Progress and Prospects in the Production of Cellulosic Ethanol

  • Anica Dadwal
  • Shilpa Sharma
  • Tulasi SatyanarayanaEmail author


Bioethanol as a biofuel has received significant attention in the recent years. This is expected to provide a solution to the heavy reliance on petroleum based products for energy security, adverse effect on the environment and climate change due to emissions of vehicles. India, being an agriculture-based economy, produces huge quantities of agricultural residues after harvesting the crops. This chapter will, therefore, focus on the availability of agro-residues in India, the assessment of pretreatments, saccharification processes such as acidic and enzymatic methods and fermentation of hydrolysates. The progress achieved in the use of various wild and mutant strains of microbes and recombinants for the production and development of cellulose-hydrolyzing enzyme cocktails and their utility in the saccharification of agro-residues will be discussed. The role of microbial strains in fermenting cellulosic hydrolysates, the need for genetic engineering approach and consolidated bioprocess development for the production of bioethanol will be critically reviewed.


Agro-residues Cellulosic hydrolysates Alcoholic fermentation Cellulolytic enzymes Bioethanol Thermostable enzymes Recombinant enzymes 



We are grateful to DBT-Indo-US Science & Technology Forum and University Grants Commission, New Delhi for providing financial assistance while writing this chapter.


  1. Adapa, P., Tabil, L., & Schoenau, G. (2009). Compaction characteristics of barley, canola, oat and wheat straw. Biosystems Engineering, 104, 335–344.CrossRefGoogle Scholar
  2. Adney, W. S., Jeoh, T., Beckham, G. T., Chou, Y., Baker, J. O., Michener, W., Brunecky, R., & Himmel, M. E. (2009). Probing the role of N-linked glycans in the stability and activity of fungal cellobiohydrolases by mutational analysis. Cellulose, 16, 699–709.CrossRefGoogle Scholar
  3. Agbogbo, F. A., Coward-Kelly, G., Torry-Smith, M., & Wenger, K. S. (2006). Fermentation of glucose/xylose mixtures using Pichia stipitis. Process Biochemistry, 41, 2333–2336.CrossRefGoogle Scholar
  4. Ahmed, I. N., Chang, R., & Tsai, W. B. (2017). Poly (acrylic acid) nanogel as a substrate for cellulase immobilization for hydrolysis of cellulose. Colloids and Surfaces. B, Biointerfaces, 152, 339–343.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Akcapinar, G. B., Gul, O., & Sezerman, U. (2011). Effect of codon optimization on the expression of Trichoderma reesei endoglucanase 1 in Pichia pastoris. Biotechnology Progress, 27, 1257–1263.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Alonso, A., Pe’rez, P., Morcuende, R., & Martinez-Carrasco, R. (2008). Future CO2 concentrations, though not warmer temperatures, enhance wheat photosynthesis temperature responses. Physiologia Plantarum, 132, 102–112.PubMedPubMedCentralGoogle Scholar
  7. Alper, H., Moxley, J., Nevoigt, E., Fink, G. R., & Stephanopoulos, G. (2006). Engineering yeast transcription machinery for improved ethanol tolerance and production. Science, 314, 1565–1568.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Anasontzis, G. E., Kourtoglou, E., Villas-Boas, S. G., Hatzinikolaou, D. G., & Christakopoulos, P. (2016). Metabolic engineering of Fusarium oxysporum to improve its ethanol-producing capability. Frontiers in Microbiology, 7, 1–10.CrossRefGoogle Scholar
  9. Argyros, D. A., Tripathi, S. A., Barrett, T. F., Rogers, S. R., Feinberg, L. F., Olson, D. G., Foden, J. M., Miller, B. B., Lynd, L. R., Hogsett, D. A., & Caiazza, N. C. (2011). High ethanol titers from cellulose by using metabolically engineered thermophilic, anaerobic microbes. Applied and Environmental Microbiology, 77, 8288–8294.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Asgher, M., Ahmad, Z., & Iqbal, H. M. N. (2013). Alkali and enzymatic delignification of sugarcane bagasse to expose cellulose polymers for saccharification and bio-ethanol production. Industrial Crops and Products, 44, 488–495.CrossRefGoogle Scholar
  11. Badhan, A. K., Chadha, B. S., Kaur, J., Saini, H. S., & Bhat, M. K. (2007). Production of multiple xylanolytic and cellulolytic enzymes by thermophilic fungus Myceliophthora sp. IMI 387099. Bioresource Technology, 98, 504–510.CrossRefGoogle Scholar
  12. Balan, V. (2014). Current challenges in commercially producing biofuels from lignocellulosic biomass. ISRN Biotechnology, 2014(ID463074), 1–31.CrossRefGoogle Scholar
