–698.PubMedPubMedCentralGoogle Scholar
  28. Gulluce, M., Aslan, A., Sokmen, M., Sahin, F., Adiguzel, A., Agar, G., & Sokmen, A. (2006). Screening the antioxidant and antimicro-bial properties of the lichens Parmelia saxatilis, Platismatia glauca, Ramalina pollinaria, Ramalina polymorpha Um-bilicaria nylanderiana. Phytomedicine, 13, 515–521.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hegnauer, R. (1962). Chemotaxonomie der Pflanzen (pp. 170–177). Baesl: Birkhauser.CrossRefGoogle Scholar
  30. Hengameh, P., & Rajkumar, G. H. (2017). Assessment of bactericidal activity of some lichen extracts by disc diffusion assay. International Journal of Drug Development and Research, 9, 09–19.Google Scholar
  31. Honda, N. K., Pavan, F. R., Coelho, R. G., de Andrade Leite, S. R., Micheletti, A. C., & Lopes, T. I. B. (2010). Antimycobacterial activity of lichen substances. Phytomedicine, 17, 328–332.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Honda, N. K., Freitas, D. S., Micheletti, A. C., Pereira Carvalho, N. C., Spielmann, A. A., & Da Silva Canêz, L. (2016). Parmotrema screminiae (Parmeliaceae), a novel lichen species from Brarzil with potent antimicrobial activity. Orbital: The Electronic Journal of Chemistry, 8(6), 334–340.Google Scholar
  33. Hoskeri, J. H., Krishna, V., & Amruthavalli, C. (2010). Effects of extracts from lichen Ramalina pacifica against clinically infectious bacteria. Researcher, 2(3), 81–85.Google Scholar
  34. Huneck, S., & Himmelreich, U. (1995). Arthogalin, a cyclic depsipeptide from the lichen Arthothelium galapagoense. Zeitschrift fu¨r Naturforschung, B: Chemical Sciences, 50, 1101–1103.CrossRefGoogle Scholar
  35. Ingolfsdottir, K., BloomÞeld, S. F., & Hylands, P. J. (1985). In vitro evaluation of the antimicrobial activity of lichen metabolites as potential preservatives. Antimicrob Agents and Chemotheraphy, 28, 289–292.CrossRefGoogle Scholar
  36. Ingolfsdottir, K., Chung, G. A. C., Skulason, V. G., Gissurarson, S. R., & Vilhelmsdottir, M. (1998). Antimycobacterial activity of lichen metabolites in vitro. European Journal of Pharmaceutical Sciences, 6, 141–144.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Ivana, Z., Miroslava, S., Vesna, S. J., Violeta, M., Aleksandra, Đ., Ivana, Z., & Gordana, S. (2017). Ramalina capitata (ach.) nyl. Acetone extract: HPLC analysis, genotoxicity, cholinesterase, antioxidant and antibacterial activity. EXCLI Journal, 16, 679–687.Google Scholar
  38. Kahriman, N., Yazici, K., Arslan, T., Aslan, A., Karaoglu, S. A., & Yayl, N. (2011). Chemical composition and antimicrobial activity of the essential oils from Evernia prunastri (L.) Ach.and Evernia divaricata (L.) Ach. Asian Journal of Chemistry, 23(5), 1937–1939.Google Scholar
  39. Kambar, Y., Vivek, M. N., Manasa, M., Kekuda, P. T. R., & Onkarappa, R. (2014). Antimicrobial activity of Ramalina conduplicans Vain. (Ramalinaceae). Science Technology and Arts Research Journal, 3(3), 57–62.CrossRefGoogle Scholar
  40. Karagoz, A., Dogruoz, N., Zeybek, Z., & Aslan, A. (2009). Antibacterial activity of some lichen extracts. Journal of Medicinal Plants Research, 3, 1034–1039.Google Scholar
  41. Kekuda, P. T. R., Raghavendra, H. L., & Vinayaka, K. S. (2017). Antimicrobial activity of Heterodermia incana (Stirt.) D.D. Awasthi. International Journal of Green Pharmacy, 11(3), 68–73.Google Scholar
  42. Kirk, P. M., Cannon, P. F., Minter, D. W., & Stalpers, J. A. (2008). Dictionary of the fungi (10th ed., pp. 378–381). Wallingford: CABI. ISBN 978-0-85199-826-8.Google Scholar
