Plant-Microbiome Interactions in Agroecosystem: An Application

  • Maqshoof Ahmad
  • Sajid Mahmood Nadeem
  • Zahir Ahmad Zahir


Global food security is the major challenge for agricultural scientists, but it should not be on the cost of depletion of nonrenewable resources such as soil. Due to the decrease in agricultural land, the use of synthetic chemical fertilizers to increase crop productivity has placed extra strain on fragile agroecosystem, thereby deteriorating its health. Plant-associated microbial communities interact with plants positively or negatively. These interactions are affected by the quality of root exudates and physicochemical properties of soil. Beneficial soil microbes have a number of plant development and growth-endorsing characteristics including biological nitrogen fixation, phytohormone production, nutrient mobilization and solubilization, biocontrol activity, production of hydrolytic enzymes, and stress tolerance induction. These traits of beneficial microbes can be harnessed with better soil health, improved plant growth and productivity, and improved stress tolerance of crop plants. Improvement in beneficial microbial populations through rhizosphere engineering or use of microbial inoculants and/or their metabolites can be helpful to modify the soil microbiome, leading to increased productivity of agroecosystem. Present review highlights the significance of soil microbiome with special reference to plant health. The symbiotic plant microbial communications and the most prominent plant growth-promoting mechanisms used by soil microbes are discussed. The potential applications of plant-microbe interactions for improving crop productivity under natural as well as stressful situations to maintain the sustainability of agroecosystem have been explained with examples, followed by their future prospects.


Agroecosystem Microbes Plant Crop production Nutrients Stress 


  1. Aban JL, Barcelo RC, Oda EE, Reyes GA, Balangcod TD, Gutierrez RM, Hipol RM (2017) Auxin production, phosphate solubilisation and ACC deaminase activity of root symbiotic fungi (RSF) from Drynaria quercifolia L. Bull Env Pharmacol Life Sci 6(5):26–31Google Scholar
  2. Abou-el-Seoud II, Abdel-Megeed A (2012) Impact of rock materials and biofertilizations on P and K availability for maize (Zea maize) under calcareous soil conditions. Saudi J Biol Sci 1:55–63CrossRefGoogle Scholar
  3. Abou-Shanab R, Angle J, Chaney R (2006) Bacterial inoculants affecting nickel uptake by Alyssum murale from low, moderate and high Ni soils. Soil Biol Biochem 38:2882–2889CrossRefGoogle Scholar
  4. Afzal A, Bano A, Fatima M (2010) Higher soybean yield by inoculation with N-fixing and P- solubilizing bacteria. Agron Sustain Dev 30:487–495CrossRefGoogle Scholar
  5. Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26(1):1–20CrossRefGoogle Scholar
  6. Ahmad M, Zahir ZA, Asghar HN, Asghar M (2011) Inducing salt tolerance in mung bean through co-inoculation with Rhizobium and PGPR containing ACC-deaminase. Can J Microbiol 57(7):578–589PubMedCrossRefPubMedCentralGoogle Scholar
  7. Ahmad M, Zahir ZA, Asghar HN, Arshad M (2012) The combined application of rhizobial strains and plant growth promoting rhizobacteria improves growth and productivity of mung bean (Vigna radiata L.) under salt-stressed conditions. Ann Microbiol 62:1321–1330CrossRefGoogle Scholar
  8. Ahmad M, Zahir ZA, Khalid M, Nazli F, Arshad M (2013) Efficacy of Rhizobium and Pseudomonas strains to improve physiology, ionic balance and quality of mungbean under salt-affected conditions on farmer’s fields. Plant Physiol Biochem 63:170–176PubMedCrossRefPubMedCentralGoogle Scholar
  9. Ahmad M, Zahir ZA, Nazli F, Akram F, Arshad M, Khalid M (2013c) Effectiveness of halo-tolerant, auxin producing Pseudomonas and Rhizobium strains to improve osmotic stress tolerance in mung bean (Vigna radiata L.). Braz J Microbiol 44(4):1341–1348PubMedCrossRefGoogle Scholar
  10. Ahmad M, Zahir ZA, Zeshan MSH, Nasim M, Nadeem SM, Nazli F, Jamil M (2015) Improving the productivity of cucumber through combined application of organic fertilizers and Pseudomonas fluorescens. Pak J Agri Sci 52(4):1011–1016Google Scholar
  11. Ahmad M, Nadeem SM, Naveed M, Zahir ZA (2016) Potassium solubilizing bacteria and their application in agriculture. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 293–313CrossRefGoogle Scholar
  12. Ahmad M, Zahir ZA, Jamil M, Nazli F, Iqbal Z (2017) Field application of ACC-deaminase biotechnology for improving chickpea productivity in Bahawalpur. Soil Environ 36(2):197–206CrossRefGoogle Scholar
  13. Ahmad M, Ahmad I, Hilger TH, Nadeem SM, Akhtar MF, Jamil M, Hussain A, Zahir ZA (2018) Preliminary study on phosphate solubilizing Bacillus subtilis strain Q3 and Paenibacillus sp. strain Q6 for improving cotton growth under alkaline conditions. PeerJ. PubMedPubMedCentralCrossRefGoogle Scholar
  14. Ahmadi K, Razavi BS, Maharjan M, Kuzyakov Y, Kostka SJ, Carminati A, Zarebanadkouki M (2018) Effects of rhizosphere wettability on microbial biomass, enzyme activities and localization. Rhizosphere 7:35–42CrossRefGoogle Scholar
  15. Alloush GAZ, Zeto SK, Clark RB (2000) Phosphorus source, organic matter and arbuscular mycorrhiza effects on growth and mineral acquisition of chickpea grown in acidic soil. J Plant Nutr 23:1351–1369CrossRefGoogle Scholar
  16. Alvarez-Lopez V, Prieto-Fernandez A, Roiloa S, RodriguezGarrido B, Herzig R, Puschenreiter M, Kidd PS (2017) Evaluating phytoextraction efficiency of two high biomass crops after soil amendment and inoculation with rhizobacterial strains. Environ Sci Pollut Res 24:7591–7606CrossRefGoogle Scholar
  17. Amundson R, Berhe AA, Hopmans JW, Olson C, Sztein AE, Sparks DL (2015) Soil and human security in the 21st century. Science 348:1261071-1–1261071-6CrossRefGoogle Scholar
  18. Andrews M, Andrews ME (2017) Specificity in legume-rhizobia symbioses. Int J Mol Sci 18(4):1–39CrossRefGoogle Scholar
  19. Andrews M, James EK, Sprent JI, Boddey RM, Gross E, dos Reis FB Jr (2011) Nitrogen fixation in legumes and actinorhizal plants in natural ecosystems: values obtained using 15N natural abundance. Plant Ecol Divers 4:131–140CrossRefGoogle Scholar
  20. Andrews M, Raven JA, Lea PJ (2013) Do plants need nitrate? The mechanisms by which nitrogen form affects plants. Ann Appl Biol 163:174–199CrossRefGoogle Scholar
  21. Arkhipova TN, Prinsen EA, Veselov SU, Martinenko EV, Melentiev LV, Kudoyarova GR (2007) Cytokinin producing bacteria enhance plant growth in drying soil. Plant Soil 292:305–315CrossRefGoogle Scholar
  22. Armada E, Azcon R, Lopez-Castillo OM, Calvo-Polanco M, JM R’ı-L (2015) Autochthonous arbuscular mycorrhizal fungi and Bacillus thuringiensis from a degraded Mediterranean area can be used to improve physiological traits and performance of a plant of agronomic interest under drought conditions. Plant Physiol Biochem 90:64–74PubMedCrossRefGoogle Scholar
  23. Arora NK, Kang SC, Maheshwari DK (2001) Isolation of siderophore-producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Curr Sci 8:673–677Google Scholar
  24. Arora NK, Singhal V, Maheshwari DK (2006) Salinity-induced accumulation of poly-b- hydroxybutyrate in rhizobia indicating its role in cell protection. World J Microbiol Biotechnol 22:603–606CrossRefGoogle Scholar
  25. Arshad M, Frankenberger WT Jr (2002) Ethylene: agricultural sources and applications. Ann Bot 90(3):424CrossRefGoogle Scholar
  26. Bacilico-Jimenz M, Aguiler S, Ventura-zapta E, Perez-Campos E, Bouquelet S, Zenteno E (2003) Chemical characterization of root exudates from rice (Oryza sativa) and their effects on the chemotactic response of endophytic bacteria. Plant Soil 249:271–277CrossRefGoogle Scholar