  13. Balat, M., & Balat, H. (2009). Recent trends in global production and utilization of bio-ethanol fuel. Applied Energy, 86, 2273–2282.CrossRefGoogle Scholar
  14. Benitez, F. J., BeltranHeredia, J., Torregrosa, J., & Acero, J. L. (1997). Improvement of the anaerobic biodegradation of olive mill wastewaters by prior ozonation pretreatment. Biotechnology and Bioprocess Engineering, 17, 169–175.CrossRefGoogle Scholar
  15. Bhattacharya, A., & Pletschke, B. I. (2014). Magnetic cross-linked enzyme aggregates (CLEAs): A novel concept towards carrier free immobilization of lignocellulolytic enzymes. Enzyme and Microbial Technology, 61–62, 17–27.CrossRefGoogle Scholar
  16. Billa, E., Koullas, D. P., Monties, B., & Koukios, E. G. (1997). Structure and composition of sweet sorghum stalk components. Industrial Crops and Products, 6, 297–302.Google Scholar
  17. Binod, P., Satyanagalakshmi, K., Sindhu, R., Janu, K. U., Sukumaran, R. K., & Pandey, A. (2012). Short duration microwave assisted pretreatment enhances the enzymatic saccharification and fermentable sugar yield from sugarcane bagasse. Renewable Energy, 37, 109–116.CrossRefGoogle Scholar
  18. Binod, P., Sindhu, R., & Pandey, A. (2013). The alcohol fermentation step: The most common ethanologenic microorganisms among yeasts, bacteria and filamentous fungi. In V. Faraco (Ed.), Lignocellulose conversion: Enzymatic and microbial tools for bioethanol production (pp. 131–150). Berlin: Springer.CrossRefGoogle Scholar
  19. Biswas, R., Zheng, T., Olson, D. G., Lynd, L. R., & Guss, A. M. (2015). Elimination of hydrogenase active site assembly blocks H2 production and increases ethanol yield in Clostridium thermocellum. Biotechnology for Biofuels, 8, 1–8.CrossRefGoogle Scholar
  20. Bondesson, P. M., & Galbe, M. (2016). Process design of SSCF for ethanol production from steam-pretreated, acetic-acid-impregnated wheat straw. Biotechnology for Biofuels, 9(222), 1–12.Google Scholar
  21. Brandt, A., Ray, M. J., To, T. Q., Leak, D. J., Murphy, R. J., & Welton, T. (2011). Ionic liquid pretreatment of lignocellulosic biomass with ionic liquid-water mixtures. Green Chemistry, 13, 2489–2499.CrossRefGoogle Scholar
  22. Brosse, N., Hage, R., Sannigrahi, P., & Ragauskas, A. (2010). Dilute sulphuric acid and ethanol organosolv pretreatment of Miscanthus giganteus. Cellulose Chemistry and Technology, 44, 71–78.Google Scholar
  23. Brown, S. D., Guss, A. M., Karpinets, T. V., Parks, J. M., Smolin, N., Yang, S., Land, M. L., Klingeman, D. M., Bhandiwad, A., Rodriguez, M., Jr., et al. (2011). Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum. Proceedings of the National Academy of Sciences, 108, 13752–13757.CrossRefGoogle Scholar
  24. Cai, G., Jin, B., Monis, P., & Saint, C. (2011). Metabolic flux network and analysis of fermentative hydrogen production. Biotechnology Advances, 29, 375–387.CrossRefGoogle Scholar
  25. Cantarel, B. L., Coutinho, P. M., Rancurel, C., Bernard, T., Lombard, V., & Henrissat, B. (2009). The Carbohydrate-Active EnZymes database (CAZy): An expert resource for glycogenomics. Nucleic Acids Research, 37(Database), D233–D238.Google Scholar
  26. Cherian, E., Dharmendirakumar, M., & Baskar, G. (2015). Immobilization of cellulase onto MnO2 nanoparticles for bioethanol production by enhanced hydrolysis of agricultural waste. Chinese Journal of Catalysis, 36, 1223–1229.CrossRefGoogle Scholar
  27. Choudhary, R., Umagiliyage, A. L., Liang, Y., Siddaramu, T., Haddock, J., & Markevicus, G. (2012). Microwave pretreatment for enzymatic saccharification of sweet sorghum bagasse. Biomass and Bioenergy, 39, 218–226.CrossRefGoogle Scholar
  28. Das, A., Paul, T., Halder, S. K., Jana, A., Maity, C., Das Mohapatra, P. K., Pati, B. R., & Mondal, K. C. (2013). Production of cellulolytic enzymes by Aspergillus fumigatus ABK9 in wheat bran-rice straw mixed substrate and use of cocktail enzymes for deinking of waste office paper pulp. Bioresource Technology, 128, 290–296.CrossRefGoogle Scholar
  29. Demirbas, A. (1998). Determination of combustion heat of fuels by using non-calorimetric experimental data. Energy Science and Technology, 1, 7–12.Google Scholar