  43. Kokubun, T., Shiu, W. K. P., & Gibbons, S. (2007). Inhibitory activities of lichen-derived compounds against methicillin- and multidrug-resistant Staphylococcus aureus. Planta Medica, 73, 176–179.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Kosanic, M., & Rankovic, B. (2011). Antioxidant and antimicrobial properties of some lichens and their constituents. Journal of Medicinal Food, 14, 1624–1630.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Kosanić, M., Ranković, B., Stanojković, T., Rančić, A., & Manojlović, N. (2014). Cladonia lichens and their major metabolites as possible natural antioxidant, antimicrobial and anticancer agents. LWT – Food Science and Technology., 59(1), 518–525.CrossRefGoogle Scholar
  46. Kristmundsdóttir, T., Jónsdóttir, E., ögmundsdóttir, H. M., & Ingólfsdóttir, K. (2005). Solubilization of poorly soluble lichen metabolites for biological testing on cell lines. European Journal of Pharmaceutical Sciences, 24, 539–543.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Kumar, V., Naik, B., Kumar, V., Kumar, S., Kumar, D., & Aslam, M. (2014). Evaluation of antibacterial and anti-oxidant activity of some lichens of Uttarakhand. American Journal of Current Biology, 1, 1–8.Google Scholar
  48. Kumar, V., Tripathi, M., Mathela, C. S., & Joshi, Y. (2017). In vitro antibacterial activity of Himalayan lichenized Fungi. Journal of Pharmacognosy and Natural Products, 3, 128. Scholar
  49. Lauterwein, M., Oethinger, M., Belsner, K., Peters, T., & Marre, R. (1995). In vitro activities of the lichen secondary metabo-lites vulpinic acid, usnic acid against aerobic and anaerobic microorganisms. Antimicrobial Agents and Chemotherapy, 39, 2541–2543.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Malhotra, S., Subban, R., & Singh, A. (2007). Lichens- role in traditional medicine and drug discovery. The Internet Journal of Alternative Medicine, 5, 2.Google Scholar
  51. Manojlovic, N. T., Vasiljevic, P. J., Maskovic, P. Z., Juskovic, M., & Bogdanovic-Dusanovic, G. (2012). Chemical composition, antioxidant, and antimicrobial activities of lichen Umbilicaria cylindrica (L.) Delise (Umbilicariaceae). Evidence-based Complementary and Alternative Medicine, 2012, 1–8.CrossRefGoogle Scholar
  52. Martins, M. C. B., Lima, M. J. G., Silva, F. P., Azevedo-Ximenes, E., Silva, N. H., & Pereira, E. C. (2010). Cladiaaggregata (lichen) from Brazilian northeast: Chemical characterization and anti-microbial activity. Brazilian Archives of Biology and Technology, 53, 115–122.CrossRefGoogle Scholar
  53. Matvieieva, N. A., Pasichnyk, L. A., Zhytkevych, N. V., Jacinto, P. G., & Pidgorskyi, V. S. (2015). Antimicrobial activity of extracts from Ecuadorian lichens. Mikrobiolohichnyĭ Zhurnal, 77(3), 23–27.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Maurya, I. K., Singh, S., Tewari, R., Tripathi, M., & Upadhyay, S. (2017). Antimicrobial activity of Bulbothrix setschwanensis (Zahlbr.) Hale lichen by cell wall disruption of Staphylococcus aureus and Cryptococcus neoformans. Microbial Pathogenesis, 115, 12–18.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Miao, V., Le Gal, M. F. C., Brown, D., Sinnermann, S., Donaldson, G., & Davies, J. (2001). Genetic approaches to harvesting lichen products. Trends in Biotechnology, 19(9), 349–355.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Moura, J. B., Vargas, A. C., Gouveia, G. V., Gouveia, J. J. S., Ramos-Júnior, J. C., Botton, S. A., Pereira, E. C., & Costa, M. M. (2017). In vitro antimicrobial activity of the organic extract of Cladonia substellata Vainio and usnic acid against Staphylococcus spp. obtained from cats and dogs. Pesquisa Veterinária Brasileira, 37(4), 368–378.CrossRefGoogle Scholar