  27. Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266PubMedPubMedCentralCrossRefGoogle Scholar
  28. Bandi S, Sivasubramanian P (2012) Management of Thrips tabaci Lindeman in onion using Pseudomonas fluorescens Migula through induced resistance. J Biopest 5:1–3Google Scholar
  29. Bao Z, Sasaki K, Okubo T, Ikeda S, Anda M, Hanzawa E, Kaori K, Tadashi S, Hisayuki M, Minamisawa K (2013) Impact of Azospirillum sp. B510 inoculation on rice-associated bacterial communities in a paddy field. Microbes Environ 28:487–490PubMedPubMedCentralCrossRefGoogle Scholar
  30. Barnawal D, Bharti N, Maji D, Chanotiya CS, Kalra A (2014) ACC deaminase-containing Arthrobacter protophormiae induces NaCl stress tolerance through reduced ACC oxidase activity and ethylene production resulting in improved nodulation and mycorrhization in Pisumsativum. J Plant Physiol 171:884–894PubMedCrossRefGoogle Scholar
  31. Barnawal D, Bharti N, Pandey SS, Pandey A, Chanotiya CS, Kalra A (2017) Plant growth-promoting rhizobacteria enhance wheat salt and drought stress tolerance by altering endogenous phytohormone levels and TaCTR1/TaDREB2 expression. Physiol Planta 161:502–514CrossRefGoogle Scholar
  32. Barrett LG, Bever JD, Bissett A, Thrall PH (2015) Partner diversity and identity impacts on plant productivity in acacia-rhizobial interactions. J Ecol 103:130–142CrossRefGoogle Scholar
  33. Bashan Y, Levanony H (1990) Current status of Azospirillum inoculation technology: Azospirillum as a challenge for agriculture. Can J Microbiol 36:591–608CrossRefGoogle Scholar
  34. Beck HC, Hansen AM, Lauritsen FR (2003) Novel pyrazine metabolites found in polymyxin biosynthesis by Paenibacillus polymyxa. FEMS Microbiol Lett 220:67–73PubMedCrossRefGoogle Scholar
  35. Beltrano J, Ruscitti M, Arango MC, Ronco M (2013) Effects of arbuscular mycorrhiza inoculation on plant growth, biological and physiological parameters and mineral nutrition in pepper grown under different salinity and p levels. J Soil Sci Plant Nutr 13Google Scholar
  36. Beneduzi A, Moreira F, Costa PB, Vargas LK, Lisboa BB, Favreto R, Baldani JI, Passaglia LMP (2013) Diversity and plant growth promoting evaluation abilities of bacteria isolated from sugarcane cultivated in the south of Brazil. Appl Soil Ecol 63:94–104CrossRefGoogle Scholar
  37. Benizri E, Kidd PS (2018) The role of the rhizosphere and microbes associated with hyperaccumulator plants in metal accumulation. In: Van der Ent A, Echevarria G, Baker A, Morel JL (eds) Agromining: farming for metals extracting unconventional resources using plants. Springer, Berlin, pp 157–188CrossRefGoogle Scholar
  38. Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17(8):478–486CrossRefGoogle Scholar
  39. Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13CrossRefPubMedPubMedCentralGoogle Scholar
  40. Berge O, Lodhi A, Brandelet G, Santaella C, Roncato MA, Christen R, Heulin T, Achouak W (2009) Rhizobium alamii sp. nov., an exopolysaccharide-producing species isolated from legume and non-legume rhizospheres. Int J Systematic Evolu Microbiol 59:367–372CrossRefGoogle Scholar
  41. Bernard T, Jebbar M, Rassouli Y, Himdi KS, Hamelin J, Blanco C (1993) Ectoine accumulation and osmotic regulation in Brevibacterium linens. J Gen Microbiol 139:129–138CrossRefGoogle Scholar
  42. Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350PubMedCrossRefGoogle Scholar
  43. Boiero L, Perrig D, Masciarelli O, Penna C, Cassan F, Luna V (2007) Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications. Appl Microbiol Biotechnol 74:874–880PubMedCrossRefPubMedCentralGoogle Scholar
  44. Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nat Commun 1:48. CrossRefPubMedGoogle Scholar
  45. Bottini R, Cassan F, Piccoli P (2004) Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol 65:497–503PubMedCrossRefPubMedCentralGoogle Scholar
  46. Bottomley PJ, Myrold DD (2015) Biological N inputs. In: Paul EA (ed) Soil microbiology, ecology and biochemistry, 4th edn. Academic Press, pp 447–470Google Scholar
  47. Buscot F (2015) Implication of evolution and diversity in arbuscular and ectomycorrhizal symbioses. J Plant Physiol 172:55–61PubMedCrossRefGoogle Scholar
  48. Calderon K, Spor A, Breuil MC, Bru D, Bizouard F, Violle C, Barnard RL, Philippot L (2017) Effectiveness of ecological rescue for altered soil microbial communities and functions. ISME J 11:1–12CrossRefGoogle Scholar
  49. Calvo P, Watts DB, Kloepper JW, Torbert HA (2017) Effect of microbial-based inoculants on nutrient concentrations and early root morphology of corn (Zea mays). J Plant Nutr Soil Sci 180:56–70CrossRefGoogle Scholar
  50. Camerini S, Senatore B, Lonardo E, Imperlini E, Bianco C, Moschetti G, Rotino GL, Campion B, Defez R (2008) Introduction of a novel pathway for IAA biosynthesis to rhizobia alters vetch root nodule development. Arch Microbiol 190:67–77PubMedCrossRefGoogle Scholar
  51. Chamani HE, Yasari E, Pirdashti H (2015) Response of yield and yield components of rice (Oryza sativa L. cv. Shiroodi) to different phosphate solubilizing microorganisms and mineral phosphorous. Int J Biosci 6:70–75Google Scholar
  52. Chitarra W, Pagliarani C, Maserti B, Lumini E, Siciliano I, Cascone P, Schubert A, Gambino G, Balestrini R, Guerrieri E (2016) Insights on the impact of arbuscular mycorrhizal symbiosis on tomato tolerance to water stress. Plant Physiol 1:00307Google Scholar
  53. Costa R, Gotz M, Mrotzek N, Lottmann J, Berg G, Smalla K (2006) Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds. FEMS Microbiol Ecol 56:236–249PubMedCrossRefGoogle Scholar
  54. Dai ZC, Fu W, Wan LY, Cai HH, Wang N, Qi SS, Du DL (2016) Different growth promoting effects of endophytic bacteria on invasive and native clonal plants. Front Plant Sci 7:706PubMedPubMedCentralGoogle Scholar
  55. Dawwam GE, Elbeltagy A, Emara HM, Abbas IH, Hassan MM (2013) Beneficial effect of plant growth promoting bacteria isolated from the roots of potato plant. Annal Agric Sci 58:195–201CrossRefGoogle Scholar
  56. Dean DR, Jacobson MR (1992) Biochemical genetics of nitrogenase. In: Stacey G, Burris RH, Evans HJ (eds) Biological nitrogen fixation. Chapman and Hall, New York, pp 763–834Google Scholar
  57. Dobbelaere S, Croonenborghs A, Thys A, Ptacek D, Vanderleyden J, Dutto P, Labandera-Gonzalez C, Caballero-Mellado J, Aguirre JF, Kapulnik Y, Brener S (2001) Responses of agronomically important crops to inoculation with Azospirillum. Func Plant Biol 28:871–879CrossRefGoogle Scholar
  58. Dodor DE, Tabatabai MA (2003) Effect of cropping systems on phosphatases in soils. J Plant Nutr Soil Sci 166:7–13CrossRefGoogle Scholar
  59. Doni F, Isahak A, Zain CR, Yusoff WM (2014) Physiological and growth response of rice plants (Oryza sativa L.) to Trichoderma spp. inoculants. AMB Express 4:45PubMedPubMedCentralCrossRefGoogle Scholar
  60. Downie JA (2014) Legume nodulation. Curr Biol 24:184–190CrossRefGoogle Scholar
  61. Dudeja SS, Giri R (2014) Beneficial properties, colonization, establishment and molecular diversity of endophytic bacteria in legume and non-legume. Afr J Microbiol Res 8:1562–1572CrossRefGoogle Scholar
  62. Egamberdieva D, Kucharova Z (2009) Selection for root colonising bacteria stimulating wheat growth in saline soils. Biol Fertil Soils 45:563–571CrossRefGoogle Scholar
  63. Egamberdieva D, Kamilova F, Validov S, Gafurova L, Kucharova Z, Lugtenberg B (2008) High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environ Microbiol 10:1–9Google Scholar
