Advertisement

Role of Endophytes in Plant Health and Abiotic Stress Management

  • Ahmed Mohamed Eid
  • Salim S. Salim
  • Saad El-Din Hassan
  • Mohamed A. Ismail
  • Amr Fouda
Chapter

Abstract

Microbial endophytes are symbionts dwelling within plant tissues without appearance of disease symptoms on host plant and have been recently investigated for their plant growth-promoting properties and their beneficial functions associated with plant responses under abiotic stress conditions. This study focuses on the critical role of endophytic microbes in plant health and their stimulatory different mechanisms to tolerance against abiotic stress in plants. Endophytic microbial community can enhance plant growth through producing secondary active compounds which protect the plant from pathogens such as insect and fungi; also endophytes can produce extracellular enzymes which play critical roles in colonization of endophytes within the plant host. Microbial endophytes have the ability to act as plant growth-promoting agents through producing phytohormones and also enable plants to grow in contaminated soils through breakdown of hazardous compounds. Endophytes manage plant growth under adverse conditions such as salinity, drought, temperature, heavy metal stress, and nutrient stress through different mechanisms. This chapter may introduce new approaches for the use of endophytic inoculants to combat abiotic stresses in agricultural fields, which increases global crop production.

Keywords

Endophyte Plant Abiotic stress Management 

References

  1. Abadi VAJM, Sepehri M (2015) Effect of Piriformospora indica and Azotobacter chroococcum on mitigation of zinc deficiency stress in wheat (Triticum aestivum L). Symbiosis 69:9–19CrossRefGoogle Scholar
  2. Ait Barka E, Nowak J, Clément C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol 72:7246–7252PubMedPubMedCentralCrossRefGoogle Scholar
  3. Akbarimoghaddam H, Galavi M, Ghanbari A, Panjehkeh N (2011) Salinity effects on seed germination and seedling growth of bread wheat cultivars. Trakia J Sci 9(1):43–50Google Scholar
  4. Akinsanya MA, Ting A, Goh JK, Lim SP (2016) Biodiversity, enzymatic and antimicrobial activities of bacterial endophytes in selected local medicinal plants. J Biomed Pharm Res 16:5(1)Google Scholar
  5. Ali S, Charles TC, Glick BR (2012) Delay of flower senescence by bacterial endophytes expressing 1-aminocyclopropane-1-carboxylate deaminase. J Appl Microbiol 113:1139–1144.  https://doi.org/10.1111/j.1365-2672.2012.05409.x CrossRefPubMedPubMedCentralGoogle Scholar
  6. Aly AH, Debbab A, Proksch P (2011) Fungal endophytes: unique plant inhabitants with great promises. Appl J Microbiol Biotechnol 90:1829–1845CrossRefGoogle Scholar
  7. Andreas T, Christophe C, Essaïd AB (2012) Physiological and molecular changes in plants at low temperatures. Planta 235:1091–1105.  https://doi.org/10.1007/s00425-012-1641-y CrossRefGoogle Scholar
  8. Anjum SA, Wang LC, Farooq M, Hussain M, Xue LL, Zou CM (2011) Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange. J Agron Crop Sci 197:177–185.  https://doi.org/10.1111/j.1439-037X.2010.00459.x CrossRefGoogle Scholar
  9. Ardanov P, Ovcharenko L, Zaets I, Kozyrovska N, Pirttilä AM (2011) Endophytic bacteria enhancing growth and disease resistance of potato (Solanum tuberosum L.). Biol Control 56:43–49.  https://doi.org/10.1016/j.biocontrol.2010.09.014 CrossRefGoogle Scholar
  10. Ashraf M (2004) Some important physiological selection criteria for salt tolerance in plants. Flora 199:361–376CrossRefGoogle Scholar
  11. Ayob FW, Simarani K (2016) Endophytic filamentous fungi from a Catharanthus roseus: identification and its hydrolytic enzymes. Saudi Pharm J 24:273 278PubMedCentralCrossRefGoogle Scholar
  12. Bae H, Sicher RC, Kim MS, Kim SH, Strem MD, Melnick RL, Bailey BA (2009) The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. J Exp Bot 60(11):3279–3295PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bae H, Roberts DP, Lim H-S, Strem MD, Park S-C, Ryu C-M, Melnick RL, Bailey BA (2011) Endophytic Trichoderma isolates from tropical environments delay disease onset and induce resistance against Phytophthora capsici in hot pepper using multiple mechanisms. Mol Plant-Microbe Interact 24:336–351.  https://doi.org/10.1094/MPMI-09-10-0221 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Bailey BA, Bae H, Strem MD, Roberts DP, Thomas SE, Crozier J, Samuels GJ, Choi IY, Holmes KA (2006) Fungal and plant gene expression during the colonization of cacao seedlings by endophytic isolates of four Trichoderma species. Planta 224:1449–1464PubMedCrossRefPubMedCentralGoogle Scholar
  15. Baltruschat H, Fodor J, Harrach BD, Niemczyk E, Barna B, Gullner G, Janeczko A, Kogel KH, Schäfer P, Schwarczinger I, Zuccaro A, Schäfer P, Schwarczinger I, Zuccaro A, Skoczowski A (2008) Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytol 180:501–510PubMedCrossRefPubMedCentralGoogle Scholar
  16. Bano A, Fatima M (2009) Salt tolerance in Zea mays (L.) following inoculation with Rhizobium and Pseudomonas. Biol Fertil Soils 45:405–413CrossRefGoogle Scholar
  17. Bhosale HJ, Kadam TA (2015) Generic diversity and a comparative account on plant growth promoting characteristics of actinobacteria in roots and rhizosphere of Saccharum officinarum. Int J Curr Microbiol App Sci 4:230–244Google Scholar
