Advertisement

Can Soil Microorganisms Reduce Broomrape (Orobanche spp.) Infestation in Cropping Systems?

  • Gholamreza Mohammadi
Chapter

Abstract

Among the parasitic plants around the world, broomrape is proposed as the most serious threat for crop production and food security. It attacks important crops belonging to different families such as Solanaceae, Fabaceae, Asteraceae, etc. which have a substantial contribution to supply people’s food in a global scale. Sometimes, destructive effects of the parasite lead to the complete loss of the crop yield. In recent years, broomrape infestation has notably extended in various parts of the world including Iran. Conventional methods to control broomrape are usually expensive and in most cases inefficient. Moreover, the chemical compounds used to suppress the parasite such as methyl bromide and chloropicrin can severely damage beneficial soil organisms and destroy atmospheric ozone layer. Recently, soil microorganisms have been proposed as effective and environmentally sound agents to control broomrape and reduce its damaging effects in agroecosystems. They can be divided into two main groups including pathogenic and nonpathogenic microorganisms which can affect the parasite directly and indirectly, respectively. Among the pathogenic microorganisms, Fusarium spp. are the most important candidates, and among the nonpathogenic ones, two famous symbionts, i.e., mycorrhiza and Rhizobium spp., are mostly proposed. However, there are no many reports on the role of soil microorganisms as biocontrol agents for broomrape. In this chapter, some important microorganisms having controlling effects on this parasitic weed and the mechanisms by which their effects can be achieved are discussed.

Keywords

Broomrape Orobanche Microbe Biocontrol 

References

  1. Abdel-Kader MM, El-Mougy NS (2001) Evaluation of different approaches of mycoherbicidal application for controlling Orobanche crenata in pea field. Egypt J Phytopathol 29:69–82Google Scholar
  2. Abdel-Kader MM, El-Mougy NS (2009) Prospects of mycoherbicides for control of broomrapes (Orobanche spp.) in Egypt. J Plant Prot Res 49:63–75CrossRefGoogle Scholar
  3. Abdel-Kader MM, Diab MM, Ismail BR, Hassan E, Arafat KH (1996) In vitro test of different isolates of fungal genera for their pathogenicity against Orobanche spp. p. 907–911. In: Moreno MT, Cubero JI, Berner D, Joel D, Musselman LJ, Parker C (eds) Advances in Parasitic Plant Research. Proceeding of 6th international parasitic weed symposium. Cordoba, Spain, April 16–18Google Scholar
  4. Abdel-Kader MM, Ismail BR, Diab MM, Hassan EA (1998) Preliminary evaluation of some soilborne fungi parasitizing Orobanche crenata in greenhouse. pp 127–132. In: Proceedings of 6th Mediteranean symposium. EWRS, Montpellier, pp 13–15Google Scholar
  5. Abouzeid MA, El-Tarabily KA (2010) Fusarium spp. suppress germination and parasitic establishment of bean and hemp broomrapes. Phytopathol Mediterr 49:51–64Google Scholar
  6. Ahonsi MO, Berner DK, Emechebe AM, Lagoke ST, Sanginga N (2003) Potential of ethylene-producing pseudomonads in combination with effective N2-fixing bradyrhizobial strains as supplements to legume rotation for Striga hermonthica control. Biol Control 28:1–10CrossRefGoogle Scholar
  7. Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827PubMedPubMedCentralCrossRefGoogle Scholar
  8. Al-Menoufi OA (1986) Studies on Orobanche spp. 2: Fungi associated with Orobanche crenata Forsk. Alexandria J Agric Res 31:297–310Google Scholar