  64. El-Deeb B, Bazaid S, Gherbawy Y, Elhariry H (2012) Characterization of endophytic bacteria associated with rose plant (Rosa damascena trigintipetala) during flowering stage and their plant growth promoting traits. J Plant Interact 3:248–253CrossRefGoogle Scholar
  65. Elkoca E, Kantar F, Sahin F (2008) Influence of nitrogen fixing and phosphorus solubilizing bacteria on the nodulation, plant growth, and yield of chickpea. J Plant Nut 31:157–171CrossRefGoogle Scholar
  66. Elsheikh EAE (1992) Effect of salinity on growth, nodulation and nitrogen yield of inoculated and nitrogen fertilized chickpea (Cicer arietinum L.). Arch Biotechnol 1:17–28Google Scholar
  67. Etminani F, Harighi B (2018) Isolation and identification of endophytic bacteria with plant growth promoting activity and biocontrol potential from wild pistachio trees. Plant Pathol J 34:208–217PubMedPubMedCentralGoogle Scholar
  68. Ferreira AS, Pires RR, Rabelo PG, Oliveira RC, Luz JMQ, Brito CH (2013) Implications of Azospirillum brasilense inoculation and nutrient addition on maize in soils of the Brazilian Cerrado under greenhouse and field conditions. Appl Soil Ecol 72:103–108CrossRefGoogle Scholar
  69. Forawi HAS (1994) Effects of salinity on nodulation and nitrogen fixation of fenugreek (Trigonella foenumgraecum). MSc (Agri) Thesis, Faculty of Agriculture, University of Khartoum, SudanGoogle Scholar
  70. Fouts DE, Tyler HL, DeBoy RT, Daugherty S, Ren Q, Badger JH, Durkin AS, Huot H, Shrivastava S, Kothari S, Dodson RJ, Mohamoud Y, Khouri H, Roesch LF, Krogfelt KA, Struve C, Triplett EW, Methe BA (2008) Complete genome sequence of the N2-fixing broad host range endophyte Klebsiella pneumoniae 342 and virulence predictions verified in mice. PLoS Genet 4:e1000141PubMedPubMedCentralCrossRefGoogle Scholar
  71. Frank B (1889) Über die Pilzsymbiose der Leguminosen. Berichte der Deutschen Botanischen Gesellschaft 7:332–346Google Scholar
  72. Fravel D (2005) Commercialization and implementation of biocontrol 1. Annu Rev Phytopathol 43:337–335PubMedCrossRefGoogle Scholar
  73. Gadd GM, Sayer GM (2000) Fungal transformations of metals and metalloids. In: Lovley DR (ed) Environmental microbe-metal interactions. American Society of Microbiology, Washington, DC, pp 237–256CrossRefGoogle Scholar
  74. Gamalero E, Glick BR (2011) Mechanisms used by plant growth-promoting bacteria. In: Maheshwari DK (ed) Bacteria in agrobiology: plant nutrient management. Springer, Berlin/Heidelberg, pp 17–46CrossRefGoogle Scholar
  75. Gandhi A, Muralidharan G (2016) Assessment of zinc solubilizing potentiality of Acinetobacter sp. isolated from rice rhizosphere. Eur J Soil Biol 76:1–8CrossRefGoogle Scholar
  76. Gao Y, Liu Q, Zang P, Li X, Ji Q, He Z et al (2015) An endophytic bacterium isolated from Panax ginseng CA Meyer enhances growth, reduces morbidity, and stimulates ginsenoside biosynthesis. Phytochem Lett 11:132–138CrossRefGoogle Scholar
  77. Garbeva P, van Elsas JD, van Veen JA (2008) Rhizosphere microbial community and its response to plant species and soil history. Plant Soil 302:19–32CrossRefGoogle Scholar
  78. Garcia JE, Maroniche G, Creus C, Suarez-Rodríguez R, Ramirez-Trujillo JA, Groppa MD (2017) In vitro PGPR properties and osmotic tolerance of different Azospirillum native strains and their effects on growth of maize under drought stress. Microbiol Res 202:21–29PubMedCrossRefGoogle Scholar
  79. Ghasemi Z, Ghaderian SM, Rodriguez-Garrido B, Prieto-Fernandez A, Kidd PS (2018) Plant species-specificity and effects of bioinoculants and fertilization on plant performance for nickel phytomining. Plant Soil 425:265–285CrossRefGoogle Scholar
  80. Ghavami N, Alikhani HA, Pourbabaee AA, Besharati H (2016) Study the effects of siderophore-producing bacteria on zinc and phosphorous nutrition of canola and maize plants. Comm Soil Sci Plant Anal 47:1517–1527CrossRefGoogle Scholar
  81. Ghorchiani M, Etesami H, Alikhani HA (2018) Improvement of growth and yield of maize under water stress by co-inoculating an arbuscular mycorrhizal fungus and a plant growth promoting rhizobacterium together with phosphate fertilizers. Agric, Ecosys Environ 258:59–70CrossRefGoogle Scholar
  82. Glick BR (2012) Plant growth promoting bacteria: mechanisms and applications. Scientifica 2012:1–15. CrossRefGoogle Scholar
  83. Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68PubMedPubMedCentralCrossRefGoogle Scholar
  84. Glick BR, Cheng Z, Czarny J, Cheng Z, Duan J (2007) Promotion of plant growth by ACC deaminase- producing soil bacteria. Eur J Plant Pathol 119:329–339CrossRefGoogle Scholar
  85. Goicoechea N, Antol’ın MC, S’anchez-D’ıaz M (1997) Gas exchange is related to the hormonal balance in mycorrhizal or nitrogen-fixing alfalfa subjected to drought. Physiol Plant 100:989–997CrossRefGoogle Scholar
  86. Goldstein AH (2000) Bioprocessing of rock phosphate ore: essential technical considerations for the development of a successful commercial technology. In: Proceedings of the 4th international fertilizer association technical conference. IFA, Paris. (Vol. 220)Google Scholar
  87. González MBR, Lopez JG, (2013) Beneficial plant-microbial interactions: ecology and applications. CRC Press, Taylor and Francis Group, LLCGoogle Scholar
  88. Gouda S, Das G, Sen SK, Shin H, Patra JK (2016) Endophytes: a treasure house of bioactive compounds of medicinal importance. Front Microbiol 7:1538. CrossRefPubMedPubMedCentralGoogle Scholar
  89. Gouda S, Kerry RG, Das G, Paramithiotis S, Shin H, Patra JK (2018) Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol Res 206:131–140CrossRefPubMedPubMedCentralGoogle Scholar
  90. Govindarajan M, Balandreau J, Kwon SW, Weon HY, Lakshminarasimhan C (2008) Effects of the inoculation of Burkholderia vietnamensis and related endophytic diazotrophic bacteria on grain yield of rice. Microb Ecol 55:21–37PubMedCrossRefGoogle Scholar
  91. Grover M, Ali Sk Z, Sandhya V, Abdul Rasul, Venkateswarlu B (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27:1231–1240CrossRefGoogle Scholar
  92. Guimaraes AA, Jaramillo PMD, Nóbrega RSA, Florentino LA, Silva KB, de Moreira FMS (2012) Genetic and symbiotic diversity of nitrogen-fixing bacteria isolated from agricultural soils in the Western Amazon by using cowpea as the trap plant. Appl Environ Microbiol 78:6726–6733CrossRefGoogle Scholar
  93. Gyaneshwar P, James EK, Mathan N, Reddy PM, Reinhold-Hurek B, Ladha JK (2001) Endophytic colonization of rice by a diazotrophic strain of Serratia marcescens. J Bacteriol 183:2634–2645PubMedPubMedCentralCrossRefGoogle Scholar
  94. Haas D, Keel C (2003) Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol 41:117–153CrossRefGoogle Scholar
  95. Hashem A, Abd Allah EF, Alqarawi AA, Aldubise A, Egamberdieva D (2015) Arbuscular mycorrhizal fungi enhances salinity tolerance of Panicum turgidum Forssk by altering photosynthetic and antioxidant pathways. J Plant Interact 10:230–242CrossRefGoogle Scholar
  96. Hashem A, Abd_Allah EF, Alqarawi AA, Al-Huqail AA, Wirth S, Egamberdieva D (2016) The interaction between arbuscular mycorrhizal fungi and endophytic bacteria enhances plant growth of Acacia gerrardii under salt stress. Front Microbiol 7:1089PubMedPubMedCentralCrossRefGoogle Scholar
  97. Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598CrossRefGoogle Scholar
  98. Henri F, Laurette NN, Annette D, John Q, Wolfgang M, François-Xavier E, Dieudonne N (2008) Solubilization of inorganic phosphates and plant growth promotion by strains of Pseudomonas fluorescens isolated from acidic soils of Cameroon. Afr J Microbiol Res 2:171–178Google Scholar
