Advertisement

Bioactive Compounds Produced by Biocontrol Agents Driving Plant Health

  • Miguel O. P. Navarro
  • Amanda C. M. Piva
  • Ane S. Simionato
  • Flávia R. Spago
  • Fluvio Modolon
  • Janaina Emiliano
  • Anabela Marisa Azul
  • Andreas Lazaros Chryssafidis
  • Galdino AndradeEmail author
Chapter

Abstract

In nature, biocontrol of particular organisms by certain microbial agents depends essentially on competition for space and resources. Microbial metabolism provides a large number of bioactive compounds that can be used in control of plant diseases, mainly produced by insects, nematodes, viruses, fungi, and bacteria. Bioprospecting for microbial bioactive compounds from biocontrol agents is one of the alternatives currently being studied for plant protection, especially in species of agronomic importance. Here, we review several biological compounds and how, in general, they were discovered and have been used to improve plant health.

Keywords

Bioactive compounds Biocontrol Bacteria Plant health 

References

  1. Abdou R, Scherlach K, Dahse HM, Sattler I, Hertweck C (2010) Botryorhodines A–D, anti-fungal and cytotoxic depsidones from Btryosphaeria rhodina, an endophyte of the medicinal plant Bidens pilosa. Phytochemistry 71:110–116PubMedCrossRefGoogle Scholar
  2. Abe M, Nakazawa T (1994) Characterization of hemolytic and antifungal substance, cepalycin, from Pseudomonas cepacia. Microbiol Immunol 38:1–9PubMedCrossRefGoogle Scholar
  3. Abeysinghe S (1999) Investigation of metabolites of the rhizobacterium Pseudomonas aeruginosa strain SA44 involved in plant protection. Dissertation, Vrije Universiteit BrusselGoogle Scholar
  4. Alurappa R, Chowdappa S, Narayanaswamy R, Sinniah UR, Mohanty SK, Swamy MK (2018) Endophytic fungi and bioactive metabolites production: an update. In: Patra JK, Das G, Shin H (e) (eds) Microbial biotechnology: volume 2. Application in food and pharmacology. Singapore, Springer, pp 455–482CrossRefGoogle Scholar
  5. Amrein H, Makart S, Granado J, Shakya R, Schneider-Pokorny J, Dudler R (2004) Functional analysis of genes involved in the synthesis of syringolin A by Pseudomonas syringae pv. syringae B301D-R. Mol Plant-Microbe Interact 17:90–97.  https://doi.org/10.1094/MPMI.2004.17.1.90 CrossRefPubMedGoogle Scholar
  6. Arima K, Imanaka I, Kousaka M, Fukuta A, Tamura G (1964) Pyrrolnitrin, a new antibiotic substance, produced by Pseudomonas. Agric Biol Chem 28:575–576CrossRefGoogle Scholar
  7. Audenaert K, Pattery T, Cornelis P, Höfte M (2002) Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: role of salicylic acid, pyochelin, and pyocyanin. Mol Plant-Microbe Interact 15:1147–1156PubMedCrossRefGoogle Scholar
  8. Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 6:71–79.  https://doi.org/10.1016/j.jpha.2015.11.005 CrossRefPubMedGoogle Scholar
  9. Barakat R, Goubet I, Manon S, Berges T, Rosenfeld E (2013) Unsuspected pyocyanin effect in yeast under anaerobiosis. Microbiology 3:1–14.  https://doi.org/10.1002/mbo3.142 CrossRefGoogle Scholar
  10. Barelmann I, Meyer JM, Taraz K, Budzikiewicz H (1996) Cepaciachelin, a new catecholate siderophore from Burkholderia (Pseudomonas) cepacia. Z Naturforsch C 51:627–630.  https://doi.org/10.1515/znc-1996-9-1004 CrossRefGoogle Scholar
  11. Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Klenk H-P, Clément C, Ouhdouch Y, van Wezel GP (2016) Taxonomy, physiology, and natural products of Actinobacteria. Microbiol Mol Biol Rev 80:1–43. doi:10.1128/MMBR.00019-15PubMedCrossRefGoogle Scholar
  12. Bell SC, Turner JM (1973) Iodinin biosynthesis by a pseudomonad. Biochem Soc Trans 1:751–753.  https://doi.org/10.1042/bst0010751 CrossRefGoogle Scholar
  13. Bentinger M, Brismar K, Dallner G (2007) The antioxidant role of coenzyme Q. Mitochondrion 7:41–50CrossRefGoogle Scholar
  14. Bérdy J (2012) Thoughts and facts about antibiotics: where we are now and where we are heading. J Antibiot (Tokyo) 65:441–441.  https://doi.org/10.1038/ja.2012.54 CrossRefGoogle Scholar
  15. Bisacchi GS, Hockstein DR, Koster WH, Parker W, Rathnum ML, Unger SE (1987) Xylocandin: a new complex of antifungal peptides. J Antibiot 40:1520–1529.  https://doi.org/10.7164/antibiotics.40.1520 CrossRefPubMedGoogle Scholar
  16. Blankenfeldt W, Parsons JF (2014) The structural biology of phenazine biosynthesis. Curr Opin Struct Biol 29:26–33.  https://doi.org/10.1016/j.sbi.2014.08.013 CrossRefPubMedGoogle Scholar
  17. Blumer C, Haas D (2000) Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis. Arch Microbiol 173:170–177PubMedCrossRefGoogle Scholar
  18. Bozhüyük KA, Zhou Q, Engel Y, Heinrich A, Pérez A, Bonde HB (2016) Natural products from Photorhabdus and other entomopathogenic bacteria. In: The molecular biology of Photorhabdus bacteria. Springer, Cham, pp 55–79.  https://doi.org/10.1007/82_2016_24 CrossRefGoogle Scholar
  19. Burkhead KD, Slininger PJ, Schisler DA (1998) 1589701. Biological control bacterium enter-obacter cloacae S11: T: 07 (NRRL B-21050) produces the antifungal compound phenylacetic acid in sabouraud maltose broth culture. Soil Biol Biochem 30:665–667CrossRefGoogle Scholar
  20. Caballero- Mellado J (2006) Microbiología agrícola e interacciones microbianas con plantas. Rev Latinoam Microbiol 48(2):154–155PubMedGoogle Scholar
  21. Cardozo VF, Oliveira AG, Nishio EK, Perugini MRE, Andrade CGTJ, Silveira WD, Durán N, Andrade G, Kobayashi RKT, Nakazato G (2013) Antibacterial activity of extracellular compounds produced by a Pseudomonas strain against methicillin-resistant Staphylococcus aureus (MRSA) strains. Ann Clin Microbiol Antimicrob 12:1–8CrossRefGoogle Scholar
  22. Cartwright DK, Chilton WS, Benson DM (1995) Pyrrolnitrin and phenazine production by Pseudomonas cepacia, strain 5.5 B, a biocontrol agent of Rhizoctonia solani. Appl Microbiol Biotechnol 43:211–216.  https://doi.org/10.1007/BF00172814 CrossRefGoogle Scholar
  23. Cezairliyan B, Vinayavekhin N, Grenfell LD, Yuen GJ, Saghatelian A, Ausubel FM (2013) Identification of Pseudomonas aeruginosa phenazines that kill Caenorhabditis elegans. PLoS Pathog 9.  https://doi.org/10.1371/journal.ppat.1003101 PubMedPubMedCentralCrossRefGoogle Scholar
  24. Cézard C, Farvacques N, Sonnet P (2015) Chemistry and biology of pyoverdines, Pseudomonas primary siderophores. Curr Med Chem 21:165–186Google Scholar
  25. Chin-A-Woeng TFC, Bloemberg GV, Mulders IHM, Dekkers LC, Lugtenberg BJJ (2000) Root colonization by Phenazine-1-Carboxamide-producing bacterium PCL1391 is essential for biocontrol of tomato foot and root rot. Mol Plant-Microbe Interact 13(12):1340–1345PubMedCrossRefPubMedCentralGoogle Scholar
  26. Chin-A-Woeng TF, Bloemberg GV, Mulders IH, Dekkers lC, Lugtenberg BJ (2002) Root colonization by phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato foot and root rot. Mol Plant-Microbe Interact 13:1340–1345CrossRefGoogle Scholar