  9. Amsellem Z, Barghouthi S, Cohen B, Goldwasser I, Gressel J, Hornok L, Kerenyi Z, Kleifeld I, Klein O, Kroschel J, Sauerborn J, Müller-Stöver D, Thomas H, Vurro M, Zonno MC (2001a) Recent advances in the biocontrol of Orobanche (broomrape) species. BioControl 46:211–228CrossRefGoogle Scholar
  10. Amsellem Z, Kleifeld Y, Kereny Z, Hornok L, Goldwasser Y, Gressel J (2001b) Isolation, identification and activity of mycoherbicidal pathogens from juvenile broomrape plants. Biol Control 21:274–284CrossRefGoogle Scholar
  11. Andolfi A, Boari A, Evidente A, Vurro M (2005) Metabolites inhibiting germination of Orobanche ramosa seeds produced by Myrothecium verrucaria and Fusarium compactum. J Agric Food Chem 53:1598–1603PubMedCrossRefGoogle Scholar
  12. Aybeke M (2017) Fusarium infection causes genotoxic disorders and antioxidant-based damages in Orobanche spp. Microbiol Res 201:46–51PubMedCrossRefGoogle Scholar
  13. Aybeke M, ¸Sen B, Okten S (2014) Aspergillus alliaceus, a new potential biological control of the root parasitic weed Orobanche. J Basic Microbiol 54:S93–S101PubMedCrossRefGoogle Scholar
  14. Balzergue C, Puech-Page’s V, Be’card G, Rochange SF (2011) The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signaling events. J Exp Bot 62:1049–1060PubMedCrossRefGoogle Scholar
  15. Barghouthi S, Salman M (2010) Bacterial inhibition of Orobanche aegyptiaca and Orobanche cernua radical elongation. Biocontrol Sci Tech 20:423–435CrossRefGoogle Scholar
  16. Barloy J, Pelhate AH (1962) Preliminary observations on the parasites and diseases of hemp in Anjou. Ann Epiphytopatol 13:117–149. (Horticultural Abstracts 32: Abstr. No. 7160, 1963)Google Scholar
  17. Bedi JS (1994) Further studies on control of sunflower broomrape with Fusarium oxysporum f. sp. Orthoceras- a potential mycoherbicide. In: Pieterse AH, Verkleij JAC, ter Borg SJ (eds) Proceedings of the 3rd international workshop on Orobanche and related Striga research. Royal Tropical Institute, Amsterdam, pp 539–544Google Scholar
  18. Bedi JS, Donchev N (1991) Results on mycoherbicide control of sunflower broomrape (Orobanche cumana Wall.) under glasshouse and field conditions. In: Ransom JK, Musselman LJ, Worsham AD, Parker C (eds) Proceedings of 5th international symposium parasitic weeds. Nairobi, Kenya: CIMMYT, pp 76–82Google Scholar
  19. Besserer A, Puech-Pages V, Kiefer P, Gomez-Roldan V, Jauneau A, Roy S, Portais JC, Roux C, Be’card G, Se’jalon-Delmas N (2006) Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol 4:e226PubMedPubMedCentralCrossRefGoogle Scholar
  20. Besserer A, Be’card G, Jauneau A, Roux C, Se’jalon-Delmas N (2008) GR24, a synthetic analog of strigolactones, stimulates the mitosis and growth of the arbuscular mycorrhizal fungus Gigaspora rosea by boosting its energy metabolism. Plant Physiol 148:402–413PubMedPubMedCentralCrossRefGoogle Scholar
  21. Boari A, Vurro M (2004) Evaluation of Fusarium spp. and other fungi as biological control agents of broomrape (Orobanche ramosa). Biol Control 30:212–219CrossRefGoogle Scholar
  22. Bouraoui M, Abbes Z, Abdi N et al (2012) Evaluation of efficient Rhizobium isolates as biological control agents of Orobanche foetida Poir. parasitizing Vicia faba L. minor in Tunisia. Bulg J Agric Sci 18:557–564Google Scholar
  23. Bouwmeester HJ, Matusova R, Zhongkui S, Beale MH (2003) Secondary metabolite signalling in host–parasitic plant interactions. Curr Opin Plant Biol 6:358–364PubMedCrossRefGoogle Scholar
  24. Bouwmeester HJ, Roux C, Lo’pez-Ra’ez JA, Be’card G (2007) Rhizosphere communication of plants, parasitic plants and AM fungi. Trends Plant Sci 12:224–230PubMedCrossRefGoogle Scholar
