Effect of Nanomaterials and Their Possible Implication on the Plants

  • Razi Ahmad
  • Kumar Pranaw
  • Sunil Kumar KhareEmail author


Nanomaterials have found extensive applications in a wide array of life and industrial processes. The potential uses and benefits of nanotechnology in agriculture are important because the production of food increases with minimum cost and energy. Recently, the researcher has implemented nanomaterials in agriculture for the improvement of the crop yields. Nanomaterials could increase or decrease crop growth as well as yield. However, they can also migrate to the food chain with implications for humans and animals. In this book chapter, the effects of different nanomaterials on plant growth, intake and bioaccumulation/biotransformation and toxicological risks for food materials have been discussed. The chapter also addresses recent aspects regarding nanomaterials and the environment, with an emphasis on the plants.


Nanomaterials Agricultural sectors Engineered nanomaterials Crop plants 


  1. Ali-Boucetta, H., Al-Jamal, K. T., Muller, K. H., Li, S., Porter, A. E., Eddaoudi, A., Prato, M., Bianco, A., & Kostarelos, K. (2011). Cellular uptake and cytotoxic impact of chemically functionalized and polymer-coated carbon nanotubes. Small, 7(22), 3230–3238.CrossRefPubMedPubMedCentralGoogle Scholar
  2. An, J., Zhang, M., Wang, S., & Tang, J. (2008). Physical, chemical and microbiological changes in stored green Asparagus spears as affected by coating of silver nanoparticles-PVP. LWT-Food Science and Technology, 41(6), 1100–1107.CrossRefGoogle Scholar
  3. Antisari, L. V., Carbone, S., Gatti, A., Vianello, G., & Nannipieri, P. (2015). Uptake and translocation of metals and nutrients in tomato grown in soil polluted with metal oxide (CeO2, Fe3O4, SnO2, TiO2) or metallic (Ag, Co, Ni) engineered nanoparticles. Environmental Science and Pollution Research, 22(3), 1841–1853.CrossRefGoogle Scholar
  4. Arias, J. A., Peralta-Videa, J. R., Ellzey, J. T., Viveros, M. N., Ren, M., Mokgalaka-Matlala, N. S., Castillo-Michel, H., & Gardea-Torresdey, J. L. (2010). Plant growth and metal distribution in tissues of Prosopis juliflora-velutina grown on chromium contaminated soil in the presence of Glomus deserticola. Environmental Science & Technology, 44(19), 7272–7279.CrossRefGoogle Scholar
  5. Asli, S., & Neumann, P. M. (2009). Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant, Cell & Environment, 32(5), 577–584.CrossRefGoogle Scholar
  6. Bali, R., Siegele, R., & Harris, A. T. (2010). Biogenic Pt uptake and nanoparticle formation in Medicago sativa and Brassica juncea. Journal of Nanoparticle Research, 12(8), 3087–3095.Google Scholar
  7. Barrena, R., Casals, E., Colón, J., Font, X., Sánchez, A., & Puntes, V. (2009). Evaluation of the ecotoxicity of model nanoparticles. Chemosphere, 75(7), 850–857.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Birbaum, K., Brogioli, R., Schellenberg, M., Martinoia, E., Stark, W. J., Günther, D., & Limbach, L. K. (2010). No evidence for cerium dioxide nanoparticle translocation in maize plants. Environmental Science & Technology, 44(22), 8718–8723.CrossRefGoogle Scholar
  9. Boddupalli, A., Tiwari, R., Sharma, A., Singh, S., Prasanna, R., & Nain, L. (2017). Elucidating the interactions and phytotoxicity of zinc oxide nanoparticles with agriculturally beneficial bacteria and selected crop plants. Folia Microbiologica, 62(3), 253–262.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Brunner, T. J., Wick, P., Manser, P., Spohn, P., Grass, R. N., Limbach, L. K., Bruinink, A., & Stark, W. J. (2006). In vitro cytotoxicity of oxide nanoparticles: Comparison to asbestos, silica, and the effect of particle solubility. Environmental Science & Technology, 40(14), 4374–4381.CrossRefGoogle Scholar