  30. Desai, S. G., Guerinot, M. L., & Lynd, L. R. (2004). Cloning of L-lactate dehydrogenase and elimination of lactic acid production via gene knockout in Thermoanaerobacterium saccharolyticum JW/SL-YS485. Applied Microbiology and Biotechnology, 65, 600–605.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Deswal, D., Khasa, Y. P., & Kuhad, R. C. (2011). Optimization of cellulase production by a brown rot fungus Fomitopsis sp. RCK2010 under solid state fermentation. Bioresource Technology, 102, 6065–6072.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Domingues, F. C., Queiroz, J. A., Cabral, J. M. S., & Fonseca, L. P. (2000). The influence of culture conditions on mycelial structure and cellulase production by Trichoderma reesei Rut C-30. Enzyme and Microbial Technology, 26, 394–401.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Eggeman, T., & Elander, R. T. (2005). Process economic analysis of pretreatment technologies. Bioresource Technology, 96, 2019–2025.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Fan, L., Zhang, Z., Yu, X., Xue, Y., & Tan, T. (2012). Self-surface assembly of cellulosomes with two miniscaffoldins on Saccharomyces cerevisiae for cellulosic ethanol production. Proceedings of the National Academy of Sciences, 109, 13260–13265.CrossRefGoogle Scholar
  35. Fang, H., & Xia, L. (2015). Heterologous expression and production of Trichoderma reesei cellobiohydrolase II in Pichia pastoris and the application in the enzymatic hydrolysis of corn stover and rice straw. Biomass & Bioenergy, 78, 99–109.CrossRefGoogle Scholar
  36. Gao, J., Weng, H., Zhu, D., Yuan, M., Guan, F., & Xi, Y. (2008). Production and characterization of cellulolytic enzymes from the thermoacidophilic fungal Aspergillus terreus M11 under solid-state cultivation of corn stover. Bioresource Technology, 99, 7623–7629.CrossRefGoogle Scholar
  37. Garcia-Cubero, M. T., González-Benito, G., Indacoechea, I., Coca, M., & Bolado, S. (2009). Effect of ozonolysis pretreatment on enzymatic digestibility of wheat and ryestraw. Bioresource Technology, 100, 1608–1613.CrossRefGoogle Scholar
  38. Ghose, T. K., Selvam, P. P. V., & Ghosh, P. (1983). Catalytic solvent delignification of agricultural residues: Organic catalysts. Biotechnology and Bioengineering, 25, 2577–2590.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Gibbs, M. D., Reeves, R. A., & Bergquist, P. L. (2004). A yeast intron as a translational terminator in a plasmid shuttle vector. FEMS Yeast Research, 4, 573–577.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Goncalves, D. L., Matsushika, A., de Sales, B. B., Goshima, T., Bon, E. P., & Stambuk, B. U. (2014). Xylose and xylose/glucose co-fermentation by recombinant Saccharomyces cerevisiae strains expressing individual hexose transporters. Enzyme and Microbial Technology, 63, 13–20.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Guedon, E., Desvaux, M., & Petitdemange, H. (2002). Improvement of cellulolytic properties of Clostridium cellulolyticum by metabolic engineering. Applied and Environmental Microbiology, 68, 53–58.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Guerfali, M., Saidi, A., Gargouri, A., & Belghith, H. (2015). Enhanced enzymatic hydrolysis of waste paper for ethanol production using separate saccharification and fermentation. Applied Biochemistry and Biotechnology, 175, 25–42.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Ha, S. J., Galazka, J. M., Kim, S. R., Choi, J. H., Yang, X., Seo, J. H., Glass, N. L., Cate, J. H., & Jin, Y. S. (2011). Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proceedings of the National Academy of Sciences, 108, 504–509.CrossRefGoogle Scholar
  44. Hamelinck, C. N., Hooijdonk, G. V., & Faaij, A. P. C. (2005). Ethanol from lignocellulosic biomass: Techno-economic performance in short-, middle- and long-term. Biomass and Bioenergy, 28, 384–410.CrossRefGoogle Scholar
  45. Han, J. S., & Rowell, J. S. (1997). Chemical composition of fibres. In R. M. Rowell, R. A. Young, & J. K. Rowell (Eds.), Paper and composites from agro-based resources (pp. 7–427). Boca Raton: CRC Press.Google Scholar
  46. Hiloidhari, M., Das, D., & Baruah, D. C. (2014). Bioenergy potential from crop residue biomass in India. Renewable and Sustainable Energy Reviews, 32, 504–512.CrossRefGoogle Scholar
  47. Horn, S. J., Vaaje-Kolstad, G., Westereng, B., & Eijsink, V. G. (2012). Novel enzymes for the degradation of cellulose. Biotechnology for Biofuels, 5, 45.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Hsu, T. C., Guo, G. L., Chen, W. H., & Hwang, W. S. (2010). Effect of dilute acid pretreatment of rice straw on structural properties and enzymatic hydrolysis. Bioresource Technology, 101(13), 4907–4913.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Huang, Y. P., Qin, X. L., Luo, X. M., Nong, Q. D., Yang, Q., Zhang, Z., Gao, Y., Lv, F. X., Chen, Y., Yu, Z. W., Liu, J. L., & Feng, J. X. (2015). Efficient enzymatic hydrolysis and simultaneous saccharification and fermentation of sugarcane bagasse pulp for ethanol production by cellulase from Penicillium oxalicum EU2106 and thermotolerant Saccharomyces cerevisiae ZM1-5. Biomass and Bioenergy, 77, 53–63.CrossRefGoogle Scholar