  25. Bozoukov H, Kouzmnova I (1994) Biological Control of tobacco broomrape (Orobanche spp.) by mean of some fungi of the genus Fusarium. pp 534–538 In: Pieterse AH, Verkleij JAC, Ter-Borg SJ (eds) Biology and Management of Orobanche. Proceedings of 3th international workshop on Orobanche, and related Striga Research. Amsterdam, The Netherlands, Royal Tropical InstituteGoogle Scholar
  26. Cardoso C, Ruyter-Spira C, Bouwmeester HJ (2011) Strigolactones and root infestation by plant-parasitic Striga, Orobanche and Phelipanche spp. Plant Sci 180:414–420PubMedCrossRefGoogle Scholar
  27. Chapon A, Guillerm AY, Delalande L, Lebreton L, Sarniguet A (2002) Dominant colonisation of wheat roots by Pseudomonas fluorescens Pf29A and selection of the indigenous microflora in the presence of the take-all fungus. Eur J Plant Pathol 108:449–459CrossRefGoogle Scholar
  28. Charudattan R (2001) Biological control of weeds by means of plant pathogens: significance for integrated weed management in modern agroecology. BioControl 46:229–260CrossRefGoogle Scholar
  29. Chen J, Xue QH, McErlean CSP et al (2016) Biocontrol potential of the antagonistic microorganism Streptomyces enissocaesilis against Orobanche cumana. BioControl 61:781–791CrossRefGoogle Scholar
  30. Cohen B, Amsellem Z, Lev-Yadun S, Gressel J (2002) Infection of tubercles of the parasitic weed Orobanche aegyptiaca by mycoherbicidal Fusarium species. Ann Bot 90:567–578PubMedPubMedCentralCrossRefGoogle Scholar
  31. Dadon T, Nun NB, Mayer AM (2004) A factor from Azospirillum brasilense inhibits germination and radicle growth of Orobanche aegyptiaca. Isr J Plant Sci 52:83–86CrossRefGoogle Scholar
  32. Dor E, Hershenhorn J (2009) Evaluation of the pathogenicity of microorganisms isolated from Egyptian broomrape (Orobanche aegyptiaca) in Israel. Weed Biol Manag 9:200–208CrossRefGoogle Scholar
  33. Dor E, Vurro M, Hershenhorn J (2003) The efficacy of a mixture of fungi to control Egyptian and sunflower broomrape. In: Cost Action 849: Parasitic plant management in sustainable agriculture. Meeting on biology and control of broomrape 30 Oct–2 Nov Athens, GreeceGoogle Scholar
  34. Duafala T, Gold AH, Sagen J, Wilhein S (1975) Apparent biological control of branched broomrape Orobanche ramosa. Proc Am Phytopathol Soc:113Google Scholar
  35. Duafala T, Wilhein S, Gold AH, Sagen J (1976) Rhizoctonia disease of broomrape, a possible biological control. Proc Am Phytopathol Soc 3:272Google Scholar
  36. Eizenberg H, Colquhoun JB, Mallory-Smith CA (2005) A predictive degree-days model for small broomrape (Orobanche minor) parasitism in red clover in Oregon. Weed Sci 53:37–40CrossRefGoogle Scholar
  37. El-Kassas R, Karam El-Din Z, Beale MH, Ward JL, Strange RN (2005) Bioassay-led isolation of Myrothecium verrucaria and verrucarin A as germination inhibitors of Orobanche crenata. Weed Res 45:212–219CrossRefGoogle Scholar
  38. Estabrook EM, Yoder JI (1998) Plant–plant communications: rhizosphere signalling between parasitic angiosperms and their hosts. Plant Physiol 116:1–7PubMedCentralCrossRefPubMedGoogle Scholar
  39. Farr DF, Bills GF, Chamuris GP, Rossman AY (1989) Fungi on plants and plant products in the United States. The American Phytopathological Society (APS) Press, St Paul, MNGoogle Scholar
  40. Fernandez Escobar J, Rodriguez Ojeda MI, Fernandez Martinez JM, Alonso LC (2009) Sunflower broomrape (Orobanche cumana Wallr.) in castillaleon, a traditionally non-infested area in northern Spain. Helia 32:57–64CrossRefGoogle Scholar
  41. Fernández-Aparicio M, Soto MJ, Rubiales D, Ocampo JA, García-Garrido JM (2009) The potential of Rhizobium mutants for biological controlof Orobanche crenata. Haustorium 54:3–4Google Scholar