  27. Chin-A-Woeng TF, Bloemberg GV, van der Bij AJ, van der Drift KMGM, Schripsema J, Kroon B, Scheffer RJ, Keel C, Bakker PAHM, Tichy H, Bruijin FJ, Thomas-Oates JE, Lugtenberg BJJ (1998) Biocontrol by phenazine-1-carboxamide-producing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporum f. sp. radicis-lycopersici. Mol Plant-Microbe Interact 11:1069–1077CrossRefGoogle Scholar
  28. Choudhary KS, Hudaiberdiev S, Gelencsér Z, Gonçalves Coutinho B, Venturi V, Pongor S (2013) The organization of the quorum sensing luxI/R family genes in Burkholderia. Int Mol Sci 14:13727–13747.  https://doi.org/10.3390/ijms140713727 CrossRefGoogle Scholar
  29. Chowdhury SP, Hartmann A, Gao XW, Borriss R (2015) Biocontrol mechanism by root associated Bacillus amyloliquefaciens FZB42—a review. Front Microbiol 6:780PubMedPubMedCentralCrossRefGoogle Scholar
  30. Combes-Meynet E, Pothier JF, Moënne-Loccoz Y, Prigent-Combaret C (2011) The Pseudomonas secondary metabolite 2,4-diacetylphloroglucinol is a signal inducing rhizoplane expression of Azospirillum genes involved in plant-growth promotion. Mol Plant-Microbe Interact 24:271–284.  https://doi.org/10.1094/MPMI-07-10-0148 CrossRefPubMedGoogle Scholar
  31. Corran A, Knauf-Beiter G, Zeun R (2008) Fungicides acting on signal transduction. In: Krämer W, Schirmer U (eds) Modern crop protection compounds. Wiley-VCH Verlag GmbH, Weinheim, pp 561–580Google Scholar
  32. Corran A, Knauf-Beiter G, Zeun R (2011) Fungicides acting on signal transduction. In: Krämer W, Schirmer U, Jeschke P, Witschel M (eds) Modern crop protection compounds. Wiley-VCH, Weinheim, pp 715–737.  https://doi.org/10.1002/9783527644179.ch17 CrossRefGoogle Scholar
  33. Cronin D, Moënne-Loccoz Y, Fenton A, Dunne C, Dowling DN, O’Gara F (1997) Role of 2,4-diacetylphloroglucinol in the interactions of the biocontrol pseudomonad strain F113 with the potato cyst nematode Globodera rostochiensis. Appl Environ Microbiol 63:1357–1361PubMedPubMedCentralGoogle Scholar
  34. Darsih C, Prachyawarakorn V, Mahidol C, Ruchirawat S, Kittakoop P (2017) A new polyketide from the endophytic fungus Penicillium chermesinum. Indones J Chem 17:360–364CrossRefGoogle Scholar
  35. de Oliveira AG, Spago FR, Simionato AS, Navarro MOP, da Silva CS, Barazetti AR, Cely MVT, Tischer CA, San Martin JAB, de Jesus Andrade CGT, Novello CR, Mello JCP, Andrade G (2016) Bioactive organocopper compound from Pseudomonas aeruginosa inhibits the growth of Xanthomonas citri subsp. citri. Front Microbiol 7:1–12Google Scholar
  36. de Oliveira AG, Murate LS, Souza PB, Spago FR, Lopes LP, Beranger JPO, JAB SM, Nogueira MA, JCP M, CGTJ A, Andrade G (2011) Evaluation of the antibiotic activity of extracellular compounds produced by the Pseudomonas strain against the Xanthomonas citri pv. citri 306 strain. Biol Control 56:125–131CrossRefGoogle Scholar
  37. de Vleesschauwer D, Djavaheri M, Bakker PAHM, Höfte M (2008) Pseudomonas fluorescens WCS374r-induced systemic resistance in rice against Magnaporthe oryzae is based on pseudobactin mediated priming for a salicylic acid–repressible multifaceted defense response. Plant Physiol 148:1996–2012PubMedPubMedCentralCrossRefGoogle Scholar
  38. Deng P, Foxfire A, Xu J, Baird SM, Jia J, Delgado KH, Shin R, Smith L, Lu SE (2017) Siderophore product ornibactin is required for the bactericidal activity of Burkholderia contaminans MS14. Appl Environ Microbiol.  https://doi.org/10.1128/AEM.00051-17
  39. Deravel J, Lemière S, Coutte F, Krier F, Hese NV, Béchet M, Sourdeau N, Höfte M, Leprêtre A, Jacques P (2014) Mycosubtilin and surfactin are efficient, low ecotoxicity molecules for the biocontrol of lettuce downy mildew. Appl Microbiol Biotechnol 98:6255–6264PubMedCrossRefGoogle Scholar
  40. Devi KK, Kothamasi D (2009) Pseudomonas fluorescens CHA0 can kill subterranean termite Odontotermes obesus by inhibiting cytochrome c oxidase of the termite respiratory chain. FEMS Microbiol 300:195–200.  https://doi.org/10.1111/j.1574-6968.2009.01782.x CrossRefGoogle Scholar
  41. Dharni S, Alam M, Kalani K, Khaliq A, Samad A, Srivastava SK, Patra DD (2012) Production, purification, and characterization of antifungal metabolite from Pseudomonas aeruginosa SD12, a new strain obtained from tannery waste polluted soil. Microb Biotechnol 22:674–683.  https://doi.org/10.4014/jmb.1109.0906 CrossRefGoogle Scholar
  42. Dumas Z, Ross-Gillespie A, Kummerli R (2013) Switching between apparently redundant iron-uptake mechanisms benefits bacteria in changeable environments. Proc Biol Sci 280:20131055.  https://doi.org/10.1098/rspb.2013.1055 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Eilenberg J, Hajek A, Lomer C (2001) Suggestions for unifying the terminology in biological control. BioControl 46:387–400.  https://doi.org/10.1023/A:1014193329979 CrossRefGoogle Scholar
  44. El-Banna N, Winkelmann G (1998) Pyrrolnitrin from Burkholderia cepacia: antibiotic activity against fungi and novel activities against streptomycetes. J Appl Microbiol 85:69–78PubMedCrossRefGoogle Scholar
  45. El-Tarabily KA, Sivasithamparam K (2006) Non streptomycete actinomycetes as biocontrol agents of soil borne fungal plant pathogens and as plant growth promoters. Soil Biol Biochem 38:1505–1520.  https://doi.org/10.1016/j.soilbio.2005.12.017 CrossRefGoogle Scholar
  46. FAO/WHO [Food and Agriculture Organization of the United Nations/World Health Organization] (2017) International code of conduct on pesticide management. http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/Code/Code_ENG_2017updated.pdf. Accessed July 11, 2018
  47. Fedrizzi SMG (2006) Produção de metabolitos antimicrobianos e sideróforos de isolados provenientes de Terra Preta Antropogênica da Amazônia Ocidental. Dissertation, Universidade de São PauloGoogle Scholar
  48. Fernando WGD, Nakkeeran S, Zhang Y (2005) Biosynthesis of antibiotics by PGPR and its relation in biocontrol of plant diseases. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 67–109Google Scholar
  49. Floss HG, Manni PE, Hamill RL, Mabe JA (1971) Further studies on the biosynthesis of pyrrolnitrin from tryptophan by Pseudomonas. Biochem Biophys Res Commun 45:781–787.  https://doi.org/10.1016/0006-291x(71)90485-2 CrossRefPubMedGoogle Scholar
  50. Franke J, Ishida K, Hertweck C (2015) Plasticity of the malleobactin pathway and its impact on siderophore action in human pathogenic bacteria. Chem Eur J 21:8010–8014.  https://doi.org/10.1002/chem.201500757 CrossRefPubMedGoogle Scholar
  51. Gheorghe I, Popa M, Marutescu L, Saviuc C, Lazar V, Chifiriuc MC (2017) Lessons from inter-regn communication for development of novel, ecofriendly pesticides. In: Grumezescu AM (ed) New pesticides and soil sensors. Academic, London, pp 1–46Google Scholar
  52. Gilchrist FJ, Sims H, Alcock A, Jones AM, Bright-Thomas RJ, Smith D, Spanel P, Webb AK, Lenney W (2013) Is hydrogen cyanide a marker of Burkholderia cepacia complex? J Clin Microbiol.  https://doi.org/10.1128/JCM.02157-13 PubMedPubMedCentralCrossRefGoogle Scholar