  11. Burke, D. J., Zhu, S., Pablico-Lansigan, M. P., Hewins, C. R., & Samia, A. C. S. (2014). Titanium oxide nanoparticle effects on composition of soil microbial communities and plant performance. Biology and Fertility of Soils, 50(7), 1169–1173.CrossRefGoogle Scholar
  12. Canas, J. E., Long, M., Nations, S., Vadan, R., Dai, L., Luo, M., Ambikapathi, R., Lee, E. H., & Olszyk, D. (2008). Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environmental Toxicology and Chemistry, 27(9), 1922–1931.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Castiglione, M. R., Giorgetti, L., Geri, C., & Cremonini, R. (2011). The effects of nano-TiO2 on seed germination, development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays L. Journal of Nanoparticle Research, 13(6), 2443–2449.CrossRefGoogle Scholar
  14. Castillo-Michel, H. A., Zuverza-Mena, N., Parsons, J. G., Dokken, K. M., Duarte-Gardea, M., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2009). Accumulation, speciation, and coordination of arsenic in an inbred line and a wild type cultivar of the desert plant species Chilopsis linearis (Desert willow). Phytochemistry, 70(4), 540–545.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Cherchi, C., & Gu, A. Z. (2010). Impact of titanium dioxide nanomaterials on nitrogen fixation rate and intracellular nitrogen storage in Anabaena variabilis. Environmental Science & Technology, 44(21), 8302–8307.CrossRefGoogle Scholar
  16. Dimkpa, C. O., McLean, J. E., Latta, D. E., Manangón, E., Britt, D. W., Johnson, W. P., Boyanov, M. I., & Anderson, A. J. (2012). CuO and ZnO nanoparticles: Phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. Journal of Nanoparticle Research, 14(9), 1125.CrossRefGoogle Scholar
  17. Dimkpa, C. O., McLean, J. E., Martineau, N., Britt, D. W., Haverkamp, R., & Anderson, A. J. (2013). Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Environmental Science & Technology, 47(2), 1082–1090.CrossRefGoogle Scholar
  18. Du, W., Sun, Y., Ji, R., Zhu, J., Wu, J., & Guo, H. (2011). TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. Journal of Environmental Monitoring, 13(4), 822–828.CrossRefPubMedPubMedCentralGoogle Scholar
  19. El-Temsah, Y. S., & Joner, E. J. (2012). Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environmental Toxicology, 27(1), 42–49.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Feizi, H., Moghaddam, P. R., Shahtahmassebi, N., & Fotovat, A. (2012). Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth. Biological Trace Element Research, 146(1), 101–106.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Ge, Y., Priester, J. H., Van De Werfhorst, L. C., Walker, S. L., Nisbet, R. M., An, Y. J., Schimel, J. P., Gardea-Torresdey, J. L., & Holden, P. A. (2014). Soybean plants modify metal oxide nanoparticle effects on soil bacterial communities. Environmental Science & Technology, 48(22), 13489–13496.CrossRefGoogle Scholar
  22. Gogos, A., Knauer, K., & Bucheli, T. D. (2012). Nanomaterials in plant protection and fertilization: Current state, foreseen applications, and research priorities. Journal of Agricultural and Food Chemistry, 60(39), 9781–9792.Google Scholar
  23. Gruyer N, Dorais M, Bastien C, Dassylva N, & Triffault-Bouchet G., (2013) Interaction between silver nanoparticles and plant growth. In International symposium on new technologies for environment control, energy-saving and crop production in greenhouse and plant (Vol. 1037, pp. 795–800).Google Scholar
  24. Gui, X., Deng, Y., Rui, Y., Gao, B., Luo, W., Chen, S., Li, X., Liu, S., Han, Y., Liu, L., & Xing, B. (2015). Response difference of transgenic and conventional rice (Oryza sativa) to nanoparticles (Fe2O3). Environmental Science and Pollution Research, 22(22), 17716–17723.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Harris, A. T., & Bali, R. (2008). On the formation and extent of uptake of silver nanoparticles by live plants. Journal of Nanoparticle Research, 10(4), 691–695.CrossRefGoogle Scholar