  42. Fernandez-Aparicio M, Rispail N, Prats E et al (2010a) Parasitic plant infection is partially controlled through symbiotic pathways. Weed Res 50:76–82CrossRefGoogle Scholar
  43. Fernandez-Aparicio M, García-Garrido JM, Ocampo JA, Rubiales D (2010b) Colonization of field pea roots by arbuscular mycorrhizal fungi reduces Orobanche and Phelipanche species seed germination. Weed Res 50:262–268CrossRefGoogle Scholar
  44. Frankenberger WT, Muhammed Arshad JR (1995) Phytohormones in soil microbial production and function. Marcel Deker, New York, p 503Google Scholar
  45. Garcia-Torres L, Lopez-Granados F, Jurado-Exposito M, Diaz- Sanchez J (1998) The present state of Orobanche spp. infestation in Andalusia and the prospects for its management. In: Proceedings of 6th Mediterranean symposium. EWRS, Montpellier, pp 141–145Google Scholar
  46. Gomez-Roldan V, Fermas S, Brewer PB et al (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194PubMedCrossRefGoogle Scholar
  47. Gressel J, Hana A, Head G, Marasas W, Obilana B, Ochanda J, Souissi T, Tzotzos G (2004) Major heretofore intractable biotic constraints to African food security that may be amenable to novel biotechnological solutions. Crop Prot 23:661–689CrossRefGoogle Scholar
  48. Gu M, Chen A, Dai X, Liu W, Xu G (2011) How does phosphate status influence the development of the arbuscular mycorrhizal symbiosis? Plant Signal Behav 6:1300–1304PubMedPubMedCentralCrossRefGoogle Scholar
  49. Gworgwor NA, Weber HC (2003) Arbuscular mycorrhizal fungi–parasite-host interaction for the control of Striga hermonthica (Del.) Benth. in sorghum. Mycorrhiza 13:277–281PubMedCrossRefGoogle Scholar
  50. Hadj Seyed Hadi M, Fazeli F, Taghi Darzi M, Shahmoradi R (2005) Biological control of Orobanche aegyptiaca in tomato. Paper presented at the the fourth world congress on Allelopathy, NSW Australia, 21–26 AugustGoogle Scholar
  51. Harrison MJ (2005) Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 59:19–42PubMedCrossRefGoogle Scholar
  52. Hemissi I, Mabrouk Y, Abdi N, Bouraoui M, Saidi M, Sifi B (2013) Growth promotion and protection against Orobanche foetida of chickpea (Cicer aerietinum) by two Rhizobium strains under greenhouse conditions. Afr J Biotechnol 12:1371–1377Google Scholar
  53. Hirsch AM, Bauer WD, Bird DM, Cullimore J, Tyler B, Yoder JI (2003) Molecular signals and receptors: controlling rhizosphere interactions between plants and other organisms. Ecology 84:858–868CrossRefGoogle Scholar
  54. Iasur Kruh L, Lahav T, Abu-Nassar J, Achdari G, Salami R, Freilich S, Aly R (2017) Host-parasite-bacteria triangle: the microbiome of the parasitic weed Phelipanche aegyptiaca and tomato-Solanum lycopersicum (Mill.) as a host. Front Plant Sci 8:1–9CrossRefGoogle Scholar
  55. Joel DM, Hershenhorn J, Eizenberg H, Aly R, Ejeta G, Rich PJ, Ransom JK, Sauerborn J, Rubiales D (2007) Biology and management of weedy root parasites. Hort Rev 33:267–349Google Scholar
  56. KaramPur F, Fasihi MT, Heydari A (2004) Identification of fungal pathogenic agents of broom rape in tomato fields. Research final report 29. in PersianGoogle Scholar
  57. Kaya Y, Demerci M, Evci G (2004) Sunflower (Helianthus annuus L.) breeding in Turkey for broomrape (Orobanche cernua Loeffl.) and herbicide resistance. Helia 27:199–210CrossRefGoogle Scholar
  58. Kennedy AC, Johnson BN, Stubbs TL (2001) Host range of a deleterious rhizobacterium for biological control of downy brome. Weed Sci 49:792–797CrossRefGoogle Scholar
  59. Keyes WJ, Malley RO, Kim D, Lynn DG (2000) Signaling organogenesis in parasitic angiosperms: xenognosin generation, perception and response. J Plant Growth Regul 19:217–231PubMedGoogle Scholar