  53. Girard G, van Rij ET, Lugtenberg BJJ, Bloemberg GV (2006) Regulatory roles of psrA and rpoS in phenazine-1-carboxamide synthesis by Pseudomonas chlororaphis PCL1391. Microbiology 152:43–58PubMedCrossRefGoogle Scholar
  54. Gomaa EZ (2012) Chitinase production by Bacillus thuringiensis and Bacillus licheniformis: their potential in antifungal biocontrol. J Microbiol 50:103–111PubMedCrossRefGoogle Scholar
  55. Gomes F (2012) A síntese de coenzima Q e a estabilidade de DNA mitocondrial em Saccharomyces cerevisiae. Dissertation, Universidade de São PauloGoogle Scholar
  56. Gong M, Wang JD, Zhang J, Yang H, Lu XF, Pei Y, Cheng JQ (2006) Study of the antifungal ability of Bacillus subtilis strain PY-1 in vitro and identification of its antifungal substance (iturin A). Acta Biochim Biophys Sin 38:233–240PubMedCrossRefGoogle Scholar
  57. Gong Q, Zhang C, Lu F, Zhao H, Bie X, Lu Z (2014) Identification of bacillomycin D from Bacillus subtilis fmbJ and its inhibition effects against Aspergillus flavus. Food Control 36:8–14CrossRefGoogle Scholar
  58. Gordee RS, Westhead J (1972) Pyrrolnitrin. In: Gordee RS, Westhead J (eds) Analytical microbiology New York: Academic, pp 329–338. doi:  https://doi.org/10.1016/B978-0-12-403502-7.50034-X CrossRefGoogle Scholar
  59. Govindasamy V, Senthilkumar M, Magheshwaran V et al (2011) Bacillus and Paenibacillus spp.: potential PGPR for sustainable agriculture. In: Maheshwari DK (ed) Plant growth and health promoting bacteria. Springer, Berlin, pp 333–336Google Scholar
  60. Gu Q, Yang Y, Yuan Q, Shi G, Wu L, Lou Z, Huo R, Wu H, Borriss R, Gao X (2017) Bacillomycin D produced by Bacillus amyloliquefaciens is involved in the antagonistic interaction with the plant pathogenic fungus Fusarium graminearum. Appl Environ Microbiol.  https://doi.org/10.1128/AEM.01075-17
  61. Hammer PE, Evensen KB (1993) Post-harvest control of Botrytis cinerea on cut flowers with pyrrolnitrin. Plant Dis 77:283–286CrossRefGoogle Scholar
  62. Han JW, Kim JD, Lee JM, Ham JH, Lee D, Kim BS (2014) Structural elucidation and antimicrobial activity of new phencomycin derivatives isolated from Burkholderia glumae strain 411gr-6. J Antibiot 67:721.  https://doi.org/10.1038/ja.2014.50 CrossRefPubMedGoogle Scholar
  63. Hernandez ME, Kappler A, Newman DK (2004) Phenazines and other redox active antibiotics promote microbial mineral reduction. Appl Environ Microbiol 70:921–928PubMedPubMedCentralCrossRefGoogle Scholar
  64. Herrera K (2017) Purifying an unknown Burkholderia contaminans MS14 bactericidal. Thesis, Texas A&M University. http://hdl.handle.net/1969.1/164551. Accessed
  65. Hirota A, Horikawa T, Fujiwara A (1992) Isolation of phenylacetic acid from a phytopathogenic fungus, Glomerella cingulata. Biosci Biotech Biochem 57:492CrossRefGoogle Scholar
  66. Ho Sui SJ, Lo R, Fernandes AR, Caulfield MDG, Lerman JA, Xie L, Bourne PE, Baillie DL, Brinkman FSL (2012) Raloxifene attenuates Pseudomonas aeruginosa pyocyanin production and virulence. Int J Antimicrob Agents 40:246–251PubMedPubMedCentralCrossRefGoogle Scholar
  67. Howell CR, Stipanovic RD (1979) Control of Rhizoctonia solani on cotton seedlings with Pseudomonas fluorescens and with an antibiotic produced by the bacterium. Phytopathology 69:480–482.  https://doi.org/10.1094/Phyto-69-480 CrossRefGoogle Scholar
  68. Hoyles L, Honda H, Logan NA, Halket G, La Ragione RM, McCartney AL (2012) Recognition of greater diversity of Bacillus species and related bacteria in human faeces. Res Microbiol 163:3–13PubMedCrossRefGoogle Scholar
  69. Huang H, Sun L, Bi K, Zhong G, Hu M (2016) The effect of phenazine-1-carboxylic acid on the morphological, physiological, and molecular characteristics of Phellinus noxius. Molecules 21:1–10.  https://doi.org/10.3390/molecules21050613 CrossRefGoogle Scholar
  70. Hwang BK, Lim SW, Kim BS, Lee JY, Moon SS (2001) Isolation and in vivo and in vitro antifungal activity of phenylacetic acid and sodium phenylacetate from Streptomyces humidus. Appl Environ Microbiol 67:3739–3745PubMedPubMedCentralCrossRefGoogle Scholar
  71. Hwang K, Kim H, Charusanti P, Palsson BO, Lee SY (2014) Systems biology and biotechnology of Streptomyces species for the production of secondary metabolites. Biotechnol Adv 32:255–268.  https://doi.org/10.1016/j.biotechadv.2013.10.008 CrossRefPubMedGoogle Scholar
  72. Iavicoli A, Boutet E, Buchala A, Métraux JP (2003) Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol Plant-Microbe Interact 16:851–858CrossRefGoogle Scholar
  73. Ibrahim D, Lee CC, Sheh-Hong L (2014) Antimicrobial activity of endophytic fungi isolated from Swietenia macrophylla leaves. Nat Prod Commun 9:247–250PubMedGoogle Scholar
  74. Imperi F, Tiburzi F, Visca P (2009) Molecular basis of pyoverdine siderophore recycling in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 106:20440–20445.  https://doi.org/10.1073/pnas.0908760106 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Jamiołkowska A, Księżniak A, Hetman B, Kopacki M, Skwaryło-Bednarz B, Gałązka A, Thanoon AH (2017) Interactions of arbuscular mycorrhizal fungi with plants and soil microflora. Acta Sci Pol Hortorum Cultus 16:89–95CrossRefGoogle Scholar
  76. Jendželovská Z, Jendželovský R, Kuchárová B, Fedorocko P (2016) Hypericin in the light and in the dark: two sides of the same coin. Front Plant Sci:560–567.  https://doi.org/10.3389/fpls.2016.00560
  77. Jia M, Chen L, Xin H, Zheng C, Rahman K, Han T, Qin L (2016) A friendly relationship between endophytic fungi and medicinal plants: a systematic review. Front Microbiol 7:1–14CrossRefGoogle Scholar
  78. Jourdan E, Henry G, Duby F, Dommes J, Barthélemy JP, Thonart P (2009) Insights into the defense-related events occurring in plant cells following perception of surfactin type lipopeptide from Bacillus subtilis. Mol Plant-Microbe Interact 22:456–468PubMedCrossRefGoogle Scholar
  79. Jung BK, Hong SJ, Park GS, Kim MC, Shin JH (2018) Isolation of Burkholderia cepacia JBK9 with plant growth–promoting activity while producing pyrrolnitrin antagonistic to plant fungal diseases. Appl Biol Chem 61:173–180.  https://doi.org/10.1007/s13765-018-0345-9 CrossRefGoogle Scholar
  80. Kaeberlein T, Lewis K, Epstein SS (2002) Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science 296:1127–1129.  https://doi.org/10.1126/science.296.5570.1055 CrossRefGoogle Scholar
  81. Kamil FH, Saeed EE, El-Tarabily KA, AbuQamar SF (2018) Biological control of mango dieback disease caused by Lasiodiplodia theobromae using streptomycete and non streptomycete Actinobacteria in the United Arab Emirates. Front Microbiol 9:1–19.  https://doi.org/10.3389/fmicb.2018.00829 CrossRefGoogle Scholar