  50. Iqbal, H. M. N., Kyazze, G., & Keshavarz, T. (2013). Advances in valorization of lignocellulosic materials by bio-technology: An overview. BioResources, 8, 3157–3176.CrossRefGoogle Scholar
  51. Jojima, T., Noburyu, R., Sasaki, M., Tajima, T., Suda, M., Yukawa, H., & Inui, M. (2014). Metabolic engineering for improved production of ethanol by Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 99, 1165–1172.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Kamm, B., & Kamm, M. (2004). Principles of biorefineries. Applied Microbiology and Biotechnology, 64, 137–145.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Karatzos, S. K., Edye, L. A., & Doherty, W. O. S. (2012). Sugarcane bagasse pretreatment using three imidazolium-based ionic liquids; mass balances and enzyme kinetics. Biotechnology for Biofuels, 5(62), 1–12.Google Scholar
  54. Katinonkul, W., Lee, J. S., Ha, S. H., & Park, J. Y. (2012). Enhancement of enzymatic digestibility of oil palm empty fruit bunch by ionic-liquid pretreatment. Energy, 47, 11–16.CrossRefGoogle Scholar
  55. Khorshidi, K. J., Lenjannezhadian, H., Jamalan, M., & Zeinali, M. (2016). Preparation and characterization of nanomagnetic cross-linked cellulase aggregates for cellulose bioconversion. Chemical Technology and Biotechnology, 91, 539–546.CrossRefGoogle Scholar
  56. Kim, S., Park, J. M., Seo, J. W., & Kim, C. H. (2012). Sequential acid−/alkali-pretreatment of empty palm fruit bunch fiber. Bioresource Technology, 109, 229–233.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Kondo, A., Shigechi, H., Abe, M., Uyama, K., Matsumoto, T., Takahashi, S., Ueda, M., Tanaka, A., Kishimoto, M., & Fukuda, H. (2002). High-level ethanol production from starch by a flocculent Saccharomyces cerevisiae strain displaying cell-surface glucoamylase. Applied Microbiology and Biotechnology, 58, 291–296.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Krahulec, S., Petschacher, B., Wallner, M., Longus, K., Klimacek, M., & Nidetzky, B. (2010). Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: Role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization. Microbial Cell Factories, 9, 1–14.CrossRefGoogle Scholar
  59. Kubicek, C. P. (1993). From cellulose to cellulase inducers: Facts and fiction. In P. Suominen & T. Reinikainen (Eds.), Proceedings of the 2nd Symposium Trichoderma reesei cellulases and other hydrolases (TRICEL ’93) (Vol. 8, pp. 181–188). Espoo: Foundation for biotechnical and industrial fermentation research.Google Scholar
  60. Kumar, R., & Wyman, C. E. (2009). Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologies. Biotechnology Progress, 25, 302–314.CrossRefGoogle Scholar
  61. Kumar, P., Barrett, D. M., Delwiche, M. J., & Stroeve, P. (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial & Engineering Chemistry Research, 48, 3713–3729.CrossRefGoogle Scholar
  62. Langston, J. A., Shaghasi, T., Abbate, E., Xu, F., Vlasenko, E., & Sweeney, M. D. (2011). Oxidoreductive cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61. Applied and Environmental Microbiology, 77, 7007–7015.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Lee, J. W., Kim, J. Y., Jang, H. M., Lee, M. W., & Park, J. M. (2015). Sequential dilute acid and alkali pretreatment of corn stover: Sugar recovery efficiency and structural characterization. Bioresource Technology, 182, 296–301.CrossRefGoogle Scholar
  64. Lim, D., Hains, P., Walsh, B., Bergquist, P., & Nevalainen, H. (2001). Proteins associated with the cell envelope of Trichoderma reesei: A proteomic approach. Proteomics, 1, 899–909.CrossRefGoogle Scholar
  65. Lima, J. S., Araújo, P. H. H., Sayer, C., Souza, A. A. U., Viegas, A. C., & de Oliveira, D. (2017). Cellulase immobilization on magnetic nanoparticles encapsulated in polymer nanospheres. Bioprocess and Biosystems Engineering, 40, 511–518.CrossRefGoogle Scholar
  66. Limayem, A., & Ricke, S. C. (2012). Lignocellulosic biomass for bioethanol production: Current perspectives, potential issues and future prospects. Progress in Energy and Combustion Science, 38, 449–467.CrossRefGoogle Scholar