  60. Kharrat M, Halila MH, Linke KH, Haddar T (1992) First report of Orobanche foetida Poiret on faba bean in Tunisia. FABIS Newsletter 30:46–47Google Scholar
  61. Kohlen W, Charnikhova T, Liu Q, Bours R, Domagalska MA, Beguerie S, Verstappen F, Leyser O, Bouwmeester H, Ruyter-Spira C (2011) Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis. Plant Physiol 155:974–987PubMedCrossRefGoogle Scholar
  62. Kuijt J (1969) The biology of parasitic flowering plants. University of California, BerkeleyGoogle Scholar
  63. Lendzemo V, Kuyper TW, Kropff MJ, Vanast A (2005) Field inoculation with arbuscular mycorrhizal fungi reduces Striga hermonthica performance on cereal crops and has the potential to contribute to integrated Striga management. Field Crops Res 91:51–61CrossRefGoogle Scholar
  64. Linke KH, Saxena MC (1991) Study on viability and longevity of Orobanche seed under laboratory conditions. In: Wegmann K, Musselman LJ (eds) Proceedings of international workshop in Orobanche research. Tübingen, Germany: Eberhard-Karls-Universität, pp 110–114Google Scholar
  65. Linke KH, Scheibel C, Saxena MC, Sauerborn J (1992) Fungi occurring on Orobanche spp. and their preliminary evaluation for Orobanche control. Trop Pest Manag 38:127–130CrossRefGoogle Scholar
  66. Lopez-Raez JA, Kohlen W, Charnikhova T, Mulder P, Undas AK, Sergeant MJ, Verstappen F, Bugg TDH, Thompson AJ, Ruyter-Spira C, Bouwmeester H (2010) Does abscisic acid affect strigolactone biosynthesis? New Phytol 187:343–354PubMedCrossRefGoogle Scholar
  67. Lopez-Raez JA, Charnikhova T, Fernandez I, Bouwmeester H, Pozo MJ (2011a) Arbuscular mycorrhizal symbiosis decreases strigolactone production in tomato. J Plant Physiol 168:294–297PubMedCrossRefGoogle Scholar
  68. Lopez-Raez JA, Pozo MJ, García-Garrido JM (2011b) Strigolactones: a cry for help in the rhizosphere. Botany 89:513–522CrossRefGoogle Scholar
  69. Louarn J, Carbonne F, Delavault P, Bécard G, Rochange S (2012) Reduced germination of Orobanche cumana seeds in the presence of arbuscular mycorrhizal fungi or their exudates. PLoS One.  https://doi.org/10.1371/journal.pone.0049273 PubMedPubMedCentralCrossRefGoogle Scholar
  70. Mabrouk Y, Simier P, Arfaoui A, Sifi B, Delavault P, Zourgui L, Belhadj O (2007a) Induction of phenolic compounds in pea (Pisum sativum L.) inoculated by Rhizobium leguminosarum and infected with Orobanche crenata. J Phytopathol 155:728–734CrossRefGoogle Scholar
  71. Mabrouk Y, Simier P, Delavault P, Delgrange S, Sifi B, Zourgui L, Belhadj O (2007b) Molecular and biochemical mechanisms of defence induced in pea by Rhizobium leguminosarum against Orobanche crenata. Weed Res 47:452–460CrossRefGoogle Scholar
  72. Mabrouk Y, Zourgui L, Sifi B, Delavault P, Simier P, Belhadj O (2007c) Some compatible Rhizobium leguminosarum strains in peas decrease infections when parasitised by Orobanche crenata. Weed Res 47:44–53CrossRefGoogle Scholar
  73. Mabrouk Y, Mejri S, Hemissi I, Simier P, Delavault P, Saidi M, Belhadj O (2010) Bioprotection mechanisms of pea plant by Rhizobium leguminosarum against Orobanche crenata. Afr J Microbiol Res 23:2570–2575Google Scholar
  74. Mabrouk Y, Mejri S, Hemissi I, Belhadj O (2016) Biochemical analysis of induced resistance in chickpea against broomrape (Orobanche foetida) by rhizobia inoculation. Phytopathol Mediterr 55:54–61Google Scholar
  75. Matusova R et al (2005) The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp are derived from the carotenoid pathway. Plant Physiol 139:920–934PubMedPubMedCentralCrossRefGoogle Scholar