  82. Kang BR, Anderson AJ, Kim YC (2018) Hydrogen cyanide produced by Pseudomonas chlororaphis O6 exhibits nematicidal activity against Meloidogyne hapla. Plant Pathol J 34:35–43.  https://doi.org/10.5423/PPJ.OA.06.2017.0115 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Kang JG (1999) Production of the antifungal compound phenylacetic acid by antagonistic bacterium Pseudomonas sp. Agric Chem Biotechnol 42:197–201Google Scholar
  84. Kang JG, Shin SY, Kim MJ, Bajpai V, Maheshwari DK, Kang SC (2004) Isolation and antifungal activities of 2-hydroxymethyl-chroman-4-one produced by Burkholderia sp. MSSP. J Antibiot 57:726–731.  https://doi.org/10.7164/antibiotics.57.726 CrossRefPubMedGoogle Scholar
  85. Kang Y, Carlson R, Tharpe W, Schell MA (1998) Characterization of genes involved in biosynthesis of a novel antibiotic from Burkholderia cepacia BC11 and their role in biological control of Rhizoctonia solani. Appl Environ Microbiol 64:3939–3947PubMedPubMedCentralGoogle Scholar
  86. Kare E, Arora NK (2011) Dual activity of pyocyanin from Pseudomonas aeruginosa—antibiotic against phytopathogen and signal molecule for biofilm development by rhizobia. Can J Microbiol 57:708–713.  https://doi.org/10.1139/W11-055 CrossRefGoogle Scholar
  87. Kawazu K, Zhang H, Kanzaki H (1996) Accumulation of benzoic acid in suspension cultured cells of Pinus thunbergii Parl. in response to phenylacetic acid administration. Biosci Biotechnol Biochem 60:1410–1412.  https://doi.org/10.1271/bbb.60.1410 CrossRefPubMedGoogle Scholar
  88. Keel C, Schnider U, Maurhofer M, Voisard C, Laville J, Burger U, Wirthner P, Haas D, Défago G (1992) Suppression of root diseases by Pseudomonas fluorescens CHA0: importance of the bacterial secondary metabolite 2,4-diacetylphloroglucinol. Mol Plant-Microbe Interact 5:4–13CrossRefGoogle Scholar
  89. Khan H, Parmar N (2013) Bioinoculants: understanding chickpea rhizobia in providing sustainable agriculture. In: Maheshwari DK, Saraf M, Aeron A (eds) Bacteria in agrobiology: crop productivity. Springer, London, pp 185–216CrossRefGoogle Scholar
  90. Kilani J, Fillinger S (2014) Phenylpyrroles: 30 years, two molecules and (nearly) no resistance. Front Microbiol 7:1–10.  https://doi.org/10.3389/fmicb.2016.02014 CrossRefGoogle Scholar
  91. Kim PI, Ryu J, Kim YH, Chi YT (2010) Production of biosurfactant bipopeptides iturin A, fengycin, and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. J Biotechnol 20:138–145Google Scholar
  92. Kim Y, Cho JY, Kuk JH, Moon JH, Cho JI, Kim YC, Park KH (2004) Identification and antimicrobial activity of phenylacetic acid produced by Bacillus licheniformis isolated from fermented soybean, Chungkook Jang. Curr Microbiol 48:312–317.  https://doi.org/10.1007/s00284-003-4193-3 CrossRefPubMedGoogle Scholar
  93. Kirinuki T, Ichiba T (1986) Effects of altericidins on the leakage of cellular constituents from Alternaria kikuchiana and Ustilago maydis. J Pest Sci 11:453–458.  https://doi.org/10.1584/jpestics.11.453 CrossRefGoogle Scholar
  94. Kirinuki T, Iwamura K, Suzuki N, Fukami H, Ueno T (1977) Altericidins, a complex of polypeptide antibiotics, produced by Pseudomonas sp. and their effect for the control of black spot of pear caused by Alternaria kikuchiana Tanaka. Sci Rep Fac Agric Kobe Univ (Japan).  https://doi.org/10.24546/00228538
  95. Kluyver AJ (1956) Pseudomonas aurefaciens nov. spec. and its pigments. J Bacteriol 72:406–411PubMedPubMedCentralGoogle Scholar
  96. Krahn D, Ottmann C, Kaiser M (2011) The chemistry and biology of syringolins, glidobactins and cepafungins (syrbactins). Nat Prod Rep 28:1854–1867.  https://doi.org/10.1039/c1np00048a CrossRefPubMedPubMedCentralGoogle Scholar
  97. Kuriakose GC, Palem PPC, Jayabaskaran C (2016) Fungal vincristine from Eutypella spp CrP14 isolated from Catharanthus roseus induces apoptosis in human squamous carcinoma cell line -A431. BMC Complement Altern Med 16:302PubMedPubMedCentralCrossRefGoogle Scholar
  98. Kwak Y, Shin JH (2015) Complete genome sequence of Burkholderia pyrrocinia 2327T, the first industrial bacterium which produced antifungal antibiotic pyrrolnitrin. J Biotechnol 211:3–4.  https://doi.org/10.1016/j.jbiotec.2015.06.420 CrossRefPubMedPubMedCentralGoogle Scholar
  99. Lassie FS, Emiliano J, Simionato AS, Navarro MOP, Gionco B, Silva CS, Niekawa ETG, Silva FM, Dealis ML, Valoto MV, Andrade G (2018) Bioactive substances produced by Burkholderia sp.with antifungal action in Candida spp. Agronomy Sci Biotechnol 4:70–78CrossRefGoogle Scholar
  100. Lasudee K, Tokuyama S, Lumyong S, Pathomaree W (2018) Actinobacteria associated with arbuscular mycorrhizal Funneliformis mosseae spores, taxonomic characterization and their beneficial traits to plants: evidence obtained from mung bean (Vigna radiata) and Thai jasmine rice (Oryza sativa). Front Microbiol 9:1247.  https://doi.org/10.3389/fmicb.2018.01247 CrossRefPubMedPubMedCentralGoogle Scholar
  101. Laursen JB, Nielsen J (2004) Phenazine natural products: biosynthesis, synthetic analogues, and biological activity. Chem Rev 104:1663–1685PubMedCrossRefPubMedCentralGoogle Scholar
  102. Laville J, Blumer C, Von Schroetter C, Gaia V, Défago G, Keel C, Haas D (1998) Characterization of the hcnABC gene cluster encoding hydrogen cyanide synthase and anaerobic regulation by ANR in the strictly aerobic biocontrol agent Pseudomonas fluorescens CHA0. J Bacteriol 180:3187–3196PubMedPubMedCentralGoogle Scholar
  103. Leahy J, Mendelsohn M, Kough J, Jones R (2014) Biopesticide oversight and registration at the US Environmental Protection Agency. In: Gross AD, Coats JR, Duke SO, Seiber JN (eds) Biopesticides: state of the art and future opportunities. American Chemical Society, Washington, DC, pp 3–18.  https://doi.org/10.1021/bk-2014-1172.ch001 CrossRefGoogle Scholar
  104. Leclère V, Béchet M, Adam A, Guez JS, Wathelet B, Ongena M, Thonart P, Gancel F, CholletImbert M, Jacques P (2005) Mycosubtilin overproduction by Bacillus subtilis BBG 100 enhances the organism’s antagonistic and biocontrol activities. Appl Environ Microbiol 8:4577–4584CrossRefGoogle Scholar
  105. Lee CH, Kempf HJ, Lim YH, Cho YH (2000) Biocontrol activity of Pseudomonas cepacia AF2001 and anthelmintic activity of its novel metabolite, cepacidine A. J Microbiol Biotechnol 10:568–571Google Scholar
  106. Lee CH, Kim S, Hyun B, Suh JM, Yon C, Kim C, Lim Y, Kim C (1994) Cepacidine A, a novel antifungal antibiotic produced by Pseudomonas cepacia. J Antibiot 47:1402–1405.  https://doi.org/10.7164/antibiotics.47.1402 CrossRefPubMedGoogle Scholar
  107. Lee JY, Moon SS, Hwang BK (2003) Isolation and in vitro and in vivo activity against Phytophthora capsici and Colletotrichum orbiculare of phenazine-1-carboxylic acid from Pseudomonas aeruginosa strain GC-B26. Pest Manag Sci 59:872–882.  https://doi.org/10.1002/ps.688 CrossRefPubMedGoogle Scholar
  108. Lewin GR, Carlos C, Chevrette MG, Horn HA, McDonald BM, Stankey RJ, Fox BG, Currie CR (2016) Evolution and ecology of Actinobacteria and their bioenergy applications. Annu Rev Microbiol 70:235–254.  https://doi.org/10.1146/annurev-micro102215-095748 CrossRefPubMedPubMedCentralGoogle Scholar