  18. Bian G, Zhang Y, Qin S, Xing K, Xie H, Jiang J (2011) Isolation and biodiversity of heavy metal tolerant endophytic bacteria from halotolerant plant species located in coastal shoal of Nantong. Acta Microbiol Sin 51(11):1538–1547Google Scholar
  19. Bloemberg GV, Lugtenberg BJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4(4):343–350PubMedCrossRefGoogle Scholar
  20. Bogner CW, Kamdem RST, Sichtermann G, Mattheaus C, Heolscher D, Popp J, Proksch P, Grundler FMW, Schouten A (2017) Bioactive secondary metabolites with multiple activities from a fungal endophyte. Microb Biotechnol 10:175–188.  https://doi.org/10.1111/1751-7915.12467 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Bordiec S, Paquis S, Lacroix H, Dhondt S, Ait Barka E, Kauffmann S, Jeandet P, Mazeyrat-Gourbeyre F, Clement C, Baillieul F, Dorey S (2011) Comparative analysis of defence responses induced by the endo- phytic plant growth-promoting rhizobacterium Burkholderia phytofirmans strain PsJN and the non-host bacterium Pseudomonas syringae pv. pisi in grapevine cell suspensions. J Exp Bot 62:595–603.  https://doi.org/10.1093/jxb/erq291 CrossRefGoogle Scholar
  22. Bowyer C, Withana S, Fenn I, Bassi S, Lewis M, Cooper T, Benito P, Mudgal S (2009) Land Degradation and Desertification Policy Department Economic and Scientific Policy IP/A/ENVI/ST/2008-23. European Parliament, BrusselsGoogle Scholar
  23. Bray EA (2002) Abscisic acid regulation of gene expression during water-deficit stress in the era of the Arabidopsis genome. Plant Cell Environ 25:153–161PubMedCrossRefPubMedCentralGoogle Scholar
  24. Cao MJ, Wang Z, Zhao Q, Mao JL, Speiser A, Wirtz M, Hell R, Zhu JK, Xiang CB (2014) Sulfate availability affects ABA levels and germination response to ABA and salt stress in Arabidopsis thaliana. Plant J 77:604–615PubMedCrossRefPubMedCentralGoogle Scholar
  25. Carrim AJ, Barbosa EC, Vieira JD (2006) Enzymatic activity of endophytic bacterial isolates of Jacaranda decurrens Cham (Carobinha-do-campo). Braz Arch Biol Technol 49:353–359CrossRefGoogle Scholar
  26. Chathurdevi G, Gowrie SU (2016) Endophytic fungi isolated from medicinal plant—a source of potential bioactive metabolites. Int J Curr Pharm Res 8:50–56Google Scholar
  27. Chaves MM, Oliveira MM (2004) Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot 55:2365–2384PubMedCrossRefPubMedCentralGoogle Scholar
  28. Chi F, Shen S, Cheng H, Jing Y, Yanni Y, Dazzo F (2005) Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology. Appl Environ Microbiol 71:7271–7278PubMedPubMedCentralCrossRefGoogle Scholar
  29. Choi O, Kim J, Kim JG, Jeong Y, Moon JS, Park CS, Hwang I (2008) Pyrroloquinoline quinone is a plant growth promotion factor produced by Pseudomonas fluorescens B16. Plant Physiol 146:657–668PubMedPubMedCentralCrossRefGoogle Scholar
  30. Cohen AC, Bottini R, Piccoli P (2008) Azospirillum brasilense Sp 245 produces ABA in chemically-defined culture medium and increases ABA content in Arabidopsis plants. Plant Growth Regul 54:97–103CrossRefGoogle Scholar
  31. Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678.  https://doi.org/10.1016/j.soilbio.2009.11.024 CrossRefGoogle Scholar
  32. Convey P (2011) Antarctic terrestrial biodiversity in a changing world. Polar Biol 34:1629e1641Google Scholar
  33. Czarny JC, Grichko VP, Glick BR (2006) Genetic modulation of ethylene biosynthesis and signaling in plants. Biotechnol Adv 24(4):410–419.  https://doi.org/10.1016/j.biotechadv.2006.01.003 CrossRefPubMedPubMedCentralGoogle Scholar
  34. De Bashan LE, Hernandez JP, Bashan Y (2012) The potential contribution of plant growth-promoting bacteria to reduce environmental degradation- a comprehensive evaluation. Appl Soil Ecol 61:171–189.  https://doi.org/10.1016/j.apsoil.2011.09.003 CrossRefGoogle Scholar
  35. De Smet I, Zhang H, Inzé D, Beeckman T (2006) A novel role for abscisic acid emerges from underground. Trends Plant Sci 11:434–439PubMedCrossRefPubMedCentralGoogle Scholar
  36. Dudeja SS, Giri R, Saini R, Suneja-Madan P, Kothe E (2012) Interaction of endophytic microbes with legumes. J Basic Microbiol 52:248–260PubMedCrossRefPubMedCentralGoogle Scholar
  37. Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179(4):945–963.  https://doi.org/10.1111/j.1469-8137.2008.02531.x CrossRefPubMedPubMedCentralGoogle Scholar
  38. Fouda AH, Hassan SE, Eid AM, Ewais EE (2015) Biotechnological applications of fungal endophytes associated with medicinal plant Asclepias sinaica (Bioss.). Ann Agric Sci 60:95–104CrossRefGoogle Scholar
  39. Fouda A, Abdel-Maksoud G, Abdel-Rahman MA, Salem SS, Hassan SE, El-Sadany MA (2019a) Eco-friendly approach utilizing green synthesized nanoparticles for paper conservation against microbes involved in biodeterioration of archaeological manuscript. Int Biodeterior Biodegrad 142:160–169CrossRefGoogle Scholar
  40. Fouda A, Hassan SE, Eid AM, El-Din Ewais E (2019b) The interaction between plants and bacterial endophytes under salinity stress. In: Jha S (ed) Endophytes and secondary metabolites. Springer, Cham, pp 1–18Google Scholar
  41. Friesen M, Porter SS, Stark SC, von Wettberg EJ, Sachs JL, Martinez Romero E (2011) Microbially mediated plant functional traits. Annu Rev Ecol Evol Syst 42:23–46CrossRefGoogle Scholar
  42. Gangwar M, Dogra S, Sharma N (2011) Antagonistic bioactivity of endophytic actinobacteria isolated from medicinal plants. J Adv Lab Res Biol 2(4):1–4Google Scholar