  26. Haverkamp, R. G., & Marshall, A. T. (2009). The mechanism of metal nanoparticle formation in plants: Limits on accumulation. Journal of Nanoparticle Research, 11(6), 1453–1463.CrossRefGoogle Scholar
  27. Hefnawy, A. E. G., & Tórtora-Pérez, J. L. (2010). The importance of selenium and the effects of its deficiency in animal health. Small Ruminant Research, 89(2–3), 185–192.CrossRefGoogle Scholar
  28. Hong, F., Zhou, J., Liu, C., Yang, F., Wu, C., Zheng, L., & Yang, P. (2005). Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biological Trace Element Research, 105(1–3), 269–279.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Husen, A., & Siddiqi, K. S. (2014). Carbon and fullerene nanomaterials in plant system. Journal of Nanbiotechnology, 12(1), 16.CrossRefGoogle Scholar
  30. Isla, R., & Aragüés, R. (2010). Yield and plant ion concentrations in maize (Zea mays L.) subject to diurnal and nocturnal saline sprinkler irrigations. Field Crops Research, 116(1–2), 175–183.CrossRefGoogle Scholar
  31. Jasim, B., Thomas, R., Mathew, J., & Radhakrishnan, E. K. (2017). Plant growth and diosgenin enhancement effect of silver nanoparticles in Fenugreek (Trigonella foenum-graecum L.). Saudi Pharmaceutical Journal, 25(3), 443–447.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Ke, W., Xiong, Z. T., Chen, S., & Chen, J. (2007). Effects of copper and mineral nutrition on growth, copper accumulation and mineral element uptake in two Rumex japonicus populations from a copper mine and an uncontaminated field sites. Environmental and Experimental Botany, 59(1), 59–67.CrossRefGoogle Scholar
  33. Keller, A. A., Wang, H., Zhou, D., Lenihan, H. S., Cherr, G., Cardinale, B. J., Miller, R., & Ji, Z. (2010). Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environmental Science & Technology, 44(6), 1962–1967.CrossRefGoogle Scholar
  34. Khodakovskaya, M., Dervishi, E., Mahmood, M., Xu, Y., Li, Z., Watanabe, F., & Biris, A. S. (2009). Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano, 3(10), 3221–3227.CrossRefGoogle Scholar
  35. Khodakovskaya, M. V., De Silva, K., Biris, A. S., Dervishi, E., & Villagarcia, H. (2012). Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano, 6(3), 2128–2135.CrossRefGoogle Scholar
  36. Kim, S., Sin, H., Lee, S., & Lee, I. (2013). Influence of metal oxide particles on soil enzyme activity and bioaccumulation of two plants. Journal of Microbiology and Biotechnology, 23(9), 279–1286.PubMedGoogle Scholar
  37. Kinnersley, R. P., & Scott, L. K. (2001). Aerial contamination of fruit through wet deposition and particulate dry deposition. Journal of Environmental Radioactivity, 52(2–3), 191–213.CrossRefGoogle Scholar
  38. Kostarelos, K., Lacerda, L., Pastorin, G., Wu, W., Wieckowski, S., Luangsivilay, J., Godefroy, S., Pantarotto, D., Briand, J. P., Muller, S., & Prato, M. (2007). Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nature Nanotechnology, 2(2), 108.CrossRefGoogle Scholar
  39. Kumari, M., Mukherjee, A., & Chandrasekaran, N. (2009). Genotoxicity of silver nanoparticles in Allium cepa. Science of the Total Environment, 407(19), 5243–5246.CrossRefGoogle Scholar
  40. Kurepa, J., Paunesku, T., Vogt, S., Arora, H., Rabatic, B. M., Lu, J., Wanzer, M. B., Woloschak, G. E., & Smalle, J. A. (2010). Uptake and distribution of ultrasmall anatase TiO2 Alizarin red S nanoconjugates in Arabidopsis thaliana. Nano Letters, 10(7), 2296–2302.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Lahiani, M. H., Dervishi, E., Chen, J., Nima, Z., Gaume, A., Biris, A. S., & Khodakovskaya, M. V. (2013). Impact of carbon nanotube exposure to seeds of valuable crops. ACS Applied Materials & Interfaces, 5(16), 7965–7973.CrossRefGoogle Scholar