  67. Liming, X., & Xueliang, S. (2004). High-yield cellulase production by Trichoderma reesei ZU-02 on corn cob residue. Bioresource Technology, 91, 259–262.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Lin, Y., & Tanaka, S. (2006). Ethanol fermentation from biomass resources: Current state and prospects. Applied Microbiology and Biotechnology, 69, 627–642.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Lynd, L. R. (1996). Overview and evaluation of fuel ethanol from cellulosic biomass: Technology, economics, the environment, and policy. Annual Review of Environment and Resources, 21, 403–465.Google Scholar
  70. Machado, A. S., & Ferraz, A. (2017). Biological pretreatment of sugarcane bagasse with basidiomycetes producing varied patterns of biodegradation. Bioresource Technology, 225, 17–22.CrossRefPubMedPubMedCentralGoogle Scholar
  71. Magid, J., Luxhoi, J., & Lyshede, O. B. (2004). Decomposition of plant residues at low temperatures separates turnover of nitrogen and energy rich tissue components in time. Plant and Soil, 258, 351–365.CrossRefGoogle Scholar
  72. Majumdar, P., & Chanda, S. (2001). Chemical profile of some lignocellulosic crop residues. Indian Journal of Agricultural Biochemistry, 14, 29–33.Google Scholar
  73. Mesa, L., González, E., Cara, C., González, M., Castro, E., & Mussatto, S. I. (2011). The effect of organosolv pretreatment variables on enzymatic hydrolysis of sugarcane bagasse. Chemical Engineering Journal, 168, 1157–1162.CrossRefGoogle Scholar
  74. Mishra, A., Sharma, A. K., Sharma, Mathur, S. A., Gupta, R. P., & Tuli, D. K. (2016). Lignocellulosic bioethanol production employing newly isolated inhibitor and thermotolerant Saccharomyces cerevisiae DBTIOC S24 strain in SSF and SHF. RSC Advances, 6, 24381–24390.CrossRefGoogle Scholar
  75. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., & Ladisch, M. R. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96, 673–686.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Müller, G., Várnai, A., Johansen, K. S., Eijsink, V. G. H., & Horn, S. J. (2015). Harnessing the potential of LPMO-containing cellulase cocktails poses new demands on processing conditions. Biotechnology for Biofuels, 8, 187.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Murray, P., Aro, N., Collins, C., Grassick, A., Penttilä, M., Saloheimo, M., & Tuohy, M. (2004). Expression in Trichoderma reesei and characterization of a thermostable family 3 beta-glucosidase from the moderately thermophilic fungus Talaromyces emersonii. Protein Expression and Purification, 38, 248–257.CrossRefGoogle Scholar
  78. Nikzad, M., Movagharnejad, K., Talebnia, F., Aghaiy, Z., & Mighani, M. (2014). Modeling of alkali pretreatment of rice husk using response surface methodology and artificial neural network. Chemical Engineering Communications, 202, 728–738.CrossRefGoogle Scholar
  79. Nyyssönen, E., Penttilä, M., Harkki, A., Saloheimo, A., Knowles, J. K. C., & Keränen, S. (1993). Efficient production of antibody fragments by the filamentous fungus Trichoderma reesei. Biotechnology, 11, 591–595.PubMedGoogle Scholar
  80. Ohta, K., Beall, D. S., Mejia, J. P., Shanmugam, K. T., & Ingram, L. O. (1991). Genetic improvement of Escherichia coli for ethanol production: Chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. Applied and Environmental Microbiology, 57, 893–900.PubMedPubMedCentralGoogle Scholar
  81. Panagiotou, G., Kekos, D., Macris, B. J., & Christakopoulos, P. (2003). Production of cellulolytic and xylanolytic enzymes by Fusarium oxysporum grown on corn stover in solid state fermentation. Industrial Crops and Products, 18, 37–45.CrossRefGoogle Scholar
  82. Peldyak, J., & Makinen, K. K. (2002). Xylitol for caries prevention. Journal of Dental Hygiene, 76, 276–285.PubMedPubMedCentralGoogle Scholar
  83. Periyasamy, K., Santhalembi, L., Mortha, G., Aurousseaucde, M., & Subramanian, S. (2016). Carrier-free co-immobilization of xylanase, cellulase and β-1,3-glucanase as combined cross-linked enzyme aggregates (combi-CLEAs) for one-pot saccharification of sugarcane bagasse. RSC Advances, 6, 32849–32857.CrossRefGoogle Scholar
  84. Perzon, A., Dicko, C., Çobanoğlu, O., Yükselen, O., Eryilmaz, J., & Dey, E. S. (2017). Cellulase cross-linked enzyme aggregates (CLEA) activities can be modulated and enhanced by precipitant selection. Chemical Technology and Biotechnology, 92, 1645–1649.CrossRefGoogle Scholar
  85. Pettersen, R. C. (1984). The chemical composition of wood. In R. M. Rowell (Ed.), The chemistry of solid wood (Advances in chemistry series) (Vol. 207, pp. 115–116). Washington, DC: American Chemical Society.CrossRefGoogle Scholar