  43. Ghodhbane-Gtari F, Essoussi I, Chattaoui M, Chouaia B, Jaouani A, Daffonchio D, Boudabous A, Gtari M (2010) Isolation and characterization of non-Frankia actinobacteria from root nodules of Alnus glutinosa, Casuarina glauca and Elaeagnus angustifolia. Symbiosis 50:51–57CrossRefGoogle Scholar
  44. Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169(1):30–39PubMedCrossRefPubMedCentralGoogle Scholar
  45. Glick BR, Penrose DM, Li JP (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68.  https://doi.org/10.1006/jtbi.1997.0532 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Granier C, Tardieu F (1999) Water deficit and spatial pattern of leaf development. Variability in responses can be stimulated using a simple model of leaf development. Plant Physiol 119:609–619PubMedPubMedCentralCrossRefGoogle Scholar
  47. Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant–bacterium signaling processes. Soil Biol Biochem 37:395–412CrossRefGoogle Scholar
  48. Greenberg BM, Huang XD, Gerwing P, Yu XM, Chang P, Wu SS, Gerhardt K, Nykamp J, Lu X, Glick B (2008) Phytoremediation of salt impacted soils: greenhouse and the field trials of plant growth promoting rhizobacteria (PGPR) to improve plant growth and salt phyto-accumulation. In: Proceeding of the 33rd AMOP technical seminar on environmental contamination and response. Environment Canada, Ottawa, pp 627–637Google Scholar
  49. Gunatilaka AAL (2006) Natural products from plant-associated micro-organisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod 69:509–526.  https://doi.org/10.1021/np058128 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Guo B, Wang Y, Sun X, Tang K (2008) Bioactive natural products from endophytes: a review. Prikl Biokhim Mikrobiol 44:153–158PubMedPubMedCentralGoogle Scholar
  51. Gupta V, Trivedi N, Kumar M, Reddy CR, Jha B (2013) Purification and characterization of exo-b-agarase from an endophytic marine bacterium and its catalytic potential in bioconversion of red algal cell wall polysaccharides into galactans. Biomass Bioenergy 28:290–298CrossRefGoogle Scholar
  52. Hamilton CE, Bauerle TL (2012) A new currency for mutualism? Fungal endophytes alter antioxidant activity in hosts responding to drought. Fungal Divers 54:39–49CrossRefGoogle Scholar
  53. Hamilton CE, Gundel PE, Helander M, Saikkonen K (2012) Endophytic mediation of reactive oxygen species and antioxidant activity in plants: a review. Fungal Divers 54(1):1–10.  https://doi.org/10.1007/s13225-012-0158-9 CrossRefGoogle Scholar
  54. Hardoim PR, Overbeek LS, Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471.  https://doi.org/10.1016/j.tim.2008.07.008 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79(3):293–320.  https://doi.org/10.1128/MMBR.00050-14 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Hasegawa S, Meguro A, Nishimura T, Kunoh H (2004) Drought tolerance of tissue- cultured seedlings of mountain laurel (Kalmia latifolia L.) induced by an Endophytic actinomycete. Actinomycetologica 18:43–47CrossRefGoogle Scholar
  57. Hassan SE (2017) Plant growth-promoting activities for bacterial and fungal endophytes isolated from medicinal plant of Teucrium polium L. J Adv Res 8(6):687–695PubMedPubMedCentralCrossRefGoogle Scholar
  58. Hassan SE, Salem SS, Fouda A, Awad MA, El-Gamal MS, Abdo AM (2018) New approach for antimicrobial activity and bio-control of various pathogens by biosynthesized copper nanoparticles using endophytic actinomycetes. J Radiat Res Appl Sci 11:262–270CrossRefGoogle Scholar
  59. Hassan SE, Fouda A, Radwan AA, Salem SS, Barghoth MG, Awad MA, El-Gamal MS, Abdo AM (2019) Endophytic actinomycetes Streptomyces spp. mediated biosynthesis of copper oxide nanoparticles as a promising tool for biotechnological applications. J Biol Inorg Chem 24(3): 377–393PubMedCrossRefPubMedCentralGoogle Scholar
  60. Hata K, Atari R, Sone K (2002) Isolation of endophytic fungi from leaves of Pasania edulis and their within-leaf distributions. Mycoscience 43(5):369–373CrossRefGoogle Scholar
  61. He X, Han G, Lin Y, Tian X, Xiang C, Tian Q, Wang F, He Z (2012) Diversity and decomposition potential of endophytes in leaves of a Cinnamomum camphora plantation in China. Ecol Res 27:273–284CrossRefGoogle Scholar
  62. Higginbotham SJ, Arnold AE, Ibañez A, Spadafora C, Coley PD, Kursar TA (2013) Bioactivity of fungal endophytes as a function of endophyte taxonomy and the taxonomy and distribution of their host plants. PLoS One 8:e73192.  https://doi.org/10.1371/journal.pone.0073192 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Hu Y, Schmidhalter U (2002) Limitation of salt stress to plant growth. In: Hock B, Elstner CF (eds) Plant Toxicology. Marcel Dekker Inc, New York, pp 91–224Google Scholar
  64. Hubbard M, Germida JJ, Vujanovic V (2014) Fungal endophytes enhance wheat heat and drought tolerance in terms of grain yield and second-generation seed viability. J Appl Microbiol 116:109–122PubMedCrossRefPubMedCentralGoogle Scholar
  65. Iniguez AL, Dong YM, Carter HD, Ahmer BMM, Stone JM, Triplett EW (2005) Regulation of enteric endophytic bacterial colonization by plant defenses. Mol Plant-Microbe Interact 18:169–178.  https://doi.org/10.1094/MPMI-18-0169 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Jahromi F, Aroca R, Porcel R, Ruiz-Lozano JM (2008) Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microb Ecol 55:45–53PubMedCrossRefPubMedCentralGoogle Scholar