  109. Li D, Oku N, Hasada A, Shimizu M, Igarashi Y (2018) Two new 2-alkylquinolones, inhibitory to the fish skin ulcer pathogen Tenacibaculum maritimum, produced by a rhizobacterium of the genus Burkholderia sp. Beilstein J Org Chem 14:1446–1451.  https://doi.org/10.3762/bjoc.14.122 CrossRefPubMedPubMedCentralGoogle Scholar
  110. Li P, Mao Z, Lou J, Li Y, Mou Y, Lu S, Peng Y, Zhou L (2011) Enhancement of diosgenin production in Dioscorea zingiberensis cell cultures by oligosaccharides from its endophytic fungus Fusarium oxysporum Dzf17. Molecules 16:10631–10644PubMedPubMedCentralCrossRefGoogle Scholar
  111. Lim Y, Suh J-W, Kim S, Hyun B, Kim C, Lee C-h (1994) Cepacidine A, a novel antifungal antibiotic produced by Pseudomonas cepacia. II. Physicochemical properties and structure elucidation. J Antibiot 47(12):1406–1416PubMedCrossRefPubMedCentralGoogle Scholar
  112. Lin Z, Falkinham JO III, Tawfik KA, Jeffs P, Bray B, Dubay G, Coz JE, Schmidt EW (2012) Burkholdines from Burkholderia ambifaria: antifungal agents and possible virulence factors. J Nat Prod 75:1518–1523.  https://doi.org/10.1021/np300108u CrossRefPubMedGoogle Scholar
  113. Lopes LP, de Oliveira AG, Beranger JPO, Góis CG, Vasconcellos FCS, San Martin JAB, Andrade CGTJ, Mello JCP, Andrade G (2012) Activity of extracellular compounds of Pseudomonas sp. against Xanthomonas axonopodis in vitro and bacterial leaf blight in eucalyptus. Trop Plant Pathol 37:233–238CrossRefGoogle Scholar
  114. Lu S, Smith JL, Austin F, Gu G (2016) US Patent 14/806,121Google Scholar
  115. Lu SE, Novak J, Austin FW, Gu G, Ellis D, Kirk M, Wilson-Stanford S, Tonelli M, Smith L (2009) Occidiofungin, a unique antifungal glycopeptide produced by a strain of Burkholderia contaminans. Biochemistry 48:8312–8321.  https://doi.org/10.1021/bi900814c CrossRefPubMedPubMedCentralGoogle Scholar
  116. Lugtenberg BJJ, Malfanova N, Kamilova F, Berg G (2013) Plant growth promotion by microbes. In: de Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere. Wiley, Hoboken, pp 559–573CrossRefGoogle Scholar
  117. Madigan MT, Martinko JM, Dunlap PV, Clark DP (2010) Microbiologia industrial. In: Madigan MT, Martinko JM, Dunlap PV, Clark DP (eds) Microbiologia de Brock. Porto Alegre, Artmed, pp 734–760Google Scholar
  118. Manivasagan P, Venkatesan J, Sivakumar K, Kim SK (2014) Pharmaceutically active secondary metabolites of marine Actinobacteria. Microbiol Res 169:262–278.  https://doi.org/10.1016/J.MICRES.2013.07.014 CrossRefPubMedGoogle Scholar
  119. Mao S, Lee SJ, Hwangbo H, Kim YW, Park KH, Cha GS, Park RD, Kim KY (2006) Isolation and characterization of antifungal substances from Burkholderia sp. culture broth. Curr Microbiol 53:358–364.  https://doi.org/10.1007/s00284-005-0333-2 CrossRefPubMedGoogle Scholar
  120. Marquez MC, Sanchez-Porro C, Ventosa A (2011) Hallophilic and haloakalophilic, aerobic endospore forming bacteria in soil. In: Logan NA, De Vos P (eds) Endospore forming soil bacteria. Springer, New York, pp 309–339CrossRefGoogle Scholar
  121. Martínez-Hidalgo P, García JM, Pozo MJ (2015) Induced systemic resistance against Botrytis cinerea by Micromonospora strains isolated from root nodules. Front Microbiol 6:1–11.  https://doi.org/10.3389/fmicb.2015.00922 CrossRefGoogle Scholar
  122. Marx V (2016) Microbiology: the road to strain-level identification. Nat Methods 13:401–404.  https://doi.org/10.1038/nmeth.3837 CrossRefPubMedGoogle Scholar
  123. Meyer JM, Hohnadel D, Hall F (1989) Cepabactin from Pseudomonas cepacia, a new type of siderophore. Microbiology 135:1479–1487.  https://doi.org/10.1099/00221287-135-6-1479 CrossRefGoogle Scholar
  124. Meyer JM, Hornsperger JM (1978) Role of pyoverdine, the iron binding fluorescent pigment of Pseudomonas fluorescens, in iron transport. J Gen Microbiol 107:329–331CrossRefGoogle Scholar
  125. Meyer JM, Van Van T, Stintzi A, Berge O, Winkelmann G (1995) Ornibactin production and transport properties in strains of Burkholderia vietnamiensis and Burkholderia cepacia (formerly Pseudomonas cepacia). Biometals 8:309–317.  https://doi.org/10.1007/BF00141604 CrossRefPubMedGoogle Scholar
  126. Meyer SLF, Halbrendt JM, Carta LK, Skantar AM, Liu T, Abdelnabby HME, Vinyard BT (2009) Toxicity of 2,4-diacetylphloroglucinol (DAPG) to plant parasitic and bacterial feeding nematodes. J Nematol 41:274–280PubMedPubMedCentralGoogle Scholar
  127. Meyers E, Bisacchi GS, Dean L, Liu WC, Minassian B, Slusarchyk DS, Sykes RB, Tanaka SK, Trejo W (1987) Xylocandin: a new complex of antifungal peptides. J Antibiot 40:1515–1519.  https://doi.org/10.7164/antibiotics.40.1515 CrossRefPubMedGoogle Scholar
  128. Minerdi D, Fani R, Gallo R, Boarino A, Bonfante P (2001) Nitrogen fixation genes in an endosymbiotic Burkholderia strain. Appl Environ Microbiol 67:725–732PubMedPubMedCentralCrossRefGoogle Scholar
  129. Moon SS, Kang PM, Park KS, Kim CH (1996) Plant growth promoting and fungicidal 4-quinolinones from Pseudomonas cepacia. Phytochemistry 42:365–368.  https://doi.org/10.1016/0031-9422(95)00897-7 CrossRefGoogle Scholar
  130. Moraes RM, Lata H, Bedir E, Maqbool M, Cushman K (2002) The American mayapple and its potential for podophyllotoxin production. In: Janick J, Whipkey A (eds) Trends in new crops and new uses. ASHS, Alexandria, pp 527–532Google Scholar
  131. Moyne AL, Shelby R, Cleveland TEE, Tuzun S (2001) Bacillomycin D: an iturin with antifungal activity against Aspergillus favus. J Appl Microbiol 90:622–629PubMedCrossRefGoogle Scholar
  132. Munhoz LD, Fonteque JP, Santos IMO, Navarro MOP, Simionato AS, Goya ET, Rezende MI, Balbi-Peña MI, de Oliveira AG, Andrade G (2017) Control of bacterial stem rot on tomato by extracellular bioactive compounds produced by Pseudomonas aeruginosa LV strain. Cogent Food Agric 1:1–2Google Scholar
  133. Nandi M, Selin C, Brassinga AKC, Belmonte MF, Fernando WD, Loewen PC, De Kievit TR (2015) Pyrrolnitrin and hydrogen cyanide production by Pseudomonas chlororaphis strain PA23 exhibits nematicidal and repellent activity against Caenorhabditis elegans. PLoS One 10:e0123184PubMedPubMedCentralCrossRefGoogle Scholar
  134. Naznin HA, Kimura M, Miyazawa M, Hyakumachi M (2013) Analysis of volatile organic compounds emitted by plant growth promoting fungus Phoma sp. GS8-3 for growth promotion effects on tobacco. Microbes Environ 28:42–49PubMedCrossRefGoogle Scholar
  135. Neilands JB (1995) Siderophores—structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726PubMedCrossRefGoogle Scholar
  136. Nicoletti R, Fiorentino A (2015) Plant bioactive metabolites and drugs produced by endophytic fungi of Spermatophyta. Agriculture 5:918–970CrossRefGoogle Scholar
  137. Nunes TF (2018) Avaliação de substâncias extracelulares de Burkholderia pyrrocinia (RV7S3) no controle de Rhizoctonia solani em Nicotina tabacum. Thesis, State University of LondrinaGoogle Scholar