  42. Le Van, N., Rui, Y., Gui, X., Li, X., Liu, S., & Han, Y. (2014). Uptake, transport, distribution and bio-effects of SiO 2 nanoparticles in Bt-transgenic cotton. Journal of Nanbiotechnology, 12(1), 50.CrossRefGoogle Scholar
  43. Le Van, N., Ma, C., Rui, Y., Liu, S., Li, X., Xing, B., & Liu, L. (2015). Phytotoxic mechanism of nanoparticles: Destruction of chloroplasts and vascular bundles and alteration of nutrient absorption. Scientific Reports, 5, 11618.CrossRefGoogle Scholar
  44. Lee, W. M., An, Y. J., Yoon, H., & Kweon, H. S. (2008). Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): Plant agar test for water-insoluble nanoparticles. Environmental Toxicology and Chemistry, 27(9), 1915–1921.CrossRefGoogle Scholar
  45. Lee, W. M., Kwak, J. I., & An, Y. J. (2012). Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: Media effect on phytotoxicity. Chemosphere, 86(5), 491–499.CrossRefGoogle Scholar
  46. Li, X., Gui, X., Rui, Y., Ji, W., Yu, Z., & Peng, S. (2014). Bt-transgenic cotton is more sensitive to CeO2 nanoparticles than its parental non-transgenic cotton. Journal of Hazardous Materials, 274, 173–180.CrossRefGoogle Scholar
  47. Lin, D., & Xing, B. (2007). Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environmental Pollution, 150(2), 243–250.CrossRefGoogle Scholar
  48. Lin, D., & Xing, B. (2008). Root uptake and phytotoxicity of ZnO nanoparticles. Environmental Science & Technology, 42(15), 5580–5585.CrossRefGoogle Scholar
  49. Lin, C., Fugetsu, B., Su, Y., & Watari, F. (2009a). Studies on toxicity of multi-walled carbon nanotubes on Arabidopsis T87 suspension cells. Journal of Hazardous Materials, 170(2–3), 578–583.CrossRefGoogle Scholar
  50. Lin, S., Reppert, J., Hu, Q., Hudson, J. S., Reid, M. L., Ratnikova, T. A., Rao, A. M., Luo, H., & Ke, P. C. (2009b). Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small, 5(10), 1128–1132.PubMedGoogle Scholar
  51. López-Moreno, M. L., de la Rosa, G., Hernández-Viezcas, J. Á., Castillo-Michel, H., Botez, C. E., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2010a). Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environmental Science & Technology, 44(19), 7315–7320.CrossRefGoogle Scholar
  52. López-Moreno, M. L., de la Rosa, G., Hernández-Viezcas, J. A., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2010b). X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species. Journal of Agricultural and Food Chemistry, 58(6), 3689–3693.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Lu, C., Zhang, C., Wen, J., Wu, G., & Tao, M. (2002). Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Science, 21(3), 168–171.Google Scholar
  54. Ma, X., & Wang, C. (2010). Fullerene nanoparticles affect the fate and uptake of trichloroethylene in phytoremediation systems. Environmental Engineering Science, 27(11), 989–992.CrossRefGoogle Scholar
  55. Ma, Y., He, X., Zhang, P., Zhang, Z., Guo, Z., Tai, R., Xu, Z., Zhang, L., Ding, Y., Zhao, Y., & Chai, Z. (2011). Phytotoxicity and biotransformation of La2O3 nanoparticles in a terrestrial plant cucumber (Cucumis sativus). Nanotoxicology, 5(4), 743–753.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Mandeh, M., Omidi, M., & Rahaie, M. (2012). In vitro influences of TiO2 nanoparticles on barley (Hordeum vulgare L.) tissue culture. Biological Trace Element Research, 150(1–3), 376–380.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Moon, Y. S., Park, E. S., Kim, T. O., Lee, H. S., & Lee, S. E. (2014). SELDI-TOF MS-based discovery of a biomarker in Cucumis sativus seeds exposed to CuO nanoparticles. Environmental Toxicology and Pharmacology, 38(3), 922–931.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Morales, M. I., Rico, C. M., Hernandez-Viezcas, J. A., Nunez, J. E., Barrios, A. C., Tafoya, A., Flores-Marges, J. P., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2013). Toxicity assessment of cerium oxide nanoparticles in cilantro (Coriandrum sativum L.) plants grown in organic soil. Journal of Agricultural and Food Chemistry, 61(26), 6224–6230.Google Scholar