  86. Phadtare, P., Joshi, S., & Satyanarayana, T. (2017). Recombinant thermo-alkali-stable endoglucanase of Myceliopthora thermophila BJA (rMt-egl): Biochemical characteristics and applicability in enzymatic saccharification of agro-residues. International Journal of Biological Macromolecules, 104, 107–116.CrossRefGoogle Scholar
  87. Pointner, M., Kuttner, P., Obrlik, T., Jäger, A., & Kahr, H. (2014). Composition of corncobs as a substrate for fermentation of biofuels. Agronomy Research, 12, 391–396.Google Scholar
  88. Prabhu, R. R., Parashar, D., & Satyanarayana, T. (2017). Production and characteristics of the recombinant extracellular bifunctional endoglucanase of the polyextremophilic bacterium Bacillus halodurans and its applicability in saccharifying agro-residues. Bioprocess and Biosystems Engineering, 40, 651–662.CrossRefGoogle Scholar
  89. Rattu, G., Joshi, S., & Satyanarayana, T. (2016). Bifunctional recombinant cellulase-xylanase (rBhcell-xyl) from the polyextremophilic bacterium Bacillus halodurans TSLV1 and its utility in valorization of renewable agro-residues. Extremophiles, 20, 831–842.CrossRefGoogle Scholar
  90. Reddy, N., & Yang, Y. (2004). Long natural cellulosic fibres from corn stocks: Structure of novel cellulosic fibers from cornhusks. Textiles, Merchanidising, and Fashion Design, 5, 24–27.Google Scholar
  91. Reshamwala, S., Shawky, B. T., & Dale, B. E. (1995). Ethanol production from enzymatic hydrolysates of AFEX-treated coastal Bermuda grass and switchgrass. Applied Biochemistry and Biotechnology, 51/52, 43–55.CrossRefGoogle Scholar
  92. Rizk, M., Elleuche, S., & Antranikian, G. (2015). Generating bifunctional fusion enzymes composed of heat-active endoglucanase (Cel5A) and endoxylanase (XylT). Biotechnology Letters, 37, 139–145.CrossRefGoogle Scholar
  93. Romaní, A., Pereira, F., Johansson, B., & Domingues, L. (2015). Metabolic engineering of Saccharomyces cerevisiae ethanol strains PE-2 and CAT-1 for efficient lignocellulosic fermentation. Bioresource Technology, 179, 150–158.CrossRefGoogle Scholar
  94. Ross, A., Schügerl, K., & Scheiding, W. (1983). Cellulase production by Trichoderma reesei. European Journal of Applied Microbiology and Biotechnology, 18, 29–37.CrossRefGoogle Scholar
  95. Rydzak, T., Garcia, D., Stevenson, D. M., Sladek, M., Klingeman, D. M., Holwerda, E. K., Amador-Noguez, D., Brown, S. D., & Guss, A. M. (2017). Deletion of type I glutamine synthetase deregulates nitrogen metabolism and increases ethanol production in Clostridium thermocellum. Metabolic Engineering, 41, 182–191.CrossRefGoogle Scholar
  96. Saha, B. C., Nichols, N. N., Qureshi, N., Kennedy, G. J., Iten, L. B., & Cotta, M. A. (2015). Pilot scale conversion of wheat straw to ethanol via simultaneous saccharification and fermentation. Bioresource Technology, 175, 17–22.CrossRefGoogle Scholar
  97. Saha, B. C., Qureshi, N., Kennedy, G. J., & Cotta, M. A. (2016). Biological pretreatment of corn stover with white-rot fungus for improved enzymatic hydrolysis. International Biodeterioration & Biodegradation, 109, 29–35.CrossRefGoogle Scholar
  98. Salapa, I., Katsimpouras, C., Topakas, E., & Sidiras, D. (2017). Organosolv pretreatment of wheat straw for efficient ethanol production using various solvents. Biomass and Bioenergy, 100, 10–16.CrossRefGoogle Scholar
  99. Sanchez, C. (2009). Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnology Advances, 27, 185–194.CrossRefGoogle Scholar
  100. Satyamurthy, P., Jain, P., Karande, V. S., & Nadanathangam, V. (2016). Nanocellulose induces cellulase production in Trichoderma reesei. Process Biochemistry, 51, 1452–1457.CrossRefGoogle Scholar
  101. Schülein, M. (2000). Protein engineering of cellulases. Biochimica et Biophysica Acta (BBA) – Protein Structure and Molecular Enzymology, 1543, 239–252.CrossRefGoogle Scholar
  102. Shaw, A. J., Podkaminer, K. K., Desai, S. G., Bardsley, J. S., Rogers, S. R., Thorne, P. G., Hogsett, D. A., & Lynd, L. R. (2008). Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. Proceedings of the National Academy of Sciences, 105, 13769–13774.CrossRefGoogle Scholar
  103. Shaw, A. J., Covalla, S. F., Miller, B. B., Firliet, B. T., Hogsett, D. A., & Herring, C. D. (2012). Urease expression in a Thermoanaerobacterium saccharolyticum ethanologen allows high titer ethanol production. Metabolic Engineering, 14, 528–532.CrossRefGoogle Scholar