  138. OECD (2016) Guidance document on storage stability of microbial pest control products. Series on pesticides no. 85. Environment Directorate. http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(2016)54&doclanguage=en
  139. Oka M, Yaginuma K, Numata K, Konishi M, Oki T, Kawaguchi H (1988) Glidobactins a, b and c, new antitumor antibiotics. J Antibiot 41:1338–1350.  https://doi.org/10.7164/antibiotics.41.1338 CrossRefPubMedGoogle Scholar
  140. Okada A, Banno S, Ichiishi A, Kimura M, Yamaguchi I, Fujimura M (2005) Pyrrolnitrin interferes with osmotic signal transduction in Neurospora crassa. J Pestic Sci 30:378–383.  https://doi.org/10.1584/jpestics.30.378 CrossRefGoogle Scholar
  141. Ongena M, Jacques P, Touré Y, Destain J, Jabrane A, Thonart P (2005) Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Appl Microbiol Biotechnol 69:29–38PubMedCrossRefGoogle Scholar
  142. Otero Jiménez V (2011) Aislamiento, selección e identificación de actinomicetos, bacterias fotosintéticas no sulfurosas y bacterias ácido lácticas con potencial biofertilizante, a partir de suelos asociados al cultivo de plátano en la Costa Atlántica Colombiana. Thesis, Universidad Nacional de ColombiaGoogle Scholar
  143. Palem PPC, Kuriakose GC, Jayabaskaran C (2015) An endophytic fungus, Talaromyces radicus, isolated from Catharanthus roseus, produces vincristine and vinblastine, which induce apoptotic cell death. PLoS One 10(12):e0153111CrossRefGoogle Scholar
  144. Patil AS, Patil SR, Kale AS (2015) Influence of growth regulators on germination and growth of endangered medicinal plant Nothapodytes nimmoniana J. Graham under shade net conditions. Global J Res Med Plants Indigen Med 4:1–9Google Scholar
  145. Peng H, Zhang P, Bilal M, Wang W, Hu H, Zhang X (2018) Enhanced biosynthesis of phenaine-1-carboxamide by engineered Pseudomonas chlororaphis HT66. Microb Cell Fact 17(1):117.  https://doi.org/10.1186/s12934-018-0962-3
  146. Phongpaichit S, Rungjindamai N, Rukachaisirikul V, Sakayaroj J (2006) Antimicrobial activity in cultures of endophytic fungi isolated from Garcinia species. FEMS Immunol Med Microbiol 48:367–372PubMedCrossRefGoogle Scholar
  147. Pierson EA, Wang D, Pierson LS III (2013) Roles and regulation of phenazines in the biological control strain Pseudomonas chlorophis. In: Chincholkar S, Thomashow L (eds) Microbial phenazines: biosynthesis, agriculture and health. Springer, London, pp 141–162CrossRefGoogle Scholar
  148. Pierson LS III, Pierson EA (2010) Metabolism and function of phenazines in bacteria: impacts on the behavior of bacteria in the environment and biotechnological processes. Appl Microbiol Biotechnol 86:1659–1670PubMedPubMedCentralCrossRefGoogle Scholar
  149. Pimentel MR, Molina G, Dionísio AP, Maróstica Junior MR, Pastore GM (2011) The use of endophytes to obtain bioactive compounds and their application in biotransformation process. Biotechnol Res Int 2011:576286PubMedCrossRefGoogle Scholar
  150. Prince-Whelan A, Dietrich LE, Newman DK (2006) Rethinking ‘secondary’ metabolism: physiological roles for phenazine antibiotics. Nat Chem Biol 2:71–78CrossRefGoogle Scholar
  151. Puopolo G, Masi M, Raio A, Andolfi A, Zoina A, Cimmino A, Evidente A (2013) Insights on the susceptibility of plant pathogenic fungi to phenazine-1-carboxylic acid and its chemical derivatives. Nat Prod Res 27:956–966.  https://doi.org/10.1080/14786419.2012.696257 CrossRefPubMedGoogle Scholar
  152. Raaijmakers J, De Bruin I, Nybroe O, Ongena M (2010) Natural functions of cyclic lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol 34:1037–1062CrossRefGoogle Scholar
  153. Rajamanikyam M, Vadlapudi V, Amanchy R, Upadhyayula SM (2017) Endophytic fungi as novel resources of natural therapeutics. Braz Arch Biol Technol 60.  https://doi.org/10.1590/1678-4324-2017160542
  154. Ran LX, van Loon LC, Bakker PAHM (2005) No role for bacterially produced salicylic acid in rhizobacterial induction of systemic resistance in Arabidopsis. Phytopathology 95:3515–3518CrossRefGoogle Scholar
  155. Rane MR, Sarode PD, Chaudhari BL, Chincholkar SB (2008) Exploring antagonistic metabolites of established biocontrol agent of marine origin. Appl Biochem Biotechnol 151:665–675.  https://doi.org/10.1007/s12010-008-8288-y CrossRefPubMedGoogle Scholar
  156. Rapparini F, Penuelas J (2014) Mycorrhizal fungi to alleviate drought stress on plant growth. In: Miransari M (ed) Use of microbes for the alleviation of soil stresses. Springer, New York, pp 21–42CrossRefGoogle Scholar
  157. Rashad YM, Al-Askar AA, Ghoneem KM, Saber WIA, Hafez EE (2017) Chitinolytic Streptomyces griseorubens E44G enhances the biocontrol efficacy against Fusarium wilt disease of tomato. Phytoparasitica 45:227–237.  https://doi.org/10.1007/s12600-017-0580-3 CrossRefGoogle Scholar
  158. Resende MLV, Salgado SML, Chaves ZM (2003) Espécies ativas de oxigênio na resposta de defesa de plantas a patógenos. Fitopatol Bras 28:123–130CrossRefGoogle Scholar
  159. Samarina LS, Malyarovskaya VI, Rogozhina EV, Malyukova LS (2017) Endophytes, as promotors of in vitro plant growth (review). Sel’skokhozyaistvennaya Biologiya 52(5):917–927Google Scholar
  160. Saosoong K, Wongphathanakul W, Poasiri C, Ruangviriyachai C (2009) Isolation and analysis of antibacterial substance produced from P. aeruginosa TISTR 781. KKU Science J 37:163–172Google Scholar
  161. Saranya K, Kumutha K (2011) Synergistic interactions of AM fungi with essential groups of microbes in plant growth promotion. Int J Curr Res 3(7):026–030Google Scholar
  162. Scavino AF, Pedraza RO (2013) The role of siderophores in plant growth promoting bacteria. In: Maheshwari DK, Saraf M, Aeron A (eds) Bacteria in agrobiology: crop productivity. Springer, Berlin, pp 265–286CrossRefGoogle Scholar
  163. Schalk IJ, Kyslik P, Prome D, van Dorsselaer A, Poole K, Abdallah MA, Pattus F (1999) Copurification of the FpvA ferric pyoverdin receptor of Pseudomonas aeruginosa with its iron free ligand: implications for siderophore-mediated iron transport. Biochemist 38:9357–9365CrossRefGoogle Scholar
  164. Shafi J, Tian H, Ji M (2017) Bacillus species as versatile weapons for plant pathogens: a review. Biotechnol Biotechnol Equip 31:446–459CrossRefGoogle Scholar
  165. Shanmugaiah V, Mathivanan N, Varghese B (2010) Purification, crystal structure and antimicrobial activity of phenazine-1-carboxamide produced by a growth-promoting biocontrol bacterium, Pseudomonas aeruginosa MML2212. J Appl Microbiol 108:703–711PubMedCrossRefGoogle Scholar
  166. Sharma V, Salwan R (2018) Biocontrol potential and applications of Actinobacteria in agriculture. In: Singh B, Gupta V, Passari A (eds) Actinobacteria: diversity and biotechnological applications, new and future developments in microbial biotechnology and bioengineering, Ist edn. Elsevier, San Diego, pp 93–108Google Scholar