  59. Mukherjee, A., Peralta-Videa, J. R., Bandyopadhyay, S., Rico, C. M., Zhao, L., & Gardea-Torresdey, J. L. (2014). Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil. Metallomics, 6(1), 132–138.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Ong, P.S., Yusof, N.A., Bwatanglang, I.B., Rashid, J.I., Nordin, N., Azmi, I.A., (2018). Impact of nanotechnology on diagnosis and therapy in biomedical industry. In Handbook of nanomaterials for industrial applications (pp. 662–695). Amsterdam: Elsevier.Google Scholar
  61. Peralta-Videa, J. R., Hernandez-Viezcas, J. A., Zhao, L., Diaz, B. C., Ge, Y., Priester, J. H., Holden, P. A., & Gardea-Torresdey, J. L. (2014). Cerium dioxide and zinc oxide nanoparticles alter the nutritional value of soil cultivated soybean plants. Plant Physiology and Biochemistry, 80, 128–135.CrossRefGoogle Scholar
  62. Prasad, T. N. V. K. V., Sudhakar, P., Sreenivasulu, Y., Latha, P., Munaswamy, V., Reddy, K. R., Sreeprasad, T. S., Sajanlal, P. R., & Pradeep, T. (2012). Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. Journal of Plant Nutrition, 35(6), 905–927.CrossRefGoogle Scholar
  63. Raliya, R., & Tarafdar, J. C. (2013). ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in Clusterbean (Cyamopsis tetragonoloba L.). Agribiological Research, 2(1), 48–57.Google Scholar
  64. Rico, C. M., Barrios, A. C., Tan, W., Rubenecia, R., Lee, S. C., Varela-Ramirez, A., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2015). Physiological and biochemical response of soil-grown barley (Hordeum vulgare L.) to cerium oxide nanoparticles. Environmental Science and Pollution Research International, 22(14), 10551–10558.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Rizwan, M., Ali, S., Qayyum, M. F., Ok, Y. S., Adrees, M., Ibrahim, M., Zia-ur-Rehman, M., Farid, M., & Abbas, F. (2017). Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: A critical review. Journal of Hazardous Materials, 322, 2–16.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Rui, Y., Gui, X., Li, X., Liu, S., & Han, Y. (2014). Uptake, transport, distribution and bio-effects of SiO2 nanoparticles in Bt-transgenic cotton. Journal of Nanbiotechnology, 12(1), 50.CrossRefGoogle Scholar
  67. Sakla, R., Hemamalini, R., Pranaw, K., & Kumar Khare, S. (2016). Effect of CeO2 nanoparticles on germination and Total proteins pattern of Brassica nigra seeds. Current Bionanotechnology, 2(2), 122–126.CrossRefGoogle Scholar
  68. Santner, A., Calderon-Villalobos, L. I. A., & Estelle, M. (2009). Plant hormones are versatile chemical regulators of plant growth. Nature Chemical Biology, 5(5), 301.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Serag, M. F., Kaji, N., Habuchi, S., Bianco, A., & Baba, Y. (2013). Nanobiotechnology meets plant cell biology: Carbon nanotubes as organelle targeting nanocarriers. RSC Advances, 3(15), 4856–4862.CrossRefGoogle Scholar
  70. Servin, A. D., Castillo-Michel, H., Hernandez-Viezcas, J. A., Diaz, B. C., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2012). Synchrotron micro-XRF and micro-XANES confirmation of the uptake and translocation of TiO2 nanoparticles in cucumber (Cucumis sativus) plants. Environmental Science & Technology, 46(14), 7637–7643.CrossRefGoogle Scholar
  71. Shaw, A. K., & Hossain, Z. (2013). Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Chemosphere, 93(6), 906–915.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Shaw, A. K., Ghosh, S., Kalaji, H. M., Bosa, K., Brestic, M., Zivcak, M., & Hossain, Z. (2014). Nano-CuO stress induced modulation of antioxidative defense and photosynthetic performance of Syrian barley (Hordeum vulgare L.). Environmental and Experimental Botany, 102, 37–47.CrossRefGoogle Scholar