  67. Jamil A, Riaz S, Ashraf M, Foolad MR (2011) Gene expression profiling of plants under salt stress. Crit Rev Plant Sci 30(5):435–458CrossRefGoogle Scholar
  68. Jha Y, Subramanian RB, Patel S (2011) Combination of endophytic and rhizospheric plant growth promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant against saline stress. Acta Physiol Plant 33:797–802.  https://doi.org/10.1007/s11738-010-0604-9 CrossRefGoogle Scholar
  69. Jones A, Panagos P, Barcelo S, Bouraoui F, Bosco C, Dewitte O, Gardi C, Hervás J, Hiederer R, Jeffery S (2012) The state of soil in Europe -a contribution of the JRC to the European Environment Agency’s Environment State and Outlook R- SOER 2010Google Scholar
  70. Kannahi M, Senbagam N (2014) Studies on siderophore production by microbial isolates obtained from rhizosphere soil and its antibacterial activity. J Chem Pharm Res 6(4):1142–1145Google Scholar
  71. Kannan R, Damodaran T, Umamaheswari S (2015) Sodicity tolerant polyembryonic mango root stock plants: a putative role of endophytic bacteria. Afr J Biotechnol 14:350–359CrossRefGoogle Scholar
  72. Khan AL, Hamayun M, Hussain J, Kang SM, Lee IJ (2012) The newly isolated endophytic fungus Paraconiothyrium sp. LK1 produces ascotoxin. Molecules 17:1103–1112PubMedPubMedCentralCrossRefGoogle Scholar
  73. Khan AL, Waqas M, Hussain J, Al-Harrasi A, Lee IJ (2014) Fungal endophyte Penicillium janthinellum LK5 can reduce cadmium toxicity in Solanum lycopersicum (Sitiens and Rhe). Biol Fertil Soils 50:75–85CrossRefGoogle Scholar
  74. Khan AL, Al-Harrasi A, Al-Rawahi A, Al-Farsi Z, Al-Mamari A, Waqas M, Asaf S, Elyassi A, Mabood F, Shin JH, Lee IJ (2016) Endophytic fungi from frankincense tree improves host growth and produces extracellular enzymes and indole acetic acid. PLoS One 11:e0158207PubMedPubMedCentralCrossRefGoogle Scholar
  75. Kharwar RN, Mishra A, Gond SK, Stierle A, Stierle D (2011) Anticancer compounds derived from fungal endophytes: their importance and future challenges. Nat Prod Rep 28:1208–1228PubMedCrossRefPubMedCentralGoogle Scholar
  76. Kim YC, Glick BR, Bashan Y, Ryu CM (2012) Enhancement of plant drought tolerance by microbes. In: Aroca R (ed) Plant responses to drought stress: from morphological to molecular features. Springer, Heidelberg, pp 383–413.  https://doi.org/10.1007/978-3-642-32653-0_15 CrossRefGoogle Scholar
  77. Klessig DF, Tian M, Choi HW (2016) Multiple targets of salicylic acid and its derivatives in plants and animals. Front Immunol 7:206.  https://doi.org/10.3389/fimmu.2016.00206 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Kloepper JW, Ryu CM (2006) Bacterial endophytes as elicitors of induced systemic resistance. In: Schulz BJE, Boyle CJC, Sieber TN (eds) Microbial root endophytes. Springer, Berlin, pp 33–52.  https://doi.org/10.1007/3-540-33526-9_3 CrossRefGoogle Scholar
  79. Kusari S, Verma VC, Lamshoeft M, Spiteller M (2012a) An endophytic fungus from Azadirachta indica A. Juss. That produces azadirachtin. World J Microbiol Biotechnol 28:1287–1294PubMedCrossRefPubMedCentralGoogle Scholar
  80. Kusari S, Hertweck C, Spiteller M (2012b) Chemical ecology of endophytic fungi: origin of secondary metabolites. Chem Biol 19:792–798PubMedCrossRefPubMedCentralGoogle Scholar
  81. Leo VV, Passari AK, Joshi JB, Mishra VK, Uthandi S, Ramesh N, Gupta VK, Saikia R, Sonawane VC, Singh BP (2016) A novel triculture system (CC3) for simultaneous enzyme production and hydrolysis of common grasses through submerged fermentation. Front Microbiol 7.  https://doi.org/10.3389/fmicb.2016.00447
  82. Li WK (2005) Endophytes and Natural Medicines. Chin J Nat Med 3(4):193–199Google Scholar
  83. Li HY, Wei DQ, Shen M, Zhou ZP (2012a) Endophytes and their role in phytoremediation. Fungal Divers 54:11–18CrossRefGoogle Scholar
  84. Li L, Sinkko H, Montonen L, Wei G, Lindstrom K, Rasanen LA (2012b) Biogeography of symbiotic and other endophytic bacteria isolated from medicinal Glycyrrhiza species in China. FEMS Microbiol Ecol 79:46–68PubMedCrossRefPubMedCentralGoogle Scholar
  85. Liarzi O, Bucki P, Braun Miyara S, Ezra D (2016) Bioactive volatiles from an endophytic Daldinia cf. concentrica isolate affect the viability of the plant parasitic nematode Meloidogyne javanica. PLoS One 11:e0168437.  https://doi.org/10.1371/journal.pone.0168437 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Limtong S, Kaewwichian R, Yongmanitchai W, Kawasaki H (2014) Diversity of culturable yeasts in phylloplane of sugarcane in Thailand and their capability to produce indole-3-acetic acid. World J Microbiol Biotechnol 30(6):1785–1796PubMedCrossRefPubMedCentralGoogle Scholar
  87. Liu G, Lai D, Liu ZQ, Zhou L, Liu LZ (2016) Identification of nematicidal constituents of Notopterygium incisum rhizomes against Bursaphelenchus xylophilus and Meloidogyne incognita. Molecules 21:1276.  https://doi.org/10.3390/molecules21101276 CrossRefPubMedCentralGoogle Scholar
  88. Malinowski CP, Beleskey DP (2000) Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Sci 40:923–940CrossRefGoogle Scholar
  89. Manchanda G, Garg N (2011) Alleviation of salt-induced ionic, osmotic and oxidative stresses in Cajanus cajan nodules by AM fungi inoculation. Plant Biosyt 145(1):88–97.  https://doi.org/10.1080/11263504.2010.539851 CrossRefGoogle Scholar