  57. Musharraf, S. G., Siddiqi, F., Ali, A., & Thadhani, V. M. (2017). Sensitive analysis of bioactive secondary metabolites in lichen species using liquid chromatography–mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 146, 279–284.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Nakanishi, T., Murata, H., Inatomi, Y., Inada, A., Murata, J., Lang, F. A., Yamasaki, K., Nakano, M., Kawahata, T., Mori, H., & Otake, T. (1998). Screening of anti-HIV-1 activity of North American plants. Anti-HIV-1 activities of plant extracts, and active components of Letharia vulpina (L.) Hue. Nature Medicine, 52, 521–526.Google Scholar
  59. Paudel, B., Bhattarai, H. D., Lee, H. K., Oh, H., Shin, H. W., & Yim, J. H. (2010). Antibacterial activities of ramalin, usnic acid and its three derivatives isolated from the antarctic lichen Ramalina terebrata. Zeitschrift für Naturforschung. Section C, 65, 34–38.CrossRefGoogle Scholar
  60. Pavlovic, V., Stojanovic, I., Jadranin, M., Vajs, V., Djordjević, I., Smelcerovic, A., & Stojanovic, G. (2013). Effect of four lichen acids isolated from Hypogymnia physodes on viability of rat thymocytes. Food and Chemical Toxicology, 51, 160–164.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Podterob, A. (2008). Chemical composition of lichens and their medical applications. Pharmaceutical Chemistry Journal, 42, 582–588.CrossRefGoogle Scholar
  62. Priyadarshini, P. A., Pruthvi, B., Ramya, B. R., & Marudwati, J. (2017). In vitro antibacterial activity of lichens against oral microorganism of herbivorous and carnivorous animals. International Research Journal of Advanced Engineering and Science, 2(2), 110–114.Google Scholar
  63. Rai, H., Khare, R., Upreti, D. K., & Nayaka. (2014). Terricolous lichens of India: An introduction to field collection and taxonomic investigation. In H. Rai & D. K. Upreti (Eds.), Terricolous lichens in India (pp. 1–16). New York: Springer.Google Scholar
  64. Rajan, V. P., Gunasekaran, S., Ramanathan, S., Murugaiyah, V., Samsudin, M. W., & Din, L. B. (2015). Antibacterial activity of extracts of Parmotrema praesorediosum, Parmotrema rampoddense, Parmotrema tinctorum and Parmotrema reticulatum. AIP Conference Proceedings, 10.1063/1.4931294, 1678, 050015.Google Scholar
  65. Ramya, K., & Thirunalasundari, T. (2017). Lichens: A myriad hue of bioresources with medicinal properties. International Journal of Life Sciences, 5(3), 387–393.Google Scholar
  66. Rankovic, B., Misÿic, M., & Sukdolak, S. (2008). The antimicrobial activity of substances derived from the lichens Physcia aipolia, Umbilicaria polyphylla, Parmelia caperata and Hypogymnia physodes. World Journal of Microbiology and Biotechnology, 24, 1239–1242.CrossRefGoogle Scholar
  67. Ren, M. R., Hur, J. S., Kim, J. Y., Park, K. W., Park, S. C., Seong, C. N., Jeong, I. Y., Byun, M. W., Lee, M. K., & Seo, K. I. (2009). Anti-proliferative effects of Lethariella zahlbruckneri extracts in human HT-29 human colon cancer cells. Food and Chemical Toxicology, 47, 2157–2162.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Rezanka, T., & Dembitsky, V. (1999). Novel brominated lipidic compounds from lichens of Central Asia. Phytochemistry, 51, 963–968.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Rezanka, T., & Gushina, I. A. (1999). Brominated depsidones from Acarospora gobiensis, a lichen of Central Asia. Journal of Natural Products, 62, 1675–1677.CrossRefGoogle Scholar