  104. Shawkya, B. T., Mahmoud, M. G., Ghazy, E. A., Asker, M. M. S., & Ibrahim, G. S. (2011). Enzymatic hydrolysis of rice straw and corn stalks for monosugars production. Journal, Genetic Engineering & Biotechnology, 9, 59–63.CrossRefGoogle Scholar
  105. Silva, A. S., Inoue, H., Endo, T., Yano, S., & Bon, E. P. (2010). Milling pretreatment of sugarcane bagasse and straw for enzymatic hydrolysis and ethanol fermentation. Bioresource Technology, 101, 7402–7409.CrossRefPubMedPubMedCentralGoogle Scholar
  106. Singh, B., Poças-Fonseca, M. J., Johri, B. N., & Satyanarayana, T. (2016). Thermophilic moulds: Biology and applications. Critical Reviews in Microbiology, 42, 985–1006.CrossRefPubMedPubMedCentralGoogle Scholar
  107. Singh, B., Bala, A., Dahiya, S., & Satyanarayana, T. (2017a). Production, characteristics and potential applications of the cellulolytic enzymes of thermophilic moulds. Kavaka, 48, 47–58.Google Scholar
  108. Singh, A., Patel, A. K., Adsul, M., Mathur, A., & Singhania, R. R. (2017b). Genetic modification: A tool for enhancing cellulase secretion. Biofuel Research Journal, 14, 600–610.CrossRefGoogle Scholar
  109. Sukumaran, R. K., Mathew, A. K., Kumar, M. K., Abraham, A., Christopher, M., & Sankar, M. (2017). First and second generation ethanol in India: A comprehensive overview on feedstock availability, composition and potential conversion yield. In A. K. Chandel & R. K. Sukumaran (Eds.), Sustainable biofuel development in India (pp. 223–246). Cham: Springer.CrossRefGoogle Scholar
  110. Tambor, J. H., Ren, H., Ushinsky, S., Zheng, Y., Riemens, A., St-Francois, C., Tsang, A., Powlowski, J., & Storms, R. (2012). Recombinant expression, activity screening and functional characterization identifies three novel endo-1,4-β-glucanases that efficiently hydrolyse cellulosic substrates. Applied Microbiology and Biotechnology, 93, 203–214.CrossRefPubMedPubMedCentralGoogle Scholar
  111. Tan, F. R., Dai, L. C., Wu, B., Qin, H., Shui, Z. X., Wang, J. L., Zhu, Q. L., Hu, Q. C., Ruan, Z. Y., & He, M. X. (2015). Improving furfural tolerance of Zymomonas mobilis by rewiring a sigma factor RpoD protein. Applied Microbiology and Biotechnology, 99, 5363–5371.CrossRefPubMedPubMedCentralGoogle Scholar
  112. Tèo, V. S. J., Cziferszky, A. E., Bergquist, P. L., & Nevalainen, K. M. H. (2000). Codon optimization of xylanase gene xynB from the thermophilic bacterium Dictyoglomus thermophilum for expression in the filamentous fungus Trichoderma reesei. FEMS Microbiology Letters, 190, 13–19.CrossRefGoogle Scholar
  113. Teramura, H., Sasaki, K., Oshima, T., Matsuda, F., Okamoto, M., Shirai, T., Kawaguchi, H., Ogino, C., Hirano, K., Sazuka, T., Kitano, H., Kikuchi, J., & Kondo, A. (2016). Organosolv pretreatment of sorghum bagasse using a low concentration of hydrophobic solvents such as 1-butanol or 1-pentanol. Biotechnology for Biofuels, 9, 1–11.CrossRefGoogle Scholar
  114. Terrasan, C. R. F., Lipolatti, E. P., Souza, L. T. A., Henriques, R. O., Moreno Perez, S., Junior, W. G. M., Chioma, A. O., Guisan, J. M., & Pessela, B. C. (2016). Immobilization of plant cell wall degrading enzymes. In R. N. Silva (Ed.), Mycology: Current and future developments. Fungal biotechnology for biofuel production (pp. 276–315). Sharjah: Bentham Science Publishers.Google Scholar
  115. Travaini, R., Otero, M. D., Coca, M., Da-Silva, R., & Bolado, S. (2013). Sugarcane bagasse ozonolysis pretreatment: Effect on enzymatic digestibility and inhibitory compound formation. Bioresource Technology, 133, 332–339.CrossRefGoogle Scholar
  116. Trivedi, N., Reddy, C. R. K., Radulovich, R., & Jha, B. (2015). Solid state fermentation (SSF)-derived cellulase for saccharification of the green seaweed Ulva for bioethanol production. Algal Research, 9, 48–54.CrossRefGoogle Scholar
  117. Vasconcelos, S. M., Santos, A. M. P., Rocha, G. J. M., & Souto-Maior, A. M. (2013). Diluted phosphoric acid pretreatment for production of fermentable sugars in a sugarcane-based biorefinery. Bioresource Technology, 135, 46–52.CrossRefPubMedPubMedCentralGoogle Scholar
  118. Vats, S., Maurya, D. P., Shaimoon, M., & Negi, S. (2013). Development of a microbial consortium for the production of blend enzymes for the hydrolysis of agricultural waste into sugars. Journal of Scientific and Industrial Research, 72, 585–590.Google Scholar
  119. Vidal, P. F., & Molinier, J. (1988). Ozonolysis of lignin – Improvement of in vitro digestibility of poplar sawdust. Biomass, 16, 1–17.CrossRefGoogle Scholar