  99. Heydarian Z, Gruber M, Glick BR, Hegedus DD (2018) Gene expression patterns in roots of camelina sativa with enhanced salinity tolerance arising from inoculation of soil with plant growth promoting bacteria producing 1-aminocyclopropane-1-carboxylate deaminase or expression the corresponding acds gene. Front Microbiol 9Google Scholar
  100. Hoitink H, Boehm M (1999) Biocontrol within the context of soil microbial communities: a substrate-dependent phenomenon. Annu Rev Phytopathol 37:427–446PubMedCrossRefGoogle Scholar
  101. Hungria M, Nogueira MA, Araujo RS (2013) Co-inoculation of soybeans and common beans with rhizobia and azospirilla: strategies to improve sustainability. Biol Fertil Soils 49:791–801CrossRefGoogle Scholar
  102. Hussain A, Arshad M, Zahir ZA, Asghar M (2015) Prospects of zinc solubilizing bacteria for enhancing growth of maize. Pak J Agri Sci 52:915–922Google Scholar
  103. Hussain M, Asgher Z, Tahir M, Ijaz M, Shahid M, Ali H, Sattar A (2016) Bacteria in combination with fertilizers improve growth, productivity and net returns of wheat (Triticum aestivum L.). Pak J Agri Sci 53:633–664Google Scholar
  104. Isawa T, Yasuda M, Awazaki H, Minamisawa K, Shinozaki S, Nakashita H (2010) Azospirillum sp. strain B510 enhances rice growth and yield. Microbes Environ 25:58–61PubMedCrossRefGoogle Scholar
  105. Jalgaonwala RE, Mohite BV, Mahajan RT (2011) Natural products from plant associated endophytic fungi. J Microbiol Biotechnol Res 1:21–32Google Scholar
  106. Jamil M, Ahamd M, Anwar F, Zahir ZA, Kharal MA, Nazli F (2018) Inducing drought tolerance in wheat through combined use of L-tryptophan and Pseudomonas fluorescens. Pak J Agri Sci 55:331–337Google Scholar
  107. Javot H, Pumplin N, Harrison MJ (2007) Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. Plant Cell Environ 30:310–322PubMedCrossRefGoogle Scholar
  108. Jennings DH (1994) Translocation in fungal mycelia. In: Wessels JGH, Meinhardt F (eds) The Mycota: growth, differentiation and sexuality. Springer, Berlin, pp 163–173CrossRefGoogle Scholar
  109. Jha CK, Aeron A, Patel BV, Maheshwari DK, Saraf M (2011) Enterobacter: role in plant growth promotion. In: Maheshwari DK (ed) Bacteria in agrobiology: plant growth responses. Springer, Heidelberg, pp 159–182CrossRefGoogle Scholar
  110. Jodeh S, Alkowni R, Hamed R, Samhan S (2015) The study of electrolyte leakage from barley (Hordeum vulgare L) and pearl millet using plant growth promotion (PGPR) and reverse osmosis. J Food Nutr Res 3:422–429CrossRefGoogle Scholar
  111. Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC (2007) How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model. Nat Rev Microbiol 5:619–633PubMedPubMedCentralCrossRefGoogle Scholar
  112. Kachhawa D (2017) Microorganisms as a biopesticides. J Entomol Zool Studies 5:468–473Google Scholar
  113. Kaiser C, Kilburn MR, Clode PL, Fuchslueger L, Koranda M, Cliff JB, Solaiman ZM, Murphy DV (2015) Exploring the transfer of recent plant photosynthates to soil microbes: mycorrhizal pathway vs direct root exudation. New Phytol 205:1537–1551CrossRefGoogle Scholar
  114. Kang BG, Kim WT, Yun HS, Chang SC (2010) Use of plant growth-promoting rhizobacteria to control stress responses of plant roots. Plant Biotechnol Rep 4:179–183CrossRefGoogle Scholar
  115. Kawaguchi M, Minamisawa K (2010) Plant-microbe communications for symbiosis. Plant Cell Physiol 51:1377–1380PubMedCrossRefGoogle Scholar
  116. Khalid A, Akhtar MJ, Mahmood MH, Arshad M (2006) Effect of substrate-dependent microbial ethylene production on plant growth. Microbiology 75:231–236CrossRefGoogle Scholar
  117. Khalloufi M, Martinez-Andujar C, Lachaal M, Karray-Bouraoui N, Perez-Alfocea F, Albacete A (2017) The interaction between foliar GA3 application and arbuscular mycorrhizal fungi inoculation improves growth in salinized tomato (Solanum lycopersicum L.) plants by modifying the hormonal balance. J Plant Physiol 214:134–144PubMedCrossRefGoogle Scholar
  118. Khamwan S, Boonlue S, Jogloy S, Mongkolthanaruk W (2018) Characterization of endophytic bacteria and their response to plant growth promotion in Helianthus tuberosus L. Biocataly Agri Biotechnol 13:153–159CrossRefGoogle Scholar
  119. Khan MY, Asghar HN, Jamshaid MU, Akhtar MJ, Zahir ZA (2013) Effect of microbial inoculation on wheat growth and phyto-stabilization of chromium contaminated soil. Pak J Bot 45:27–34Google Scholar
  120. Kidd PS, Álvarez-López V, Becerra-Castro C, Cabello-Conejo M, Prieto-Fernández Á (2017) Chapter three-potential role of plant-associated bacteria in plant metal uptake and implications in phytotechnologies. Adv Bot Res 83:87–126CrossRefGoogle Scholar
  121. Kim J, Rees DC (1994) Nitrogenase and biological nitrogen fixation. Biochemistry 33:389–397PubMedCrossRefGoogle Scholar
  122. Kim YC, Jung H, Kim KY, Park SK (2008) An effective biocontrol bioformulation against Phytophthora blight of pepper using growth mixtures of combined chitinolytic bacteria under different field conditions. Eur J Plant Pathol 120:373–382CrossRefGoogle Scholar
  123. Kisiala A, Laffont C, Emery RJN, Frugier F (2013) Bioactive cytokinins are selectively secreted by Sinorhizobium meliloti nodulating and nonnodulating strains. Mol Plant-Microbe Interact 26:1225–1231PubMedCrossRefGoogle Scholar
  124. Knappova J, Pankova H, Munzbergova Z (2016) Roles of arbuscular mycorrhizal fungi and soil abiotic conditions in the establishment of a dry grassland community. PLoS One 11(7):1–24CrossRefGoogle Scholar
  125. Konieczny A, Kowalaska I (2016) The role of arbuscular mycorrhiza in zinc uptake by lettuce grown at two phosphorus levels in the substrate. Agri Food Sci 25:124–137Google Scholar
  126. Kotan R, Sahin F, Demirci E, Eken C (2009) Biological control of the potato dry rot caused by fusarium species using PGPR strains. Biol Control 50:194–198CrossRefGoogle Scholar
  127. Kouchi H, Imaizumi-Anraku H, Hayashi M, Hakoyama T, Nakagawa T, Umehara Y, Suganuma N, Kawaguchi M (2010) How many peas in a pod? Legume genes responsible for mutualistic symbioses underground. Plant Cell Physiol 51:1381–1397PubMedPubMedCentralCrossRefGoogle Scholar
  128. Krapp A (2015) Plant nitrogen assimilation and its regulation: a complex puzzle with missing pieces. Curr Opin Plant Biol 25:115–122PubMedCrossRefGoogle Scholar
  129. Kumar A, Verma JP (2018) Does plant-microbe interaction confer stress tolerance in plants: a review? Microbiol Res 207:41–52PubMedCrossRefGoogle Scholar
  130. Kuykendall LD, Saxena B, Devine TE, Udell SE (1992) Genetic diversity in Bradyrhizobium japonicum Jordan 1982 and a proposal for Bradyrhizobium elkanii sp. nov. Can J Microbiol 38:501–505CrossRefGoogle Scholar
  131. Ladha JK, Barraquio WL, Watanabe I (1982) Immunological techniques to identify Azospirillum associated with wetland rice. Can J Microbiol 28:478–485PubMedCrossRefGoogle Scholar
  132. Lee EH, Eom AH (2015) Growth characteristics of Rhizophagus clarus strains and their effects on the growth of host plants. Mycobiology 43:444–449PubMedPubMedCentralCrossRefGoogle Scholar
  133. Li XL, Zhang JL, Gai JP, Cai XBL, Christie P, Li X (2015) Contribution of arbuscular mycorrhizal fungi of sedges to soil aggregation along an altitudinal alpine grassland gradient on the Tibetan plateau. Environ Microbiol 17:2841–2857PubMedCrossRefGoogle Scholar
  134. Liu WYY, Ridgway HJ, James TK, Premaratne M, Andrews M (2012) Characterisation of rhizobia nodulating Galega officinalis (goat’s rue) and Hedysarum coronarium (sulla) NZ. Plant Prot 65:192–196Google Scholar
  135. Liu H, Yuan M, Tan SY, Yang XP, Lan Z, Jiang QY, Ye ZH, Jing YX (2015) Enhancement of arbuscular mycorrhizal fungus (Glomus versiforme) on the growth and cd uptake by cd-hyperaccumulator Solanumnigrum. Appl Soil Ecol 89:44–49CrossRefGoogle Scholar