  76. Mazaheri A, Vaziri M (1991) Studies on the chemical control of broomrape (Orobanche spp) in tobacco fields, 10th edn. Plant Protection Congress of Iran Kerman 1–5 Sept 1991, p 201Google Scholar
  77. Melero JM, Dominguez J, Fernandez Martinez JM (2000) Update on sunflower broomrape situation in Spain: racial status and sunflower breeding for resistance. Helia 23:45–56Google Scholar
  78. Mohammadi A (2014) Biological control of Orobanche Ramosa by Fusarium Solani. Int J Adv Biol Biom Res 2:2751–2755Google Scholar
  79. Müller-Stöver D, Kroschel J (2005) The potential of Ulocladium botrytis for biological control of Orobanche spp. Biol Control 33:301–306CrossRefGoogle Scholar
  80. Müller-Stöver D, Kroschel J, Thomas H, Sauerborn J (2002) Chlamydospores of Fusarium oxysporum Schlecht f. sp. orthoceras (Appel & Wollenw.) Bilai as inoculum for wheat-flour – Kaolin granules to be used for the biological control of Orobanche cumana Wallr. Eur J Plant Pathol 108:221–228CrossRefGoogle Scholar
  81. Müller-Stöver D, Thomas H, Sauerborn J, Kroschel J (2004) Two granular formulations of Fusarium oxysporum f. sp. Orthoceras to mitigate sunflower broomrape (Orobanche cumana). BioControl 49:595–602CrossRefGoogle Scholar
  82. Murasheva VN (1995) Biological peculiarities and identification of the broomrape fusariosis agent. Mikolog Fitopatol 29:53–85Google Scholar
  83. Murasheva VN, Sizova TP (1995) Consequences of applying the causal agent of Fusarium wilt of broomrape to soil. Mikol Fitopatol 29:41–45Google Scholar
  84. Musselman LJ (1991) Orobanche ramosa and Orobanche aegyptiaca in Flora Palaestina. In: Proceedings of international workshop on Orobanche research, Obermachtal Germany 19–22 August pp 1–5Google Scholar
  85. Nickrent D, Musselman L (2004) Introduction to parasitic flowering plants. The Plant Health Instructor.  https://doi.org/10.1094/PHI-I-2004-0330-01
  86. Parker C (2009) Observations on the current status of Orobanche and Striga problems worldwide. Pest Manag Sci 65:453–459PubMedCrossRefGoogle Scholar
  87. Parker C (2012) Parasitic weeds: a world challenge. Weed Sci 60:269–276CrossRefGoogle Scholar
  88. Parker C, Riches CR (1993) Parasitic weeds of the world: biology and control. CAB International, WallingfordGoogle Scholar
  89. Paszkowski U (2006) Mutualism and parasitism: the yin and yang of plant symbioses. Curr Opin Plant Biol 9:364–370PubMedCrossRefGoogle Scholar
  90. Popova AA (1929) Diseases of the Tobacco Nicotiana rustica L Morbi. Plantarum 18:45–53Google Scholar
  91. Rubiales D, Sadiki M, Román D (2005) First report of Orobanche foetida on common vetch (Vicia sativa) in Morocco. Plant Dis 89:528PubMedCrossRefGoogle Scholar
  92. Rubiales D, Fernández-Aparicio M, Pérez-de-Luque A, Prats E, Castillejo MA, Sillero JC, Rispail N, Fondevilla S (2009) Breeding approaches for crenate broomrape (Orobanche crenata Forsk.) management in pea (Pisum sativum L.). Pest Manag Sci 65:553–559PubMedCrossRefGoogle Scholar
  93. Sauerborn J (1991) Parasitic flowering plants: ecology and management. Verlag Josef Margraf, WeikersheimGoogle Scholar
  94. Sauerborn J, Müller-Stöver D, Hershenhorn J (2007) The role of biological control in managing parasitic weeds. Crop Prot 26:246–254CrossRefGoogle Scholar
  95. Seenivasan N, Lakshmanan PL (2003) Biocontrol potential of native isolates of Pseudomonas fluorescens against rice root nematode. J Ecobiol 15:69–72Google Scholar
  96. Shabana YM, Müller-Stöver D, Sauerborn J (2003) Granular Pesta formulation of Fusarium oxysporum f. sp. orthoceras for biological control of sunflower broomrape: efficacy and shelf-life. Biol Control 26:189–201CrossRefGoogle Scholar