  73. Sheykhbaglou, R., Sedghi, M., Shishevan, M. T., & Sharifi, R. S. (2010). Effects of nano-iron oxide particles on agronomic traits of soybean. Notulae Scientia Biologicae, 2(2), 112–113.CrossRefGoogle Scholar
  74. Shi, J., Peng, C., Yang, Y., Yang, J., Zhang, H., Yuan, X., Chen, Y., & Hu, T. (2014). Phytotoxicity and accumulation of copper oxide nanoparticles to the Cu-tolerant plant Elsholtzia splendens. Nanotoxicology, 8(2), 179–188.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Siddiqui, M. H., & Al-Whaibi, M. H. (2014). Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.). Journal of Biological Sciences, 21(1), 13–17.Google Scholar
  76. Slomberg, D. L., & Schoenfisch, M. H. (2012). Silica nanoparticle phytotoxicity to Arabidopsis thaliana. Environmental Science & Technology, 46(18), 10247–10254.Google Scholar
  77. Stampoulis, D., Sinha, S. K., & White, J. C. (2009). Assay-dependent phytotoxicity of nanoparticles to plants. Environmental Science & Technology, 43(24), 9473–9479.CrossRefGoogle Scholar
  78. Tan, X. M., & Fugetsu, B. (2007). Multi-walled carbon nanotubes interact with cultured rice cells: Evidence of a self-defense response. Journal of Biomedical Nanotechnology, 3(3), 285–288.CrossRefGoogle Scholar
  79. Tan, X. M., Lin, C., & Fugetsu, B. (2009). Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells. Carbon, 47(15), 3479–3487.CrossRefGoogle Scholar
  80. Tang, Y., He, R., Zhao, J., Nie, G., Xu, L., & Xing, B. (2016). Oxidative stress-induced toxicity of CuO nanoparticles and related toxicogenomic responses in Arabidopsis thaliana. Environmental Pollution, 212, 605–614.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Thiruvengadam, M., Gurunathan, S., & Chung, I. M. (2015). Physiological, metabolic, and transcriptional effects of biologically-synthesized silver nanoparticles in turnip (Brassica rapa ssp. rapa L.). Protoplasma, 252(4), 1031–1046.CrossRefGoogle Scholar
  82. Thiruvengadam, M., Rajakumar, G., & Chung, I. M. (2018). Nanotechnology: Current uses and future applications in the food industry. 3 Biotechnology, 8(1), 74.Google Scholar
  83. Thuesombat, P., Hannongbua, S., Akasit, S., & Chadchawan, S. (2014). Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth. Ecotoxicology and Environmental Safety, 104, 302–309.CrossRefPubMedPubMedCentralGoogle Scholar
  84. Toxicity assessment of cerium oxide nanoparticles in cilantro (Coriandrum sativum L.) plants grown in organic soil. Journal of Agricultural and Food Chemistry, 61(26), 6224–6230.Google Scholar
  85. Tripathi, S., & Sarkar, S. (2015). Influence of water soluble carbon dots on the growth of wheat plant. Applied Nanoscience, 5(5), 609–616.CrossRefGoogle Scholar
  86. Upadhyayula, V. K., Deng, S., Mitchell, M. C., & Smith, G. B. (2009). Application of carbon nanotube technology for removal of contaminants in drinking water: A review. Science of the Total Environment, 408(1), 1–13.CrossRefPubMedPubMedCentralGoogle Scholar
  87. Vannini, C., Domingo, G., Onelli, E., Prinsi, B., Marsoni, M., Espen, L., & Bracale, M. (2013). Morphological and proteomic responses of Eruca sativa exposed to silver nanoparticles or silver nitrate. PLoS One, 8(7), e68752.CrossRefPubMedPubMedCentralGoogle Scholar
  88. Whanger, P. D. (2002). Selenocompounds in plants and animals and their biological significance. Journal of the American College of Nutrition, 21(3), 223–232.CrossRefPubMedPubMedCentralGoogle Scholar
  89. Wild, E., & Jones, K. C. (2009). Novel method for the direct visualization of in vivo nanomaterials and chemical interactions in plants. Environmental Science & Technology, 43(14), 5290–5294.CrossRefGoogle Scholar
  90. Wu, S. G., Huang, L., Head, J., Ball, M., Tang, Y. J., & Chen, D. R. (2014). Electrospray facilitates the germination of plant seeds. Aerosol and Air Quality Research, 14(3), 632–641.CrossRefGoogle Scholar