  70. Rezanka, T., & Gushina, I. A. (2000). Glycosidic compounds of murolic, protocontipatic and Allo-murolic acids from lichens of Central Asia. Phytochemistry, 54, 635–645.CrossRefPubMedPubMedCentralGoogle Scholar
  71. Rezanka, T., & Gushina, I. A. (2001a). Glycosides esters from lichens of Central Asia. Phytochemistry, 58, 509–516.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Rezanka, T., & Gushina, I. A. (2001b). Further glucosides of lichens’ acids from Central Asian lichens. Phytochemistry, 56, 181–188.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Rezanka, T., Jachymova, J., & Dembitsky, V. M. (2003). Prenylated xanthone glucosides from Ural’s lichen Umbilicaria proboscidea. Phytochemistry, 62, 607–612.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Rezanka, T., Temina, M., Hanus, L., & Dembitsky, V. M. (2004). The tornabeatins, four tetrahydro-2-furanone derivatives from the lichenized ascomycete Tornabea scutellifera (with.) J.R. Laundon. Phytochemistry, 65, 2605–2612.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Richardson, D. H. S. (1988). Medicinal and other economic aspects of lichens. In M. Galun (Ed.), CRC handbook of lichenology (pp. 93–108). Boca Raton: CRC Press.Google Scholar
  76. Safak, B., Ciftci, I. H., Ozdemir, M., Kiyildi, N., Cetinkaya, Z., Aktepe, O. C., & Altindis, M. (2009). In vitro anti-helicobacter pylori activity of usnic acid. Phytotherapy Research, 23, 955–957.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Sahin, S., Oran, S., Sahinturk, P., Demir, C., & Ozturk, S. (2015). Ramalina lichens and their major metabolites as possible natural antioxidant and antimicrobial agents. Journal of Food Biochemistry, 39(4), 471–477.CrossRefGoogle Scholar
  78. Santiago, K. A. A., Borricano, J. N. C., Canal, J. N., Marcelo, D. M. A., & Perez, M. C. P. (2010). Antibacterial activity of fruticose lichens collected from selected sites in Luzon Island, Philippines. Philippine Science Letters, 3, 18–29.Google Scholar
  79. Saranyapiriya, G., Rajan, V. P., Wahid Samsudin, M., Din, L., Ramanathan, S., & Vikneswaran, M. (2015). Antibacterial activity of lichen Usnea rubrotincta, Ramalina dumeticola and Cladonia verticillata. AIP Conference Proceedings, 1678, 050014. Scholar
  80. Schmeda-Hirschmann, G., Tapia, A., Lima, B., Pertino, M., Sortino, M., Zacchino, S., de Arias, A. R., & Feresin, G. E. (2008). A new antifungal and antiprotozoal depside from the andean lichen Protousnea poeppigii. Phytotherapy Research, 22, 349–355.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Segatore, B., Bellio, P., Setacci, D., Brisdelli, F., Piovano, M., Gar-barino, J. A., Nicoletti, M., Amicosante, G., Perilli, M., & Celenza, G. (2012). In vitro interaction of usnic acid in combination with antimicrobial agents against methicillin-resistant Staphylococcus aureus clinical isolates determined by FICI and DE model methods. Phytomedicine, 19, 341–347.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Seitz, M., & Reiser, O. (2005). Synthetic approaches towards structurally diverse γ-butyrolactone natural-product-like compounds. Current Opinion in Chemical Biology, 9, 285–292.CrossRefPubMedPubMedCentralGoogle Scholar
  83. Shanmugam, P., Ponnusamy, P., Khader, S., Zameer, A., Ganesan, A., Fahad, K. A., & Balakrishnan, S. (2016). Evaluation of anti-cancer properties of lichens using albino wistar rats as an animal model. Cancer Research Journal., 4(6), 84–89.CrossRefGoogle Scholar
  84. Shrestha, G., Raphael, J., Leavitt, S. D., & Clair St, L. L. (2014). In vitro evaluation of the antibacterial activity of extracts from 34 species of North American lichens. Pharmaceutical Biology, 52(10), 1262. Scholar