  120. Villares, A., Moreau, C., Bennati-Granier, C., Garajova, S., Foucat, L., Falourd, X., Saake, B., Berrin, J. G., & Cathala, B. (2017). Lytic polysaccharide monooxygenases disrupt the cellulose fibers structure. Scientific Reports, 7(40262), 1–9.Google Scholar
  121. Wang, C., Eufemi, M., Turano, C., & Giartosio, A. (1996). Influence of the carbohydrate moiety on the stability of glycoproteins. Biochemistry, 35, 7229–7307.Google Scholar
  122. Wang, X., Yomano, L. P., Lee, J. Y., York, S. W., Zheng, H., Mullinnix, M. T., Shanmugam, K. T., & Ingram, L. O. (2013). Engineering furfural tolerance in Escherichia coli improves the fermentation of lignocellulosic sugars into renewable chemicals. Proceedings of the National Academy of Sciences, 110, 4021–4026.Google Scholar
  123. Wi, S. G., Cho, E. J., Lee, D. S., Lee, S. J., Lee, Y. J., & Bae, H. J. (2015). Lignocellulose conversion for biofuel: A new pretreatment greatly improves downstream biocatalytic hydrolysis of various lignocellulosic materials. Biotechnology for Biofuels, 8(228), 1–11.Google Scholar
  124. Wyman, C. E. (1999). Biomass ethanol: Technical progress, opportunities and commercial challenges. Annual Review of Energy and the Environment, 24, 189–226.CrossRefGoogle Scholar
  125. Xiao, W., Wang, Y., Xia, S., & Ma, P. (2012). The study of factors affecting the enzymatic hydrolysis of cellulose after ionic liquid pretreatment. Carbohydrate Polymers, 87, 2019–2023.CrossRefGoogle Scholar
  126. Xu, X., Lin, M., Zang, Q., & Shi, S. (2017). Solid state bioconversion of lignocellulosic residues by Inonotus obliquus for production of cellulolytic enzymes and saccharification. Bioresource Technology, 247, 88–95.CrossRefPubMedPubMedCentralGoogle Scholar
  127. Xue, D., Lin, D., Gong, C., Peng, C., & Yao, S. (2017). Expression of a bifunctional cellulase with exoglucanase and endoglucanase activities to enhance the hydrolysis ability of cellulase from a marine Aspergillus niger. Process Biochemistry, 52, 115–122.CrossRefGoogle Scholar
  128. Yang, X., Xu, M., & Yang, S. T. (2015). Metabolic and process engineering of Clostridium cellulovorans for biofuel production from cellulose. Metabolic Engineering, 32, 39–48.CrossRefPubMedPubMedCentralGoogle Scholar
  129. Yao, W., Wu, X., Zhu, J., Sun, B., Zhang, Y. Y., & Miller, C. (2011). Bacterial cellulose membrane: A new support carrier for yeast immobilization for ethanol fermentation. Process Biochemistry, 46, 2054–2058.CrossRefGoogle Scholar
  130. Zang, L., Qiu, J., Wu, X., Zhang, W., Sakai, E., & Wei, Y. (2014). Preparation of magnetic chitosan nanoparticles as support for cellulase immobilization. Industrial & Engineering Chemistry Research, 53(9), 3448–3454.Google Scholar
  131. Zhang, Y. P. (2008). Reviving the carbohydrate economy via multi-product lignocellulose biorefineries. Journal of Industrial Microbiology and Biotechnology, 35, 367–375.CrossRefPubMedPubMedCentralGoogle Scholar
  132. Zhang, D., Hegab, H. E., Lvov, Y., Snow, L. D., & Palmer, J. (2016). Immobilization of cellulase on a silica gel substrate modified using a 3-APTES self-assembled monolayer. Springerplus, 5(48), 1–20.Google Scholar
  133. Zhao, X., Peng, F., Cheng, K., & Liu, D. (2009). Enhancement of the enzymatic digestibility of sugarcane bagasse by alkali-peracetic acid pretreatment. Enzyme and Microbial Technology, 44, 17–23.CrossRefGoogle Scholar
  134. Zhu, Y. (2007). Immobilized cell fermentation for production of chemicals and fuels. In S. T. Yang (Ed.), Bioprocessing for value-added products from renewable resources (pp. 373–396). Amsterdam, Netherlands: Elsevier. (Chapter 14).Google Scholar
  135. Zhu, S., Wu, Y., Yu, Z., Zhang, X., Li, H., & Gao, M. (2005). Enhancing enzymatic hydrolysis of rice straw by microwave pretreatment. Chemical Engineering Communications, 192, 1559–1566.CrossRefGoogle Scholar
  136. Zhu, S., Wu, Y., Yu, Z., Chen, Q., Wu, G., Yu, F., Wang, C., & Jin, S. (2006). Microwave-assisted alkali pre-treatment of wheat straw and its enzymatic hydrolysis. Biosystems Engineering, 94, 437–442.Google Scholar
  137. Zingaro, K. A., & Papoutsakis, E. T. (2013). GroESL overexpression imparts Escherichia coli tolerance to i-, n-, and 2-butanol, 1,2,4-butanetriol and ethanol with complex and unpredictable patterns. Metabolic Engineering, 15, 196–205.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Anica Dadwal
    • 1
  • Shilpa Sharma
    • 1
  • Tulasi Satyanarayana
    • 1
    Email author
  1. 1.Division of Biological Sciences & EngineeringNetaji Subhas University of TechnologyNew DelhiIndia

Personalised recommendations