  91. Xiang, L., Zhao, H. M., Li, Y. W., Huang, X. P., Wu, X. L., Zhai, T., Yuan, Y., Cai, Q. Y., & Mo, C. H. (2015). Effects of the size and morphology of zinc oxide nanoparticles on the germination of Chinese cabbage seeds. Environmental Science and Pollution Research, 22(14), 10452–10462.CrossRefPubMedPubMedCentralGoogle Scholar
  92. Yang, L., & Watts, D. J. (2005). Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicology Letters, 158(2), 122–132.CrossRefPubMedPubMedCentralGoogle Scholar
  93. Yang, K., Zhu, L., & Xing, B. (2006). Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials. Environmental Science & Technology, 40(6), 1855–1861.CrossRefGoogle Scholar
  94. Zhao, L., Peng, B., Hernandez-Viezcas, J. A., Rico, C., Sun, Y., Peralta-Videa, J. R., Tang, X., Niu, G., Jin, L., Varela-Ramirez, A., & Zhang, J. Y. (2012a). Stress response and tolerance of Zea mays to CeO2 nanoparticles: Cross talk among H2O2, heat shock protein, and lipid peroxidation. ACS Nano, 6(11), 9615–9622.CrossRefPubMedPubMedCentralGoogle Scholar
  95. Zhao, L., Peralta-Videa, J. R., Ren, M., Varela-Ramirez, A., Li, C., Hernandez-Viezcas, J. A., Aguilera, R. J., & Gardea-Torresdey, J. L. (2012b). Transport of Zn in a sandy loam soil treated with ZnO NPs and uptake by corn plants: Electron microprobe and confocal microscopy studies. Chemical Engineering Journal, 184, 1–8.CrossRefGoogle Scholar
  96. Zhao, L., Hernandez-Viezcas, J. A., Peralta-Videa, J. R., Bandyopadhyay, S., Peng, B., Munoz, B., Keller, A. A., & Gardea-Torresdey, J. L. (2013a). ZnO nanoparticle fate in soil and zinc bioaccumulation in corn plants (Zea mays) influenced by alginate. Environmental Science: Processes & Impacts, 15(1), 260–266.Google Scholar
  97. Zhao, L., Sun, Y., Hernandez-Viezcas, J. A., Servin, A. D., Hong, J., Niu, G., Peralta-Videa, J. R., Duarte-Gardea, M., & Gardea-Torresdey, J. L. (2013b). Influence of CeO2 and ZnO nanoparticles on cucumber physiological markers and bioaccumulation of Ce and Zn: A life cycle study. Journal of Agricultural and Food Chemistry, 61(49), 11945–11951.CrossRefPubMedPubMedCentralGoogle Scholar
  98. Zhao, L., Peralta-Videa, J. R., Rico, C. M., Hernandez-Viezcas, J. A., Sun, Y., Niu, G., Servin, A., Nunez, J. E., Duarte-Gardea, M., & Gardea-Torresdey, J. L. (2014). CeO2 and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus). Journal of Agricultural and Food Chemistry, 62(13), 2752–2759.CrossRefPubMedPubMedCentralGoogle Scholar
  99. Zhao, L., Sun, Y., Hernandez-Viezcas, J. A., Hong, J., Majumdar, S., Niu, G., Duarte-Gardea, M., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2015). Monitoring the environmental effects of CeO2 and ZnO nanoparticles through the life cycle of corn (Zea mays) plants and in situ μ-XRF mapping of nutrients in kernels. Environmental Science & Technology, 49(5), 2921–2928.CrossRefGoogle Scholar
  100. Zheng, L., Hong, F., Lu, S., & Liu, C. (2005). Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biological Trace Element Research, 104(1), 83–91.CrossRefPubMedPubMedCentralGoogle Scholar
  101. Zhou, D. M., Jin, S. Y., Li, L. Z., Wang, Y., & Weng, N. Y. (2011). Quantifying the adsorption and uptake of CuO nanoparticles by wheat. Journal of Environmental Sciences, 23, 1852–1857.CrossRefGoogle Scholar
  102. Zhu, H., Han, J., Xiao, J. Q., & Jin, Y. (2008). Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. Journal of Environmental Monitoring, 10(6), 713–717.CrossRefPubMedPubMedCentralGoogle Scholar
  103. Zhu, Y. G., Pilon-Smits, E. A., Zhao, F. J., Williams, P. N., & Meharg, A. A. (2009). Selenium in higher plants: Understanding mechanisms for biofortification and phytoremediation. Trends in Plant Science, 14(8), 436–442.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Enzyme and Microbial Biochemistry Laboratory, Chemistry DepartmentIIT DelhiNew DelhiIndia

Personalised recommendations