  136. Lone R, Shuab R, Sharma V, Kumar V, Mir R, Koul KK (2015) Effect of arbuscular mycorrhizal fungi on growth and development of potato (Solanum tuberosum) plant. Asian J Crop Sci 7:233–243CrossRefGoogle Scholar
  137. Lopez-Lopez A, Rogel MA, Ormeño-Orrillo E, Martínez-Romero J, Martínez-Romero E (2010) Phaseolus vulgaris seed-borne endophytic community with novel bacterial species such as rhizobium endophyticum sp. nov. Syst Appl Microbiol 33(6):322–327PubMedCrossRefGoogle Scholar
  138. Lu L, Wu Q (2017) Mycorrhizas promote plant growth, root morphology and chlorophyll production in white clover. Biotechnology 16:34–39Google Scholar
  139. Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556PubMedCrossRefGoogle Scholar
  140. Lynch J (1990) The rhizosphere. Wiley, London, p 458Google Scholar
  141. Machuca A, Pereira G, Aguiar A, Milagres AM (2007) Metal-chelating compounds produced by ectomycorrhizal fungi collected from pine plantations. Lett Appl Microbiol 44:7–12PubMedCrossRefGoogle Scholar
  142. Maheshwari DK (2013) Bacteria in agrobiology: disease management. Springer Science & Business Media, Springer-Verlag Berlin HeidelbergCrossRefGoogle Scholar
  143. Martin CA, Stutz JC (2004) Interactive effects of temperature and arbuscular mycorrhizal fungi on growth, P uptake and root respiration of Capsicum annuum L. Mycorrhiza 14:241–244PubMedCrossRefGoogle Scholar
  144. Matthijs S, ATehrani KA, Laus G, Jackson RW, Cooper RM, Cornelis P (2007) Thioquinolobactin, a Pseudomonas siderophore with antifungal and anti-Pythium activity. Environ Microbiol 9:425–434PubMedCrossRefGoogle Scholar
  145. Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572PubMedCrossRefGoogle Scholar
  146. Mazurier S, Corberand T, Lemanceau P, Raaijmakers JM (2009) Phenazine antibiotics produced by fluorescent pseudomonads contribute to natural soil suppressiveness to Fusarium wilt. ISME J 3:977–991PubMedPubMedCentralCrossRefGoogle Scholar
  147. Mbodj D, Effa-Effa B, Kane A, Manneh B, Gantet P, Laplaze L, Diedhiou AG, Grondin A (2018) Arbuscular mycorrhizal symbiosis in rice: establishment, environmental control and impact on plant growth and resistance to abiotic stresses. Rhizosphere 8:12–26CrossRefGoogle Scholar
  148. McAdam EL, Reid JB, Foo E (2018) Gibberellins promote nodule organogenesis but inhibit the infection stages of nodulation. J Exp Bot 69:2117–2130PubMedPubMedCentralCrossRefGoogle Scholar
  149. Mia MA, Shamsuddin ZH, Zakaria W, Marziah M (2007) Associative nitrogen fixation by Azospirillum and Bacillus spp. in bananas. Infomusa 16:11–15Google Scholar
  150. Micallef SA, Shiaris MP, Colón-Carmona A (2009) Influence of Arabidopsis thaliana accessions on rhizobacterial communities and natural variation in root exudates. J Exp Bot 60:1729–1742PubMedPubMedCentralCrossRefGoogle Scholar
  151. Miethling R, Wieland G, Backhaus H, Tebbe CC (2000) Variation of microbial rhizosphere communities in response to crop species, soil origin, and inoculation with Sinorhizobium meliloti L33. Microb Ecol 40:43–56PubMedCrossRefGoogle Scholar
  152. Miransari M (2011) Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol Adv 29:645–653PubMedCrossRefGoogle Scholar
  153. Misra N, Gupta G, Jha PN (2012) Assessment of mineral phosphate-solubilizing properties and molecular characterization of zinc-tolerant bacteria. J Basic Microbiol 52:549–558PubMedCrossRefGoogle Scholar
  154. Molla AH, Shamsuddin ZH, Halimi MS, Morziah M, Puteh AB (2001) Potential for enhancement of root growth and nodulation of soybean co-inoculated with Azospirillum and Bradyrhizobium in laboratory systems. Soil Biol Biochem 33:457–463CrossRefGoogle Scholar
  155. Moreira FMS, Lange A, Klauberg-Filho O, Siqueira JO, Nobrega RSA, Lima AS (2008) Associative diazotrophic bacteria in grass roots and soils from heavy metal contaminated sites. Anais da Academia Brasileira de Ciencias 80:749–761PubMedCrossRefGoogle Scholar
  156. Mumtaz MZ, Ahmad M, Jamil M, Hussain T (2017) Zinc solubilizing Bacillus spp. potential candidates for biofortification in maize. Microbiol Res 202:51–60PubMedCrossRefGoogle Scholar
  157. Mumtaz MZ, Ahmad M, Jamil M, Asad SA, Hafeez F (2018) Bacillus strains as potential alternate for zinc biofortification of maize grains. Int J AgriBiol 20:1779–1786Google Scholar
  158. Muthukumarasamy R, Cleenwerck I, Revathi G, Vadivelu M, Janssens D, Hoste B, Gum KU, Park KD, Son CY, Sa T, Caballero-Mellado J (2005) Natural association of Gluconacetobacter diazotrophicus and diazotrophic Acetobacter peroxydans with wetland rice. Systematic Appl Microbiol 28:277–286CrossRefGoogle Scholar
  159. My PT, Manucharova NA, Stepanov AL, Pozdnyakov LA, Selitskaya OV, Emtsev VT (2015) Agrobacterium tumefaciens as associative nitrogen fixing bacteria. Moscow Univ Soil Sci Bull 70:133–138CrossRefGoogle Scholar
  160. Nadeem SM, Zahir ZA, Naveed M, Ashraf M (2010a) Microbial ACC-deaminase: prospects and applications for inducing salt tolerance in plants. Crit Rev Plant Sci 29:360–393CrossRefGoogle Scholar
  161. Nadeem SM, Zahir ZA, Naveed M, Asghar HN, Arshad M (2010b) Rhizobacteria capable of producing ACC-deaminase may mitigate the salt stress in wheat. Soil Sci Soc Am J 74:533–542CrossRefGoogle Scholar
  162. Nadeem SM, Ahmad M, Zahir ZA, Ashraf M (2011) Microbial ACC-deaminase biotechnology: perspectives and applications in stress agriculture. In: Maheshwari DK (ed) Bacteria in agrobiology: stress management. Springer, Berlin, pp 141–185Google Scholar
  163. Nadeem SM, Naveed M, Zahir ZA, Asghar HN (2013) Plant-microbe interactions for sustainable agriculture: fundamentals and recent advances. In: Arora NK (ed) Plant microbe symbiosis: fundamentals and advances. Springer, New Delhi, pp 51–103CrossRefGoogle Scholar
  164. Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32:429–448PubMedCrossRefGoogle Scholar
  165. Nadeem SM, Naveed M, Ahmad M, Zahir ZA (2015) Rhizosphere bacteria for crop production and improvement of stress tolerance: mechanisms of action, applications, and future prospects. In: Arora NK (ed) Plant microbes symbiosis: applied facets. Springer, New Delhi, pp 1–36. CrossRefGoogle Scholar
  166. Nadeem SM, Ahmad M, Naveed M, Imran M, Zahir ZA, Crowley DE (2016) Relationship between in vitro characterization and comparative efficacy of plant growth-promoting rhizobacteria for improving cucumber salt tolerance. Arch Microbiol 198:379–387PubMedCrossRefGoogle Scholar
  167. Nadeem SM, Imran M, Naveed M, Khan MY, Ahmad M, Zahir ZA, Crowley DE (2017) Synergistic use of biochar, compost and plant growth-promoting rhizobacteria for enhancing cucumber growth under water deficit conditions. J Sci Food Agri. PubMedCrossRefGoogle Scholar
  168. Nandasena KG, O’Hara GW, Tiwari RP, Willems A, Howieson JG (2009) Mesorhizobium australicum sp. nov. and Mesorhizobium opportunistum sp. nov., isolated from Biserrula pelecinus L. in Australia. Int J Systematic Evolu Microbiol 59:2140–2147CrossRefGoogle Scholar
  169. Naveed M, Hussain MB, Zahir ZA, Mitter B, Sessitsch A (2014) Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. Plant Growth Regul 73:121–131CrossRefGoogle Scholar
  170. Nielsen TH, Thrane C, Christophersen C, Anthoni U, Sorensen J (2000) Structure, production characteristics and fungal antagonism of tensin - a new antifungal cyclic lipopeptide from Pseudomonas fluorescens strain 96.578. J Appl Microbiol 89:992–1001PubMedCrossRefGoogle Scholar
  171. Nisha MC, Rajeshkumar S (2010) Effect of arbuscular mycorrhizal fungi on growth and nutrition of Wedilia chinensis (Osbeck) Merril. Indian J Sci Technol 6:676–678Google Scholar