  90. Mastretta C, Taghavi S, van der Lelie D et al (2009) Endophytic bacteria from seeds of Nicotiana tabacum can reduce cadmium phytotoxicity. Int J Phytoremediation 11(3):251–267CrossRefGoogle Scholar
  91. Matsouri F, Björkman T, Harman GE (2010) Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Biol Control 100:1213–1221Google Scholar
  92. Meena KK, Sorty AM, Bitla UM, Choudhary K, Gupta P, Pareek A, Singh DP, Prabha R, Sahu PK, Gupta VK, Singh HB, Krishanani KK, Minhas PS (2017) Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Front Plant Sci 8:172.  https://doi.org/10.3389/fpls.2017.00172 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Miransari M (2012) Role of phytohormone signaling during stress. In: Ahmad P, Prasad MNV (eds) Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, New York, p 381_393Google Scholar
  94. Molina G, Pimentel MR, Bertucci TCP, Pastore GM (2012) Application of fungal endophytes in biotechnological processes. Chem Eng Trans 27:289–294Google Scholar
  95. Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250.  https://doi.org/10.1046/j.0016-8025.2001.00808.x CrossRefPubMedPubMedCentralGoogle Scholar
  96. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681PubMedCrossRefPubMedCentralGoogle Scholar
  97. Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JDG (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439.  https://doi.org/10.1126/science.1126088 CrossRefPubMedPubMedCentralGoogle Scholar
  98. Naveed M, Hussain MB, Zahir ZA, Mitter B, Sessitsch A (2014) Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. Plant Growth Regul 73:121–131.  https://doi.org/10.1007/s10725-013-9874-8 CrossRefGoogle Scholar
  99. Netondo GW, Onyango JC, Beck E (2004) Sorghum and salinity: II. Gas exchange and chlorophyll fluorescence of sorghum under salt stress. Crop Sci 44:806–811CrossRefGoogle Scholar
  100. Padda KP, Puri A, Chanway CP (2016) Plant growth promotion and nitrogen fixation in canola by an endophytic strain of Paenibacillus polymyxa and its GFP-tagged derivative in a long-term study. Botany 94:1209–1217.  https://doi.org/10.1139/cjb-2016-0075 CrossRefGoogle Scholar
  101. Palacios OA, Bashan Y, de-Bashan LE (2014) Proven and potential involvement of vitamins in interactions of plants with plant growth promoting bacteria-an overview. Biol Fertil Soils 50:415–432.  https://doi.org/10.1007/s00374-013-0894-3 CrossRefGoogle Scholar
  102. Pandey PK, Singh S, Singh AK, Samanta R, Yadav RNS, Singh MC (2016) Inside the plant: Bacterial endophytes and abiotic stress alleviation. J Appl Nat Sci 8(4):1899–1904CrossRefGoogle Scholar
  103. Parker MA (1995) Plant fitness variation caused by different mutualist genotypes. Ecology 76(5):1525–1535CrossRefGoogle Scholar
  104. Partida-Martínez LP, Heil M (2011) The microbe-free plant: fact or artifact? Front Plant Sci 29(2):100.  https://doi.org/10.3389/fpls.2011.00100.eCollection CrossRefGoogle Scholar
  105. Passari AK, Mishra VK, Singh G, Singh P, Kumar B, Gupta VK, Sarma RK, Saikia R, Donovan AO, Singh BP (2017) Insights into the functionality of endophytic actinobacteria with a focus on their biosynthetic potential and secondary metabolites production. Sci Rep 7:11809.  https://doi.org/10.1038/s41598-017-12235-4 CrossRefPubMedPubMedCentralGoogle Scholar
  106. Pereira SIA, Monteiro C, Vega AL, Castro PML (2016) Endophytic culturable bacteria colonizing Lavandula dentate L. plants: isolation, characterization and evaluation of their plant growth-promoting activities. Ecol Eng 87:91–96CrossRefGoogle Scholar
  107. Piccoli P, Travaglia C, Cohen A, Sosa L, Cornejo P, Masuelli R, Bottini R (2011) An endophytic bacterium isolated from roots of the halophyte Prosopis strombulifera produces ABA, IAA, gibberellins A(1) and A(3) and jasmonic acid in chemically-defined culture medium. Plant Growth Regul 64(2):207–210.  https://doi.org/10.1007/s10725-010-9536-z CrossRefGoogle Scholar
  108. Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521.  https://doi.org/10.1146/annurev-cellbio-092910-154055 CrossRefPubMedGoogle Scholar
  109. Pieterse CM, Zamioudis C, Berendsen RL, Weller DM, Van Wees SC, Bakker PA (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375PubMedCrossRefPubMedCentralGoogle Scholar
  110. Pirttilä AM, Pospiech H, Laukkanen H, Myllyla R, Hohtola A (2003) Two endophytic fungi in different tissues of Scots pine buds (Pinus sylvestris L.). Microb Ecol 45(1):53–62PubMedCrossRefPubMedCentralGoogle Scholar
  111. Pirttilä AM, Podolich O, Koskimäki JJ, Hohtola E, Hohtola A (2008) Role of origin and endophyte infection in browning of bud-derived tissue cultures of Scots pine (Pinus sylvestris L.). Plant Cell Tissue Organ Cult 95(1):47–55CrossRefGoogle Scholar
  112. Prashar P, Kapoor N, Sachdeva S (2014) Rhizosphere: its structure, bacterial diversity and significance. Rev Environ Sci Biotechnol 13(1):63–77CrossRefGoogle Scholar
  113. Prashith-Kekuda TR (2016) Isolation, characterization and antimicrobial potential of endophytic actinomycetes. Int J Curr Microbiol App Sci 5:100–116.  https://doi.org/10.20546/ijcmas.2016.507.008 CrossRefGoogle Scholar
  114. Puri A, Padda KP, Chanway CP (2016) Evidence of nitrogen fixation and growth promotion in canola (Brassica napus L.) by an endophytic diazotroph Paenibacillus polymyxa P2b-2R. Biol Fertil Soils 52:119–125.  https://doi.org/10.1007/s00374-015-1051-y CrossRefGoogle Scholar