  167. Shoji JI, Hinoo H, Kato T, Hattori T, Hirooka K, Tawara K, Shiratori O, Terui Y (1990) Isolation of cepafungins I, II and III from Pseudomonas species. J Antibiot 43:783–787.  https://doi.org/10.7164/antibiotics.43.783 CrossRefPubMedGoogle Scholar
  168. Siddiqui IA, Shaukat SS (2003a) Plant species, host age and host genotype effects on Meloidogyne incognita biocontrol by Pseudomonas fluorescens strain CHA0 and its genetically modified derivatives. Phytopathology 151:231–238CrossRefGoogle Scholar
  169. Siddiqui IA, Shaukat SS (2003b) Suppression of root-knot disease by Pseudomonas fluorescens CHA0 in tomato: importance of bacterial secondary metabolite, 2,4-diacetylpholoroglucinol. Soil Biol Biochem 35:1615–1623CrossRefGoogle Scholar
  170. Silva CS (2018) Avaliação da atividade fungicida de compostos produzidos por Burkholderia pyrrocinia cepa RV1R2 contra Sclerotinia sclerotiorum e Rhizoctonia solani. Thesis, State University of LondrinaGoogle Scholar
  171. Silva CS, Vivan ACP, Simões G, Simionato AS, Navarro MOP, Panagio LA, Almeida RSC, de Oliveira AG, Andrade G (2015) Metabólitos secundários com atividade inseticida sobre Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae) produzidos por isolado do complexo Burkholderia cepacia. Blucher Biochem Proc 1:353–353.  https://doi.org/10.5151/biochem-vsimbbtec-22107 CrossRefGoogle Scholar
  172. Simionato AS, Navarro MOP, Barazetti AR et al (2017a) Strategies for biological control and antagonisms. In: Singh DP, Singh HB, Prabha R (eds) Plant–microbe interactions in agro-ecological perspectives. Springer, Singapore, pp 221–244Google Scholar
  173. Simionato AS, Navarro MOP, de Jesus MLA, Barazetti AR, da Silva CS, Simões GC, BalbiPeña MI, de Mello JCP, Panagio LA, de Almeida RSC, Andrade G, de Oliveira AG (2017b) The effect of phenazine-1-carboxylic acid on mycelial growth of Botrytis cinerea produced by Pseudomonas aeruginosa LV strain. Front Microbiol 8:1102.  https://doi.org/10.3389/fmicb.2017.01102 CrossRefPubMedPubMedCentralGoogle Scholar
  174. Singh J, Rajput RS, Bisen K, Singh S, Singh HB (2017) Role of Trichoderma secondary metabolites in plant growth promotion and biological control. In: Singh HB, Sarma BK, Keswani C (eds) Advances in PGPR research. CABI, Oxfordshire, pp 411–426CrossRefGoogle Scholar
  175. Sokol PA, Lewis CJ, Dennis JJ (1992) Isolation of a novel siderophore from Pseudomonas cepacia. J Med Microbiol 36:184–189.  https://doi.org/10.1099/00222615-36-3-184 CrossRefPubMedGoogle Scholar
  176. Sousa CS, Soares ACF, Garrido MS (2008) Characterization of streptomycetes with potential to promote plant growth and biocontrol. Sci Agric 65:50–55.  https://doi.org/10.1590/S0103-90162008000100007 CrossRefGoogle Scholar
  177. Souza CS, Menezes RSC, Sampaio EVSB, Lima FS (2012) Glomalin: characteristics, production, limitations and contribution to soils. Semina: Ciências Agrárias 33(1):3033–3044Google Scholar
  178. Spence CA, Raman V, Donofrio NM, Bais HP (2014) Global gene expression in rice blast pathogen Magnaporthe oryzae treated with a natural rice soil isolate. Planta 239:171–185.  https://doi.org/10.1007/s00425-013-1974-1 CrossRefPubMedGoogle Scholar
  179. Specian V, Sarragiotto MH, Pamphile JA, Clemente E (2012) Chemical characterization of bioactive compounds from the endophytic fungus Diaporthe helianthi isolated from Luehea divaricata. Braz J Microbiol 43(3):1174–1182PubMedPubMedCentralCrossRefGoogle Scholar
  180. Sultan MZ, Park K, Lee SY, Park JK, Varughese T, Moon SS (2008) Novel oxidized derivatives of antifungal pyrrolnitrin from the bacterium Burkholderia cepacia K87. J Antibiot 61:420–425PubMedCrossRefGoogle Scholar
  181. Tank N, Rajendran N, Patel B, Saraf M (2012) Evaluation and biochemical characterization of a distinctive pyoverdin from a Pseudomonas isolated from chickpea rhizosphere. Braz J Microbiol 43:639–648.  https://doi.org/10.1590/S1517-83822012000200028 CrossRefPubMedPubMedCentralGoogle Scholar
  182. Tao KLJ, Buta JG (1986) Differential effects of camptothecin and interactions with plant hormones on seed germination and seedling growth. Plant Growth Regul 4:219–226CrossRefGoogle Scholar
  183. Tawfik KA, Jeffs P, Bray B, Dubay G, Falkinham JO III, Mesbah M, Youssef D, Khalifa S, Schmidt EW (2010) Burkholdines 1097 and 1229, potent antifungal peptides from Burkholderia ambifaria 2.2 N. Org Lett 12:664–666.  https://doi.org/10.1021/ol9029269 PubMedCrossRefPubMedCentralGoogle Scholar
  184. Terui Y, Nishikawa J, Hinoo H, Kato T, Shoji JI (1990) Structures of cepafungins I, II and III. J Antibiot 43:788–795.  https://doi.org/10.7164/antibiotics.43.788 CrossRefPubMedPubMedCentralGoogle Scholar
  185. Toshima H, Maru K, Saito M, Ichihara A (1999) Study on fungitoxic 3-amino-2-piperidinone-containing lipids: total syntheses of cepaciamides A and B. Tetrahedron Lett 40:939–942.  https://doi.org/10.1016/S0040-4039(98)02494-0 CrossRefGoogle Scholar
  186. Touré Y, Ongena M, Jacques P, Guiro A, Thonart P (2004) Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. J Appl Microbiol 96:1151–1160CrossRefGoogle Scholar
  187. Vaishnav A, Sharma SK, Choudhary DK, Sharma KP, Ahmad E, Sharma MP, Ramesh A, Saxena AK (2018) Nitric oxide as a signalling molecule in plant–bacterial interactions. In: Egamberdieva D, Ahmad P (eds) Plant microbiome: stress response. Springer, Singapore, pp 183–199CrossRefGoogle Scholar
  188. van Loon LC, Bakker PA, van der Heijdt WH, Wendehenne D, Pugin A (2008) Early responses of tobacco suspension cells to rhizobacterial elicitors of induced systemic resistance. Mol Plant-Microbe Interact 21:1609–1621PubMedCrossRefGoogle Scholar
  189. van Pée KH, Ligon JM (2000) Biosynthesis of pyrrolnitrin and other phenylpyrrole derivatives by bacteria. Nat Prod Rep 17:157–164.  https://doi.org/10.1039/A902138H CrossRefPubMedGoogle Scholar
  190. Vasconcellos FCS, de Oliveira AG, Lopes-Santos L, Beranger JPO, Cely MVT, Simionato AS, Pistori JF, Spago FR, de Mello JCP, San Martin JAB, Jesus Andrade CGT, Andrade G (2014) Evaluation of antibiotic activity produced by Pseudomonas aeruginosa LV strain against Xanthomonas arboricola pv. pruni. Agric Sci 5:71–76Google Scholar
  191. Venieraki A, Dimou M, Katinakis P (2017) Endophytic fungi residing in medicinal plants have the ability to produce the same or similar pharmacologically active secondary metabolites as their hosts. Hellenic Plant Prot J 10:51–66CrossRefGoogle Scholar
  192. Vial L, Groleau MC, Dekimpe V, Deziel E (2007) Burkholderia diversity and versatility: an inventory of the extracellular products. J Microbiol Biotechnol 17:1407–1429PubMedGoogle Scholar
  193. Vurukonda SSKP, Giovanardi D, Stefani E (2018) Plant growth promoting and biocontrol activity of Streptomyces spp. as endophytes. Int J Mol Sci 19:1–26CrossRefGoogle Scholar
  194. Wagner LJ, Flores HE (1994) Effect of taxol and related compounds on growth of plant pathogenic fungi. Biochem Cell Biol 84:1173–1178Google Scholar