  172. Nogueira MA, Cardoso EJBN (2006) Plant growth and phosphorus uptake in mycorrhizal Rangpur lime seedlings under different levels of phosphorus. Pesq Agropec Bras Brasilia 41:93–99CrossRefGoogle Scholar
  173. Nosheen A, Yasmin H, Naz R, Bano A, Keyani R, Hussain I (2018) Pseudomonas putida improved soil enzyme activity and growth of kasumbha under low input of mineral fertilizers. Soil Sci Plant Nutr 12:1–6Google Scholar
  174. O’Sullivan DJ, O’Gara F (1992) Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol Rev 56:662–676PubMedPubMedCentralGoogle Scholar
  175. Oldroyd GED (2007) Nodules and hormones. Science 315(5808):52–53PubMedCrossRefGoogle Scholar
  176. Oldroyd GE, Downie JA (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59:519–546PubMedCrossRefGoogle Scholar
  177. Ortas I (2010) Effect of mycorrhiza application on plant growth and nutrient uptake in cucumber production under field conditions. Spanish J Agric Res 8:116–122CrossRefGoogle Scholar
  178. Padmavathi T, Dikshit R, Seshagiri S (2015) Effect of Rhizophagus spp. and plant growth promoting Acinetobacter junii on Solanum lycopersicum and Capsicum annuum. Brazilian J Bot 38:273–280CrossRefGoogle Scholar
  179. Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbiosis. Nat Rev Microbiol 6:763–775PubMedPubMedCentralCrossRefGoogle Scholar
  180. Patel JK, Archana G (2017) Diverse culturable diazotrophic endophytic bacteria from Poaceae plants show cross-colonization and plant growth promotion in wheat. Plant Soil 417:99–116CrossRefGoogle Scholar
  181. Pereira JA, Cavalcante VA, Baldani JI, Dobereiner J (1988) Field inoculation of sorghum and rice with Azospirillum spp. and Herbaspirillum seropedicae. In: Nitrogen fixation with non-legumes. Springer, Dordrecht, pp 219–224Google Scholar
  182. Pérez E, Sulbarán M, Ball MM, Yarzabál LA (2007) Isolation and characterization of mineral phosphate-solubilizing bacteria naturally colonizing a limonitic crust in the southeastern Venezuelan region. Soil Biol Biochem 39:2905–2914CrossRefGoogle Scholar
  183. Perez-de-Luque A, Tille S, Johnson I, Pascual-Pardo D, Ton J, Cameron DD (2017) The interactive effects of arbuscular mycorrhiza and plant growth-promoting rhizobacteria synergistically enhance host plant defences against pathogens. Sci Reports 7:16409. CrossRefGoogle Scholar
  184. Picard C, Di Cello F, Ventura M, Fani R, Guckert A (2000) Frequency and biodiversity of 2,4-diacetylphloroglucinol-producing bacteria isolated from the maize rhizosphere at different stages of plant growth. Appl Environ Microbiol 66:948–955PubMedPubMedCentralCrossRefGoogle Scholar
  185. Pieterse CMJ, Leon-Reyes A, van der Ent S, van Wees SCM (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol l5:308–316CrossRefGoogle Scholar
  186. Prabhukarthikeyan R, Saravanakumar D, Raguchander T (2014) Combination of endophytic Bacillus and Beauveria for the management of Fusarium wilt and fruit borer in tomato. Pest Manag Sci 70:1742–1750PubMedCrossRefGoogle Scholar
  187. Prajapati K, Sharma MC, Modi HA (2013) Growth promoting effect of potassium solubilizing microorganisms on Abelmoschus esculentus. Intl J Agric Sci 3:181–188Google Scholar
  188. Qiu Z, Tan H, Zhou S, Cao L (2014) Enhanced phytoremediation of toxic metals by inoculating endophytic Enterobacter sp. CBSB1 expressing bifunctional glutathione synthase. J Hazard Mater 267:17–20PubMedCrossRefGoogle Scholar
  189. Raaijmakers JM (2001) Rhizosphere and rhizosphere competence. In: Maloy OC, Murray TD (eds) Encyclopedia of plant pathology. Wiley, New York, pp 859–860Google Scholar
  190. Raaijmakers JM, Leeman M, van Oorschot M, van der Sluis I, SchippersB, Bakker P (1995) Dose-response relationships in biological-control of fusarium-wilt of radish by Pseudomonas spp. Phytopathology 85: 1075–1081CrossRefGoogle Scholar
  191. Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361CrossRefGoogle Scholar
  192. Ramesh A, Sharma SK, Sharma MP, Yadav N, Joshi OP (2014) Inoculation of zinc solubilizing Bacillus aryabhattai strains for improved growth, mobilization and biofortification of zinc in soybean and wheat cultivated in vertisols of Central India. Appl Soil Ecol 73:87–96CrossRefGoogle Scholar
  193. Ramyasmruthi S, Pallavi O, Pallavi S, Tilak K, Srividya S (2012) Chitinolytic and secondary metabolite producing Pseudomonas fluorescens isolated from Solanaceae rhizosphere effective against broad spectrum fungal phytopathogens. Asian J Plant Sci Res 2:16–24Google Scholar
  194. Rashid MA, Mujawar LH, Shahzad T, Almeelbi T, Ismail IMI, Oves M (2016) Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiol Res 183:26–41PubMedCrossRefGoogle Scholar
  195. Rima FS, Biswas S, Sarker PK, Islam MR, Seraj ZI (2018) Bacteria endemic to saline coastal belt and their ability to mitigate the effects of salt stress on rice growth and yields. Ann Microbiol 68:525–535CrossRefGoogle Scholar
  196. Rodrigues AA, Forzani MV (2016) Isolation and selection of plant growth-promoting bacteria associated with sugarcane. Pesq Agropec Trop Goiania 46:149–158CrossRefGoogle Scholar
  197. Rosenblueth M, Martinez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant-Microbe Interact 19:827–837PubMedCrossRefGoogle Scholar
  198. Rouws LFM, Meneses CHSG, Guedes HV, Vidal MS, Baldani JI, Schwab S (2010) Monitoring the colonization of sugarcane and rice plants by the endophytic diazotrophic bacterium Gluconacetobacter diazotrophicus marked with gfp and gusA reporter genes. Lett Appl Microbiol 51:325–330PubMedCrossRefGoogle Scholar
  199. Rubio LM, Ludden PW (2008) Biosynthesis of the iron-molybdenum cofactor of nitrogenase. Annu Rev Microbiol 62:93–111PubMedCrossRefGoogle Scholar
  200. Saghafi D, Ghorbanpour M, Lajayer BA (2018) Efficiency of rhizobium strains as plant growth promoting rhizobacteria on morpho-physiological properties of Brassica napus L. under salinity stress. J Soil Sci Plant Nutr 18:253–268Google Scholar
  201. Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Indian. Microbiol Biotechnol 34:635–648CrossRefGoogle Scholar
  202. Salloum MS, Menduni MF, Luna CM (2017) A differential capacity of arbuscular mycorrhizal fungal colonization under well-watered conditions and its relationship with drought stress mitigation in unimproved vs. improved soybean genotypes. Bot 96:135–144CrossRefGoogle Scholar
  203. Sandhya V, Ali SKZ, Grover M, Reddy G, Venkateswarlu B (2009) Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. BiolFertil Soils 46:17–26CrossRefGoogle Scholar
  204. Santaella C, Schue M, Berge O, Heulin T, Achouak W (2008) The exopolysaccharide of Rhizobium sp. YAS34 is not necessary for biofilm formation on Arabidopsis thaliana and Brassica napus roots but contributes to root colonization. Environ Microbiol 10:2150–2163PubMedPubMedCentralCrossRefGoogle Scholar
  205. Sapre S, Gontia-Mishra I, Tiwari S (2018) Klebsiella sp. confers enhanced tolerance to salinity and plant growth promotion in oat seedlings (Avena sativa). Microbiol Res 206:25–32PubMedCrossRefGoogle Scholar
  206. Saravanakumar D, Vijayakumar C, Kumar N, Samiyappan R (2007) PGPR-induced defense responses in the tea plant against blister blight disease. Crop Prot 26:556–565CrossRefGoogle Scholar
  207. Saravanakumar K, Ali DM, Kathiresan K, Wang M (2018) An evidence of fungal derived 1-aminocyclopropane-1-carboxylate deaminase promoting the growth of mangroves. Beni-Suef Univ J Basic Appl Sci. CrossRefGoogle Scholar
  208. Saravanan VS, Madhaiyan M, Thangaraju M (2007) Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemosphere 66:1794–1798PubMedCrossRefGoogle Scholar