  85. Shukla, V., Joshi, G., & Rawat, M. (2010). Lichens as a potential natural source of bioactive compounds: A review. Phytochemistry Reviews, 9, 303–314.CrossRefGoogle Scholar
  86. Sokmen, B. B., Aydin, S., & Kinalioglu, K. (2017). Influence of some Cladonia lichens on plant pathogenic Bacteria and copper reducing antioxidant capacity activities. Cumhuriyet Science Journal, 38(4), 105–114.Google Scholar
  87. Su, B. N., Cuendet, M., Nikolic, D., Kristinsson, H., Ingolfsdottir, K., van Breemen, R. B., Fong, H. H. S., Pezzuto, J. M., & Kinghorn, A. D. (2003). NMR study of fumarprotocetraric acid, a complex lichen depsidone derivative from Cladonia furcata. Magnetic Resonance in Chemistry, 41, 391–394.CrossRefGoogle Scholar
  88. Suzuki, M. T., Parrot, D., Berg, G., Grube, M., & Tomasi, S. (2016). Lichens as natural sources of biotechnologically relevant bacteria. Applied Microbiology and Biotechnology, 100(2), 583–595.CrossRefPubMedPubMedCentralGoogle Scholar
  89. Swamy, C. T., Gayathri, D., & Devaraja, T. N. (2016). Antibacterial activity of lichens Parmotrema tinctorum and Pyxine sorediata and their secondary metabolites. International Journal of Advanced Life Sciences, 9(3), 373–380.Google Scholar
  90. Sweidan, A., Chollet-Krugler, M., Sauvager, A., Van de Pierre, W., & Chokr, A. (2017). Antibacterial activities of natural lichen compounds against Streptococcus gordonii and Porphyromonas gingivalis. Fitoterapia, 121, 164–169.CrossRefPubMedPubMedCentralGoogle Scholar
  91. Thadhani, V. M., & Veranja, K. (2017). Potential of lichen compounds as antidiabetic agents with antioxidative properties: A review. Oxidative Medicine and Cellular Longevity, vol 2017, article ID 2079697.Google Scholar
  92. Timbreza, L. P., Delos Reyes, J. L., Flores, C. H. C., Perez, R. J. L. A., Stockel, M. A. A., & Santiago, K. A. A. (2017). Antibacterial activities of the lichen Ramalina and Usnea collected from Mt. Banoi, Batangas and Dahilayan, Bukidnon, against multi-drug resistant (MDR) bacteria. Austrian Journal of Mycology, 26, 27–42.S.Google Scholar
  93. Torres, A., Hochberg, M., Pergament, I., Smoum, R., Niddam, V., Dembitsky, V. M., Temina, M., Dor, I., Lev, O., Srebnik, O., & Enk, C. D. (2004). A new UV-B absorbing mycosporine with photoprotective activity from the lichenized ascomycete Collema cristatum. European Journal of Biochemistry, 271, 780–784.CrossRefPubMedPubMedCentralGoogle Scholar
  94. Vartia, K. O. (1973). Antibiotics in lichens. In V. Ahmadjian & M. E. Hale (Eds.), The lichens (pp. 547–561). New York: Academic.CrossRefGoogle Scholar
  95. Vivek, M. N., Kambar, Y., Manasa, M., Kekuda, P. T. R., & Vinayaka, K. S. (2014). Radical scavenging and antibacterial activity of three Parmotrema species from Western Ghats of Karnataka, India. Journal of Applied Pharmaceutical Science, 4(3), 86–91.Google Scholar
  96. Weckesser, S., Engel, K., Simon-Haarhaus, B., Wittmer, A., Pelz, K., & Schempp, C. M. (2007). Screening of plant extracts for anti-microbial activity against bacteria and yeasts with dermatological relevance. Phytomedicine, 14, 508–516.CrossRefPubMedPubMedCentralGoogle Scholar
  97. Yuan, C., Zhang, X. J., Du, Y. D., Guo, Y. H., Sun, L. Y., Ren, Q., & Zhao, Z. T. (2010). Antibacterial compounds and other constituents of Evernia divaricata(L.) Ach. Journal of the Chemical Society of Pakistan, 32, 189–193.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Narendra Kumar
    • 1
  • S. M. Paul Khurana
    • 1
  1. 1.Amity Institute of BiotechnologyAmity UniversityGurgaonIndia

Personalised recommendations