  115. Raaijmakers J, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soil borne pathogens and beneficial microorganisms. Plant Soil 321:341–361.  https://doi.org/10.1007/s11104-008-9568-6 CrossRefGoogle Scholar
  116. Radhakrishnan R, shim k-b, lee b-w, Hwang c-d, Pae S-B, Park C-H, Kim S-U, Lee C-K, In YB (2013) IAA-producing Penicillium sp. NICS01 triggers plant growth and suppresses Fusarium sp.-induced oxidative stress in sesame (Sesamum indicum L.). J Microbiol Biotechnol 23:856–863PubMedCrossRefPubMedCentralGoogle Scholar
  117. Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM (2002) Thermotolerance generated by plant/fungal symbiosis. Science 298:1581–1581PubMedCrossRefPubMedCentralGoogle Scholar
  118. Redman RS, Kim YO, Woodward CJ, Greer C, Espino L, Doty SL, Rodriguez RJ (2011) Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change. PLoS One 6:e14823PubMedPubMedCentralCrossRefGoogle Scholar
  119. Ren JH, Ye JR, Liu H, Xu XL, Wu XQ (2011) Isolation and characterization of a new Burkholderia pyrrocinia strain JK SH007 as a potential biocontrol agent. World J Microbiol Biotechnol 27(9):2203–2215CrossRefGoogle Scholar
  120. Rodriguez RJ, Henson J, Van Volkenburgh E, Hoy M, Wright L, Beckwith F, Kim YO, Redman RS (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME 2:404–416CrossRefGoogle Scholar
  121. Rodriguez RJ, White JFJR, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles-Tansley review. New Phytol 182:314–330PubMedCrossRefPubMedCentralGoogle Scholar
  122. Rouhier N, San Koh C, Gelhaye E, Corbier C, Favier F, Didierjean C, Jacquot JP (2008) Redox based anti- oxidant systems in plants: biochemical and structural analyses. Biochim Biophys Acta 1780:1249–1260PubMedCrossRefPubMedCentralGoogle Scholar
  123. Ruanpanun P, Tangchitsomkid N, Hyde KD, Lumyong S (2010) Actinomycetes and fungi isolated from plant-parasitic nematode infested soils: screening of the effective biocontrol potential, indole-3-acetic acid and siderophore production. World J Microbiol Biotechnol 26:1569–1578CrossRefGoogle Scholar
  124. Ruiz-Lozano JM, Porcel R, Azcon C, Aroca R (2012) Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. J Exp Bot 63(11):4033–4044.  https://doi.org/10.1093/jxb/ers126 CrossRefPubMedPubMedCentralGoogle Scholar
  125. Rungin S, Indanand C, Suttiviriya P, Kruasuwan W, Jaemsaeng R, Thamchaipenet A (2012) Plant growth enhancing effects by a siderophore producing endophytic streptomycete isolated from a Thai jasmine rice plant (Oryza sativa L. cv. KDML105). Antonie Van Leeuwenhoek 102:463–472PubMedCrossRefPubMedCentralGoogle Scholar
  126. Rupple S, Franken P, Witzel K (2013) Properties of the halophyte microbiome and their implications for plant salt tolerance. Funct Plant Biol 40:940–951.  https://doi.org/10.1071/FP12355 CrossRefGoogle Scholar
  127. Russell JR, Huang J, Anand P, Kucera K, Sandoval AG, Dantzler KW, Hickman D, Jee J, Kimovec FM, Koppstein D, Marks DH, Mittermiller PA, Núñez SJ, Santiago M, Townes MA, Vishnevetsky M, Williams NE, Vargas MP, Boulanger LA, Bascom-Slack C, Strobel SA (2011) Biodegradation of polyester polyurethane by endophytic fungi. Appl Environ Microbiol 77(17):6076–6084PubMedPubMedCentralCrossRefGoogle Scholar
  128. Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 21(1):30–37Google Scholar
  129. Salam N, Khieu T, Liu M, Vu T, Chu-Ky S, Quach N, Phi Q, Rao MPN, Fontana A et al (2017) Endophytic actinobacteria associated with Dracaena cochinchinensis Lour.: isolation, diversity, and their cytotoxic activities. Biomed Res Int 2017:1.  https://doi.org/10.1155/2017/1308563. (Article ID 1308563CrossRefGoogle Scholar
  130. Schulz B, Boyle C, Draeger S, R€ommert AK, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 109:996–1004CrossRefGoogle Scholar
  131. Seckin B, Sekmen AH, Turkan I (2009) An enhancing effect of exogenous mannitol on the antioxidant enzyme activities in roots of wheat under salt stress. J Plant Growth Regul 28:12–20CrossRefGoogle Scholar
  132. Sekmen AH, Turkan I, Takio S (2007) Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritima and salt- sensitive Plantago media. Physiol Plant 131:399–411PubMedCrossRefPubMedCentralGoogle Scholar
  133. Shankar Naik B, Krishnamurthy YL (2010) Endophytes: the real untapped high energy biofuel resource. Curr Sci 98(7):883Google Scholar
  134. Shi Y, Lou K, Li C (2009) Promotion of plant growth by phytohormone-producing endophytic microbes of sugar beet. Biol Fertil Soils 45:645–653CrossRefGoogle Scholar
  135. Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227PubMedPubMedCentralCrossRefGoogle Scholar
  136. Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131PubMedCrossRefPubMedCentralGoogle Scholar
  137. Singh D, Singh NP, Chauhan SK, Singh P (2011) Developing aluminium tolerant crop plants using biotechnological tools. Curr Sci 100(12):1807–1814Google Scholar
  138. Smith SA, Tank DC, Boulanger LA, Bascom-Slack CA, Eisenman K, Kingery D, Babbs B, Fenn K, Greene JS, Hann BD, Keehner J, Kelley-Swift EG, Kembaiyan V, Lee SJ, Li P, Light DY, Lin EH, Ma C, Moore E, Schorn MA, Vekhter D, Nunez PV, Strobel GA, Donoghue MJ, Strobel SA (2008) Bioactive endophytes warrant intensified exploration and conservation. PLoS One 3(8):e3052PubMedPubMedCentralCrossRefGoogle Scholar