  209. Sari N, Ortas I, Yetisir H (2002) Effect of mycorrhizae inoculation on plant growth, yield, and phosphorus uptake in garlic under field conditions. Commun Soil Sci Plant Anal 33:2189–2201CrossRefGoogle Scholar
  210. Sathya A, Vijayabharathi R, Gopalakrishnan S (2017) Plant growth-promoting actinobacteria: a new strategy for enhancing sustainable production and protection of grain legumes. Biotechnology 7:102. CrossRefGoogle Scholar
  211. Sayyed RZ, Patil AS, Gangurde NS, Bhamare HM, Joshi SA, Fulpagare UG (2008) Siderophore producing A. faecalis: a potent biofungicide for the control of ground phytopathogens. J Res Biotechnol 4:411–413Google Scholar
  212. Schwab S, Terra LA, Baldani JI (2018) Genomic characterization of Nitrospirillum amazonense strain CBAmC, a nitrogen-fixing bacterium isolated from surface-sterilized sugarcane stems. Mole Gene Geno 293:997–1016CrossRefGoogle Scholar
  213. Selosse MA, Roy M (2009) Green plants that feed on fungi: facts and questions about mixotrophy. Trends Plant Sci 14:64–70PubMedCrossRefGoogle Scholar
  214. Sessitsch A, Reiter B, Berg G (2004) Endophytic bacterial communities of field-grown potato plants and their plant-growth-promoting and antagonistic abilities. Can J Microbiol 50:239–249PubMedCrossRefGoogle Scholar
  215. Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Wenzel WW, Fallmann K, Puschenreiter M (2013) The role of plant associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Biochem 60:182–194PubMedPubMedCentralCrossRefGoogle Scholar
  216. Shahsavar AR, Refahi A, Zarei M, Aslmoshtagh E (2016) Analysis of the effects of Glomus etunicatum fungi and Pseudomonas fluorescence bacteria symbiosis on some morphological and physiological characteristics of Mexican lime (Citrus aurantifolia L.) under drought stress conditions. Adv Hort Sci 30:39–45Google Scholar
  217. Shaikh S, Saraf M (2017) Biofortification of Triticum aestivum through the inoculation of zinc solubilizing plant growth promoting rhizobacteria in field experiment. Biocatalysis Agricul Biotechnol 9:120–126CrossRefGoogle Scholar
  218. Shi SM, Chen K, Gao Y, Liu B, Yang XH, Huang XZ, Liu GX, Zhu LQ, He XH (2016) Arbuscular mycorrhizal fungus species dependency governs better plant physiological characteristics and leaf quality of mulberry (Morus alba L.) seedlings. Front Microbiol 7:1–11Google Scholar
  219. Shuab R, Lone R, Naidu J, Sharma V, Imtiyaz S, Koul KK (2014) Benefits of inoculation of arbuscular mycorrhizal fungi on growth and development of onion (Allium cepa) plant. Am Eur J Agric Environ Sci 14:527–535Google Scholar
  220. Sindhu SS, Dadarwal KR (2001) Chitinolytic and cellulolytic Pseudomonas sp. antagonistic to fungal pathogens enhances nodulation by Mesorhizobium sp. Cicerin chickpea. Microbiol Res 156:353–358PubMedCrossRefGoogle Scholar
  221. Singh R, Dubey AK (2015) Endophytic actinomycetes as emerging source for therapeutic compounds. Indo Global J Pharm Sci 5:106–116Google Scholar
  222. Singh D, Singh H, Prabha R (2013) Plant-microbe interactions in agro-ecological perspectives. Volume 2: microbial interactions and agro-ecological impacts. Springer, SingaporeGoogle Scholar
  223. Singh RP, Shelke GM, Kumar A, Jha PN (2015) Biochemistry and genetics of ACC deaminase: a weapon to stress ethylene produced in plants. Front Microbiol 6:1–14Google Scholar
  224. Singh D, Geat N, Rajawat MVS, Prasanna R, Saxena AK, Kaushik R (2017) Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from wheat genotypes and their influence on plant growth promotion. Int J Curr Microbiol App Sci 6:1533–1540CrossRefGoogle Scholar
  225. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, Boston. 800pGoogle Scholar
  226. Solano BR, Maicas JB, Gutierrez Manero J (2009) Biotechnology of the rhizosphere. In: Kirakosyan A, Kaufman PB (eds) Recent advances in plant biotechnology. Springer, Dordrecht/Heidelberg/ New York, pp 137–162CrossRefGoogle Scholar
  227. Somers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacterial signaling: a love parade beneath our feet. Crit Rev Microbiol 30:205–240PubMedCrossRefPubMedCentralGoogle Scholar
  228. Spaepen S, Vanderleyden J, Okon Y (2009) Plant growth-promoting actions of rhizobacteria. Adv Bot Res 51:283–320CrossRefGoogle Scholar
  229. Sprent JI, Ardley JK, James EK (2013) From north to south: a latitudinal look at legume nodulation processes. S Afr J Bot 89:31–41CrossRefGoogle Scholar
  230. Stephen J, Jisha MS (2009) Buffering reduces phosphate solubilizing ability of selected strains of bacteria. World J Agric Sci 5:135–137Google Scholar
  231. Suman A, Gaur A, Shrivastava AK, Yadav RL (2005) Improving sugarcane growth and nutrient uptake by inoculating Gluconacetobacter diazotrophicus. Plant Growth Regul 47:155–162CrossRefGoogle Scholar
  232. Tahat MM, Sijam R, Othman R (2012) The potential of endomycorrhizal fungi in controlling tomato bacterial wilt Ralstonia solanacearum under glasshouse conditions. Afr J Biotechnol 11:13085–13094Google Scholar
  233. Taghavi S, Garafola C, Monchy S, Newman L, Hoffman A, Weyens N, Barac T, Vangronsveld J, vander Lelie D (2009) Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl Environ Microbiol 75:748–757PubMedCrossRefGoogle Scholar
  234. Taiz L, Zeiger E (2000) Plant physiology, 2nd edn. Benjamin Cumings Publishing Company, San FranciscoGoogle Scholar
  235. Thijs S, Langill T, Vangronsveld J (2017) Chapter two- the bacterial and fungal microbiota of hyperaccumulator plants: small organisms, large influence. Adv Bot Res 83:43–86CrossRefGoogle Scholar
  236. Tian CF, Wang ET, Wu LJ, Han TX, Chen WF, Gu CT, Gu JG, Chen WX (2008) Rhizobium fabae sp. nov., a bacterium that nodulates Vicia faba. Int J Syst Evol Microbiol 58:2871–2875PubMedCrossRefGoogle Scholar
  237. Tian G, Pauls P, Dong Z, Reid LM, Tian L (2009) Colonization of the nitrogen-fixing bacterium Gluconacetobacter diazotrophicus in a large number of Canadian corn plants. Can J Plant Sci 89:1009–1019CrossRefGoogle Scholar
  238. Tian B, Zhang C, Ye Y, Wen J, Wu Y, Wang H, Li H, Cai S, Cai W, Cheng Z et al (2017) Beneficial traits of bacterial endophytes belonging to the core communities of the tomato root microbiome. Agric Ecosyst Environ 247:149–156CrossRefGoogle Scholar
  239. Tisdall JM, Oades JM (1982) Organic matter and water stable aggregates in soils. J Soil Sci 33:141–163CrossRefGoogle Scholar
  240. Torre-Ruiz NDL, Ruiz-Valdiviezo VM, Rincon-Molina CI, Rodriguez-Mendiola M, Arias-Castroa C, Gutierrez-Miceli FA, Palomeque-Dominguez H, Rincon-Rosales R (2016) Effect of plant growth-promoting bacteria on the growth and fructan production of Agave americana L. Brazilian J Microbiol 47:587–596CrossRefGoogle Scholar
  241. Ullah A, Mushtaq H, Ali U, Hakim, Ali E, Mubeen S (2018) Screening, isolation, biochemical and plant growth promoting characterization of endophytic bacteria. Microbiol Curr Res 2:62–68CrossRefGoogle Scholar
  242. Upadhyay SK, Singh JS, Singh DP (2011) Exopolysaccharide-producing plant growth- promoting rhizobacteria under salinity condition. Pedosphere 21:214–222CrossRefGoogle Scholar
  243. Upadhyay SK, Singh JS, Saxena AK, Singh DP (2012) Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions. Plant Biol 14:605–611PubMedCrossRefGoogle Scholar
  244. Valverde A, Burgos A, Fiscella T, Rivas R, Velázquez E, Rodriguez-Barrueco C, Cervantes E, Chamber M, Igual J-M (2006) Differential effects of coinoculations with Pseudomonas jessenii PS06 (a phosphate-solubilizing bacterium) and Mesorhizobium ciceri C-2/2 strains on the growth and seed yield of chickpea under greenhouse and field conditions. Plant Soil 287:43–50CrossRefGoogle Scholar