  97. Shaw CG (1973). Host fungus index for the Pacific Northwest. 1. Hosts Washington State Agricultural Experimental Station Bulletin No 766 pp 162 https://digitalcommons.usu.edu/aspen_bib/5290
  98. Shindrova P (2006) Broomrape (Orobanche cumana Wallr.) in Bulgaria: distribution and race composition. Helia 29:111–120CrossRefGoogle Scholar
  99. Stojanovic D, Boric B (1981) Prilog proucavanju mikoflore parazitnih cvetnica iz rodova Cuscuta I Orobanche. [Contribution to the study of the mycoflora of parasitic phanerogams from the genera Cuscuta and Orobanche]. Zast Bilja 32:135–145Google Scholar
  100. Talsakh Yan MG, Grigoryan SV (1978) Fungi found on broomrape in the Armenian SSR, USSR. Weeds Abstr 28:1063Google Scholar
  101. Thomas H, Sauerborn J, Muller-Stover D, Ziegler A, Bedi JS, Kroschel J (1998) The potential of Fusarium oxysporum f. sp. orthoceras as a biological control agent for Orobanche cumuna in sunflower. Biol Control 13:41–48CrossRefGoogle Scholar
  102. Thomas H, Heller A, Sauerborn J, Muller-Stover D (1999a) Fusarium oxysporum f. sp. orthoceras, a potential mycoherbicide, parasitizes seeds of Orobanche Cumana (Sunflower Broomrape): a cytological study. Ann Bot 83:453–458CrossRefGoogle Scholar
  103. Thomas H, Sauerborn J, Muller-Stover D, Kroschel J (1999b) Fungi of Orobanche aegyptica in Nepal with potential as biological control agents. Biocontrol Sci Tech 9:379–381CrossRefGoogle Scholar
  104. Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K et al (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200PubMedCrossRefGoogle Scholar
  105. Umehara M, Hanada A, Magome H, Takeda-Kamiya N, Yamaguchi S (2010) Contribution of strigolactones to the inhibition of tiller bud outgrowth under phosphate deficiency in rice. Plant Cell Physiol 51:1118–1126PubMedPubMedCentralCrossRefGoogle Scholar
  106. Westwood JH, Yoder JI, Timko MP (2010) The evolution of parasitism in plants. Trends Plant Sci 15:227–235PubMedCrossRefGoogle Scholar
  107. Whiteside MD, Digman MA, Gratton E, Treseder KK (2012) Organic nitrogen uptake by arbuscular mycorrhizal fungi in a boreal forest. Soil Biol Biochem 55:7–13CrossRefGoogle Scholar
  108. Xie X, Yoneyama K, Yoneyama K (2010) The strigolactone story. Annu Rev Phytopathol 48:93–117PubMedCrossRefGoogle Scholar
  109. Yoneyama K, Yoneyama K, Takeuchi Y, Sekimoto H (2007) Phosphorus deficiency in red clover promotes exudation of orobanchol, the signal for mycorrhizal symbionts and germination stimulant for root parasites. Planta 225:1031–1038PubMedCrossRefGoogle Scholar
  110. Yoneyama K, Xie XN, Kisugi T, Nomura T, Sekimoto H, Yokota T, Yoneyama K (2011) Characterization of strigolactones exuded by Asteraceae plants. Plant Growth Regul 65:495–504CrossRefGoogle Scholar
  111. Yoneyama K, Xie X, Kim HI, Kisugi T, Nomura T, Sekimoto H, Yokota T, Yoneyama K (2012) How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation? Planta 235:1197–1207PubMedCrossRefGoogle Scholar
  112. Zermane N, Souissi T, Kroschel J, Sikora R (2007) Biocontrol of broomrape (Orobanche crenata Forsk. and Orobanche foetida Poir.) by Pseudomonas fluorescens isolate Bf7-9 from the faba bean rhizosphere. Biocontrol Sci Tech 17:483–497CrossRefGoogle Scholar
  113. Zonno M, Vurro M (2002) Inhibition of germination of Orobanche ramosa seeds by Fusarium toxins. Phytoparasitica 30:519–524CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Gholamreza Mohammadi
    • 1
  1. 1.Department of Plant Production and Genetic Engineering, College of Agriculture and Natural ResourcesRazi UniversityKermanshahIran

Personalised recommendations