  195. Wang XQ, Liu AX, Guerrero A, Liu J, Yu XQ, Deng P, Ma L, Baird SM, Smith L, Li XD, Lu SE (2016) Occidiofungin is an important component responsible for the antifungal activity of Burkholderia pyrrocinia strain Lyc2. J Appl Microbiol 120:607–618.  https://doi.org/10.1111/jam.13036 CrossRefPubMedGoogle Scholar
  196. Wang Y, Zeng QG, Zhang ZB, Yan RM, Wang LY, Zhu D (2011) Isolation and characterization of endophytic huperzine A–producing fungi from Huperzia serrata. J Ind Microbiol Biotechnol 38:1267–1268PubMedCrossRefGoogle Scholar
  197. Waqas M, Khan AL, Kamran M, Hamayun M, Kang S, Kim Y, Lee I (2012) Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules 17:10754–10773PubMedPubMedCentralCrossRefGoogle Scholar
  198. Waqas M, Khan AL, Shahzad R, Ullah I, Khan AR, Lee J (2015) Mutualistic fungal endophytes produce phytohormones and organic acids that promote japonica rice plant growth under prolonged heat stress. J Zhejiang Univ-SCIENCE B (Biomedicine & Biotechnol) 16:1011–1018CrossRefGoogle Scholar
  199. Weller DM (2007) Phytopathology 97(2):250–256CrossRefGoogle Scholar
  200. Weller DM, Mavrodi DV, van Pelt JA, Pieterse CMJ, van Loon LC, Bakker PAHM (2012) Induced systemic resistance in Arabidopsis thaliana against Pseudomonas syringae pv. Tomato by 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens. Phytopathology 102:403–412PubMedCrossRefGoogle Scholar
  201. Wäspi U, Blanc D, Winkler T, Rüedi P, Dudler R (1998) Syringolin, a novel peptide elicitor from Pseudomonas syringae pv. syringae that induces resistance to Pyricularia oryzae in rice. Mol Plant-Microbe Interact 11:727–733.  https://doi.org/10.1094/MPMI.1998.11.8.727 CrossRefGoogle Scholar
  202. WHO [World Health Organization] (2017) WHO pesticide evaluation scheme (WHOPES), Guidelines for testing [online]. WHO, GenevaGoogle Scholar
  203. Xu L, Zhou L, Zhao J, Li J, Li X, Wang J (2007) Fungal endophytes from Dioscorea zingiberensis rhizomes and their antibacterial activity. Appl Microbiol 46:68–72CrossRefGoogle Scholar
  204. Xu Z, Shao J, Li B, Shen Q, Zhang R (2013) Bacillomycin D in Bacillus amyloliquefaciens SQR9 contributes to antifungal activity and biofilm formation. Appl Environ Microbiol 79:755–781CrossRefGoogle Scholar
  205. Xu S, Pan X, Luo J, Wu J, Zhou Z, Liang X, He Y, Zhou M (2015) Effects of phenazine-1-carboxylic acid on the biology of the plant-pathogenic bacterium Xanthomonas oryzae pv. Oryzae. Pestic Biochem Physiol 117:39–46PubMedCrossRefPubMedCentralGoogle Scholar
  206. Yandigeri MS, Malviya N, Solanki MK, Shrivastava P, Sivakumar G (2015) Chitinolytic Streptomyces vinaceusdrappus S5MW2 isolated from Chilika Lake, India enhances plant growth and biocontrol efficacy through chitin supplementation against Rhizoctonia solani. World J Microbiol Biotechnol 31:1217–1225.  https://doi.org/10.1007/s11274-015-1870-x CrossRefPubMedGoogle Scholar
  207. Yánez-Mendizábal V, Zeriouh H, Viñas I, Torres R, Usall J, Vicente A, Pérez-García A, Teixidó N (2012) Biological control of peach brown rot (Monilinia spp.) by Bacillus subtilis CPA-8 is based on production of fengycin like lipopeptides. Eur J Plant Pathol 132:609–619CrossRefGoogle Scholar
  208. YE Y-f, LI Q-q, FU G, YUAN G-q, MIAO J-h, LIN W (2012) Identification of antifungal substance (Iturin A2) produced by Bacillus subtilis B47 and its effect on southern corn leaf blight. J Integr Agric 11(1):90–99CrossRefGoogle Scholar
  209. Yoshihisa H, Zenji S, Fukushi H, Katsuhiro K, Haruhisa S, Takahito S (1989) Production of antibiotics by Pseudomonas cepacia as an agent for biological control of soil borne plant pathogens. Soil Biol Biochem 21:723–728.  https://doi.org/10.1016/0038-0717(89)90070-9 CrossRefGoogle Scholar
  210. Yu GY, Sinclair JB, Hartman GL, Bertagolli BL (2002) Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol Biochem 34:955–963CrossRefGoogle Scholar
  211. Yu JM, Wang D, Pierson LS III, Pierson EA (2018) Effect of producing different phenazines on bacterial fitness and biological control in Pseudomonas chlororaphis 30-84. Plant Pathol J 34:44–58.  https://doi.org/10.5423/PPJ.FT.12.2017.0277 CrossRefPubMedPubMedCentralGoogle Scholar
  212. Yuan J, Li B, Zhang N, Waseem R, Shen Q, Huang Q (2012) Production of bacillomycin and macrolactin type antibiotics by Bacillus amyloliquefaciens NJN-6 for suppressing soil borne plant pathogens. J Agric Food Chem 60:2976–2981PubMedCrossRefGoogle Scholar
  213. Yuan L, Li Y, Wang Y, Zhang X, Xu Y (2008) Optimization of critical medium components using response surface methodology for phenazine-1-carboxylic acid production by Pseudomonas sp. M-18Q. J Biosci Bioeng 3:232–237.  https://doi.org/10.1263/jbb.105.232 CrossRefGoogle Scholar
  214. Zeilinger S, Gupta VK, Dahms TES, Silva RN, Singh HB, Upadhyay RS, Gomes EV, Tsui CK-M, Chandra Nayak S, van der Meer JR (2016) Friends or foes? Emerging insights from fungal interactions with plants. FEMS Microbiol Rev 40(2):182–207CrossRefGoogle Scholar
  215. Zhang T, Shi ZQ, Hu LB, Cheng LG, Wang F (2008) Antifungal compounds from Bacillus subtilis B-FS06 inhibiting the growth of Aspergillus flavus. World J Microbiol Biotechnol 24:783–788CrossRefGoogle Scholar
  216. Zhang Y, Wang C, Su P, Liao X, Borkovich KA (2015) Control effect and possible mechanism of the natural compound Phenazine-1-Carboxamide against Botrytis cinerea. PLoS One 10(10):e0140380PubMedPubMedCentralCrossRefGoogle Scholar
  217. Zhao J, Shan T, Mou Y, Zhou L (2011) Plant derived bioactive compounds produced by endophytic fungi. Mini-Rev Med Chem 11:159–168PubMedCrossRefGoogle Scholar
  218. Zhao J, Zhou L, Wang J, Shan T, Zhong L, Liu X, Gao X (2010) Endophytic fungi for producing bioactive compounds originally from their host plants. In: Mendez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology, vol 1. Formatex Research Center, Badajoz, pp 567–576Google Scholar
  219. Zhou Q, Li K, Jun X, Bo L (2009) Role and functions of beneficial microorganisms in sustainable aquaculture. Bioresour Technol 100:3780–3786.  https://doi.org/10.1016/j.biortech.2008.12.037 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Miguel O. P. Navarro
    • 1
  • Amanda C. M. Piva
    • 1
  • Ane S. Simionato
    • 1
  • Flávia R. Spago
    • 2
  • Fluvio Modolon
    • 1
  • Janaina Emiliano
    • 1
  • Anabela Marisa Azul
    • 3
  • Andreas Lazaros Chryssafidis
    • 4
  • Galdino Andrade
    • 1
    Email author
  1. 1.Microbial Ecology Laboratory, Department of MicrobiologyState University of LondrinaLondrinaBrazil
  2. 2.Microbial Ecology Laboratory, Department of Fishing EngineeringFederal Institute of Espírito SantoCampus PiúmaBrazil
  3. 3.Centre for Functional Ecology (CFE), Department of Life SciencesUniversity of CoimbraCoimbraPortugal
  4. 4.Agroveterinary Sciences CenterState University of Santa CatarinaLagesBrazil

Personalised recommendations