  245. Van der Ent S, Van Wees SC, Pieterse CM (2009) Jasmonate signaling in plant interactions with resistance-inducing beneficial microbes. Phytochemistry 70:1581–1588PubMedCrossRefGoogle Scholar
  246. Van Oosten MJ, Di Stasio E, Cirillo V, Silletti S, Ventorino V, Pepe O, Raimondi G, Maggio A (2018) Root inoculation with Azotobacter chroococcum 76A enhances tomato plants adaptation to salt stress under low N conditions. BMC Plant Biol 18:205PubMedPubMedCentralCrossRefGoogle Scholar
  247. Vannette RL, Hunter MD (2013) Hunter mycorrhizal abundance affects the expression of plant resistance traits and herbivore performance. J Ecol 101:1019–1029CrossRefGoogle Scholar
  248. Velmourougane K, Saxena G, Prasanna R (2017) Plant-microbe interactions in the rhizosphere: mechanisms and their ecological benefits. In: Singh D, Singh H, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives, volume 2: microbial interactions and agro-ecological impacts. Springer, Singapore, pp 193–219Google Scholar
  249. Verhagen BWM, Glazebrook J, Zhu T, Chang HS, van Loon LC, Pieterse CMJ (2004) The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Mol Plant-Microbe Interactions 17:895–908CrossRefGoogle Scholar
  250. Vimal SR, Singh JS, Arora NK, Singh S (2017) Soil-plant-microbe interactions in stressed agriculture management: a review. Pedosphere 27:177–192CrossRefGoogle Scholar
  251. Viscardi S, Ventorino V, Duran P, Maggio A, De Pascale S, Mora ML, Pepe O (2016) Assessment of plant growth promoting activities and abiotic stress tolerance of Azotobacter chroococcum strains for a potential use in sustainable agriculture. J Soil Sci Plant Nutr 16:848–863Google Scholar
  252. Vives-Peris V, Gomez-Cadenas A, Perez-Clemente RM (2018) Salt stress alleviation in citrus plants by plant growth-promoting rhizobacteria Pseudomonas putida and Novosphingobium sp. Plant Cell Rep 30:1–3CrossRefGoogle Scholar
  253. Voisard C, Keel C, Haas D, Defago G (1981) Cyanide production in Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J 8:351–358CrossRefGoogle Scholar
  254. Wakatsuki T (1995) Metal oxidoreduction by microbial cells. J Ind Microbiol Biotechnol 14:169–177Google Scholar
  255. Wang Y, Brown HN, Crowley DE, Szaniszlo PJ (1993) Evidence for direct utilization of a siderophore, ferrioxamine B, in axenically grown cucumber. Plant Cell Environ 16:579–585CrossRefGoogle Scholar
  256. Wang C, Li X, Zhou J, Wang G, Dong Y (2008) Effects of arbuscular mycorrhizal fungi on growth and yield of cucumber plants. Commun Soil Sci Plant Anal 39CrossRefGoogle Scholar
  257. Wang D, Yang S, Tang F, Zhu H (2012) Symbiosis specificity in the legume: rhizobial mutualism. Cell Microbiol 14:334–342PubMedCrossRefGoogle Scholar
  258. Wang X, Wang Z, Jiang P, He Y, Mu Y, Lv X, Zhuang L (2018a) Bacterial diversity and community structure in the rhizosphere of four Ferula species. Sci Reports 8:5345. CrossRefGoogle Scholar
  259. Wang Y, Wang M, Li Y, Wu A, Huang J (2018b) Effects of arbuscular mycorrhizal fungi on growth and nitrogen uptake of Chrysanthemum morifolium under salt stress. PLoS One 13(4):e0196408PubMedPubMedCentralCrossRefGoogle Scholar
  260. Weber OB, Baldani VLD, Teixeira KRS, Kirchhof G, Baldani JI, Dobereiner J (1999) Isolation and characterization of diazotrophic bacteria from banana and pineapple plants. Plant Soil 210:103–113CrossRefGoogle Scholar
  261. Weilharter A, Mitter B, Shin MV, Chain PS, Nowak J, Sessitsch A (2011) Complete genome sequence of the plant growth-promoting endophyte Burkholderia phytofirmans strain PsJN. J Bacteriol 193:3383–3384PubMedPubMedCentralCrossRefGoogle Scholar
  262. Wilmowicz E, Kesy J, Kopcewicz J (2008) Ethylene and ABA interactions in the regulation of flower induction in Pharbitis nil. J Plant Physiol 165:1917–1928PubMedCrossRefGoogle Scholar
  263. Wu QS, Li GH, Zou YN (2010) Roles of arbuscular mycorrhizal fungi on growth and nutrient acquisition of peach (Prunus persica L. Batsch) seedlings. J Anim Plant Sci 21:746–750Google Scholar
  264. Xun FF, Xie BM, Liu SS, Guo CH (2015) Effect of plant growth promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) inoculation on oats in saline-alkali soil contaminated by petroleum to enhance phytoremediation. Environ Sci Pollut R 22:598–608CrossRefGoogle Scholar
  265. Yamaji K, Watanabe Y, Masuya H, Shigeto A, Yui H, Haruma T (2016) Root fungal endophytes enhance heavy-metal stress tolerance of Clethra barbinervis growing naturally at mining sites via growth enhancement, promotion of nutrient uptake and decrease of heavy-metal concentration. PLoS One 11(7):1–24Google Scholar
  266. Yanni YG, Rizk RY, Corich V, Squartini A, Ninke K, Philip-Hollingsworth S, Orgambide G, De Bruijn F, Stoltzfus J, Buckley D, Schmidt TM (1997) Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth. Plant Soil 194:99–114CrossRefGoogle Scholar
  267. Yuan SF, Li MY, Fang ZY, Liu Y, Shi W, Pan B, Wu K, Shi JX, Shen B, Shen QR (2016) Biological control of tobacco bacterial wilt using Trichoderma harzianum amended bio-organic fertilizer and the arbuscular mycorrhizal fungi Glomus mosseae. Biol Control 92:164–171CrossRefGoogle Scholar
  268. Zahir ZA, Munir A, Asghar HN, Shaharoona B, Arshad M (2008) Effectiveness of rhizobacteria containing ACC deaminase for growth promotion of peas (Pisum sativum) under drought conditions. J Microbiol Biotechnol 18:958–963PubMedGoogle Scholar
  269. Zahir ZA, Shah MK, Naveed M, Akhter MJ (2010) Substrate-dependent auxin production by Rhizobium phaseoli improves the growth and yield of Vigna radiata L. under salt stress conditions. J Microbiol Biotechnol 20:1288–1294PubMedCrossRefGoogle Scholar
  270. Zahir ZA, Ahmad M, Hilger TH, Dar A, Malik SR, Abbas G, Rasche F (2018) Field evaluation of multistrain biofertilizer for improving the productivity of different mung bean genotypes. Soil Environ 37(1):45–52CrossRefGoogle Scholar
  271. Zahran HH (2001) Rhizobia from wild legumes: diversity, taxonomy, ecology, nitrogen fixation and biotechnology. J Biotechnol 91:143–153PubMedCrossRefGoogle Scholar
  272. Zamioudis C, Pieterse CMJ (2012) Modulation of host immunity by beneficial microbes. Mol Plant-Microbe Interact 25:139–150PubMedPubMedCentralCrossRefGoogle Scholar
  273. Zhang J, Jia W, Yang J, Ismail AM (2006) Role of ABA in integrating plant responses to drought and salt stresses. Field Crop Res 97:111–119CrossRefGoogle Scholar
  274. Zhu Y, She X (2018) Evaluation of the plant-growth-promoting abilities of endophytic bacteria from the psammophyte Ammodendron bifolium. Can J Microbiol 64:253–264PubMedCrossRefGoogle Scholar
  275. Zong K, Huang J, Nara K, Chen YH, Shen ZG, Lian CL (2015) Inoculation of ectomycorrhizal fungi contributes to the survival of tree seedlings in a copper mine tailing. J For Res 20:493–500CrossRefGoogle Scholar
  276. Zuniga A, Poupin MJ, Donoso R, Ledger T, Guiliani N, Gutierrez RA, Gonzalez B (2013) Quorum sensing and indole-3-acetic acid degradation play a role in colonization and plant growth promotion of Arabidopsis thaliana by Burkholderia phytofirmans PsJN. Mol Plant-Microbe Interact 26:546–553PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Maqshoof Ahmad
    • 1
  • Sajid Mahmood Nadeem
    • 2
  • Zahir Ahmad Zahir
    • 3
  1. 1.Department of Soil ScienceUniversity College of Agriculture and Environmental Sciences, The Islamia University of BahawalpurBahawalpurPakistan
  2. 2.University of Agriculture FaisalabadBurewala-VehariPakistan
  3. 3.Institute of Soil and Environmental Sciences, University of AgricultureFaisalabadPakistan

Personalised recommendations