  139. Stolte J, Tesfai M, Øygarden L, Kværnø S, Keizer J, Verheijen F, Panagos P, Ballabio C, Hessel R (2015) Soil threats in Europe: status, methods, drivers and effects on ecosystem services. A review report, deliverable 2.1 of the RECARE Project, vol EUR 27607. Office for Official Publications of the European Community, Luxembourg, pp 69–78Google Scholar
  140. Strobel GA (2003) Endophytes as sources of bioactive products. Microbes Infect 5:535–544PubMedCrossRefPubMedCentralGoogle Scholar
  141. Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502PubMedPubMedCentralCrossRefGoogle Scholar
  142. Strong PJ, Claus H (2011) Laccase: A review of its past and its future in bioremediation. Crit Rev Environ Sci Technol 41(4):373CrossRefGoogle Scholar
  143. Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. CRC Crit Rev Plant Sci 19:1–30CrossRefGoogle Scholar
  144. Sun Y, Cheng Z, Glick BR (2009) The presence of a 1-aminocyclopro- pane-1-carboxylate (ACC) deaminase deletion mutation alters the physiology of the endophytic plant growth-promoting bacterium Burkholderia phytofirmans PsJN. FEMS Microbiol Lett 296:131–136.  https://doi.org/10.1111/j.1574-6968.2009.01625.x CrossRefPubMedPubMedCentralGoogle Scholar
  145. Sunitha VH, Devi DN, Srinivas C (2013) Extracellular enzymatic activity of endophytic fungal strains isolated from medicinal plants. WJAS 9:1–9Google Scholar
  146. Suzuki S, He YX, Oyaizu H (2003) Indole-3-acetic acid production in Pseudomonas fluorescens HP72 and its association with suppression of creeping bentgrass brown patch. Curr Microbiol 47:138–143.  https://doi.org/10.1007/s00284-002-3968-2 CrossRefPubMedPubMedCentralGoogle Scholar
  147. Tadych M, Bergen M, White JF (2014) Epichloë spp. associated with grasses: new insights on life cycles, dissemination and evolution. Mycologia 106(2):181–201PubMedCrossRefPubMedCentralGoogle Scholar
  148. Tang Q, Puri A, Padda KP, Chanway CP (2017) Biological nitrogen fixation and plant growth promotion of lodgepole pine by an endophytic diazotroph Paenibacillus polymyxa and its GFP-tagged derivative. Botany 95:611–619.  https://doi.org/10.1139/cjb-2016-0300 CrossRefGoogle Scholar
  149. Tefera T, Vidal S (2009) Effect of inoculation method and plant growth medium on endophytic colonization of sorghum by the entomopathogenic fungus Beauveria bassiana. BioControl 54(5):663–669CrossRefGoogle Scholar
  150. Tejesvi MV, Pirttilä AM (2011) Potential of tree endophytes as sources for new drug compounds. In: Pirttilä AM, Frank AC (eds) Endophytes of forest trees: biology and applications. Springer, New York, pp 295–312CrossRefGoogle Scholar
  151. Tejesvi MV, Kajula M, Mattila S, Pirttilä AM (2011) Bioactivity and genetic diversity of endophytic fungi in Rhododendron tomentosum Harmaja. Fungal Divers 47:97–107.  https://doi.org/10.1007/s13225-010-0087-4 CrossRefGoogle Scholar
  152. Tejesvi MV, Segura DR, Schnorr KM, Sandvang D, Mattila S, Olsen PB, Neve S, Kruse T, Kristensen HH, Pirttilä AM (2013) An antimicrobial peptide from endophytic Fusarium tricinctum of Rhododendron tomentosum Harmaja. Fungal Divers 60:153–159.  https://doi.org/10.1007/s13225-013-0227-8 CrossRefGoogle Scholar
  153. Terekhova VA, Semenova TA (2005) The structure of micromycete communities and their synecologic interactions with basidiomycetes during plant debris decomposition. Microbiology 74:91–96CrossRefGoogle Scholar
  154. Timmusk S, Paalme V, Pavlicek T, Bergquist J, Vangala A, Danilas T, Nevo E (2011) Bacterial distribution in the rhizosphere of wild barley under contrasting microclimates. PLoS One 6:e17968PubMedPubMedCentralCrossRefGoogle Scholar
  155. Tintjer T, Leuchtmann A, Clay K (2008) Variation in horizontal and vertical transmission of the endophyte Epichloë elymi infecting the grass Elymus hystrix. New Phytol 179(1):236–246PubMedCrossRefPubMedCentralGoogle Scholar
  156. Tiwari S, Singh P, Tiwari R, Meena KK, Yandigeri M, Singh DP, Arora DK (2011) Salt tolerant rhizobacteria mediated induced tolerance in wheat (Triticum aestivum) and chemical diversity in rhizosphere enhance plant growth. Biol Fertil Soils 47(8):907–916.  https://doi.org/10.1007/s00374-011-0598-5 CrossRefGoogle Scholar
  157. Traving SJ, Thygesen UH, Riemann L, Stedmon CA (2015) A model of extracellular enzymes in free-living microbes: which strategy pays off? Appl Environ Microbiol 81:7385–7393PubMedPubMedCentralCrossRefGoogle Scholar
  158. Tuteja N (2007) Abscisic acid and abiotic stress signaling. Plant Signal Behav 2(3):135–138.  https://doi.org/10.4161/psb.2.3.4156 CrossRefPubMedPubMedCentralGoogle Scholar
  159. Vijayalakshmi R, Kairunnisa K, Sivvaswamy SN, Dharan SS, Natarajan S (2016) Enzyme production and antimicrobial activity of endophytic bacteria isolated from medicinal plants. Indian J Sci Technol 9(14):23–32CrossRefGoogle Scholar
  160. Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Hückelhoven R, Neumann C, von Wettstein D, Franken P, Kogel KH (2005) The endophytic fungus Piriformospora indica reprograms barley to salt stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci U S A 102:13386–13391PubMedPubMedCentralCrossRefGoogle Scholar
  161. Wang Y, Dai CC (2011) Endophytes: a potential source for biosynthesis transformation and biodegradation. Ann Microbiol 61:207–215CrossRefGoogle Scholar
  162. Wang S, Hu T, Jiao Y, Wei J, Cao K (2009) Isolation and characterization of Bacillus subtilis EB-28, an endophytic bacterium strain displaying biocontrol activity against Botrytis cinereal Pers. Front Agric China 3(3):247–252CrossRefGoogle Scholar
  163. Wang M, Xing Y, Wang J, Xu Y, Wang G (2014) The role of the chi1 gene from the endophytic bacteria Serratia proteamaculans 336x in the biological control of wheat take-all. Can J Microbiol 60(8):533–540PubMedCrossRefPubMedCentralGoogle Scholar
  164. Wang JL, Li T, Liu GY, Smith JM, Zhao ZW (2016) Unravelling the role of dark septate endophyte (DSE) colonizing maize (Zea mays) under cadmium stress: physiological, cytological and genic aspects. Sci Rep 6:22028PubMedPubMedCentralCrossRefGoogle Scholar
  165. Wani ZA, Ashraf N, Mohiuddin T, Riyaz-Ul-Hassan S (2015) Plant-endophyte symbiosis, an ecological perspective. Appl Microbiol Biotechnol 99:2955–2965PubMedCrossRefPubMedCentralGoogle Scholar
  166. Waqas M, Khan AL, Kamran M, Hamayun M, Kang SM, Kim YH, Lee IJ (2012) Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules 17:10754–10773PubMedPubMedCentralCrossRefGoogle Scholar
  167. Waqas M, Khan AL, Hamayun M, Shahzad R, Kang SM, Kim JG et al (2015) Endophytic fungi promote plant growth and mitigate the adverse effects of stem rot: an example of Penicillium citrinum and Aspergillus terreus. J Plant Interact 10:280_287CrossRefGoogle Scholar
  168. Wen CY (2004) Recent advances and issues on the endophyte. Chinese J Ecol 23(2):86–91Google Scholar
  169. Wilson BJ, Addy HD, Tsuneda A, Hambleton S, Currah RS (2004) Phialocephala sphaeroides sp. nov., a new species among the dark septate endophytes from a boreal wetland in Canada. Can J Bot 82:607–617.  https://doi.org/10.1139/b04-030 CrossRefGoogle Scholar
  170. Wingender J, Neu TR, Flemming HC (1999) Microbial extracellular polymeric substances: characterization, structure and function. Springer, Berlin/Heidelberg.  https://doi.org/10.1007/978-3-642-60147-7 CrossRefGoogle Scholar
  171. Witzel K, Gwinn-Giglio M, Nadendla S, Shefchek K, Ruppel S (2012) Genome sequence of Enterobacter radicincitans DSM16656T, a plant growth-promoting endophyte. J Bacteriol 194(19):5469.  https://doi.org/10.1128/JB.01193-12 CrossRefPubMedPubMedCentralGoogle Scholar
  172. Yang H, Puri A, Padda KP, Chanway CP (2016) Effects of Paenibacillus polymyxa inoculation and different soil nitrogen treatments on lodgepole pine seedling growth. Can J For Res 46:816–821.  https://doi.org/10.1139/cjfr-2015-0456 CrossRefGoogle Scholar
  173. Yu H, Zhang L, Li L, Zheng C, Guo L, Li W, Sun P, Qin L (2010) Recent developments and future prospects of antimicrobial metabolites produced endophytes. Microbiol Res 165:437–449PubMedCrossRefPubMedCentralGoogle Scholar
  174. Zamioudis C, Pieterse CMJ (2012) Modulation of host immunity by beneficial microbes. Mol Plant-Microbe Interact 25:139–150.  https://doi.org/10.1094/MPMI-06-11-0179 CrossRefPubMedPubMedCentralGoogle Scholar
  175. Zhang YP, Nan ZB (2007) Growth and anti-oxidative systems changes in Elymus dahuricus is affected by Neotyphodium endophyte under contrasting water availability. J Agron Crop Sci 193:377–386CrossRefGoogle Scholar
  176. Zhang YP, Nan ZB (2010) Germination and seedling anti-oxidative enzymes of endophyte-infected populations of Elymus dahuricus under osmotic stress. Seed Sci Technol 38:522–527CrossRefGoogle Scholar
  177. Zhang SQ, Outlaw WH Jr (2001) Abscisic acid introduced into the transpiration stream accumulates in the guard-cell apoplast and causes stomatal closure. Plant Cell Environ 24:1045–1054CrossRefGoogle Scholar
  178. Zhang F, Zhang H, Wang G, Xu L, Shen Z (2009) Cadmium-induced accumulation of hydrogen peroxide in the leaf apoplast of Phaseolus aureus and Vicia sativa and the roles of different antioxidant enzymes. J Hazard Mater 168:76–84PubMedCrossRefPubMedCentralGoogle Scholar
  179. Zhang X, Li J, Qi G, Wen K, Lu L, Zhao X (2011) Insecticidal effect of recombinant endophytic bacterium containing Pinellia ternata agglutinin against white backed plant hopper, Sogatella furcifera. Crop Prot 30(11):1478–1484CrossRefGoogle Scholar
  180. Zhao X, Qi G, Zhang X, Lan N, Ma X (2010) Controlling sapsucking insect pests with recombinant endophytes expressing plant lectin. Nat Precedings 21:21Google Scholar
  181. Zhao K, Penttinen P, Guan T, Xiao J, Chen Q, Xu J et al (2011) The diversity and anti-microbial activity of endophytic actinomycetes isolated from medicinal plants in Panxi Plateau China. Curr Microbiol 62:182_190Google Scholar
  182. Zhu JK (2000) Over expression of a delta-pyrroline-5- carboxylate synthetase gene and analysis of tolerance to water and salt stress in transgenic rice. Trends Plant Sci 6:66–72CrossRefGoogle Scholar
  183. Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273PubMedPubMedCentralCrossRefGoogle Scholar
  184. Zinniel DK, Lambrecht P, Harris NB, Feng Z, Kuczmarski D, Higley P (2002) Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl Environ Microbiol 68:2198–2208.  https://doi.org/10.1128/AEM.68.5.2198-2208.2002 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Ahmed Mohamed Eid
    • 1
  • Salim S. Salim
    • 1
  • Saad El-Din Hassan
    • 1
  • Mohamed A. Ismail
    • 1
  • Amr Fouda
    • 1
  1. 1.Department of Botany and Microbiology, Faculty of ScienceAl-Azhar UniversityNasr CityEgypt

Personalised recommendations