Advertisement

Harnessing Entomopathogenic Fungi for Enhanced Farm Productivity and Profitability

  • Suseelendra Desai
  • T. V. Prasad
  • G. Praveen Kumar
  • John Peter
  • Leo Danile Amalraj
Chapter

Abstract

Entomopathogenic fungi form an essential component of the integrated insect-pest management strategies. The insect-pests and their entomopathogenic fungi have co-evolved over centuries and thus established an equilibrium. Species of Metarhizium, Lecanicillium, Nomuraea, Isaria, etc. have been studied extensively, and the commercial products based on Nomuraea rileyi, Lecanicillium (Verticillium) leccanii, Beauveria bassiana and Metarhizium anisopliae are popular among farmers. Several modes of action of these fungi against target pests have been elucidated. Introduction of pesticides has not only undermined the value of these fungi but also disturbed the equilibrium. The entomopathogenic fungi are living organisms formulated and delivered to the farming community for the management of target insect-pests. Due to the lag in realizing the benefit of these biocontrol agents, the farmers started using the pesticides which show their effect immediately. While on one side, indiscriminate use of these pesticides in the last three decades has led to the loss of biodiversity of beneficial organisms, pollinators, other animal and bird species; on the other side, emphasis on organic agriculture has compounded the value of these products. Thus, the interest in these biocontrol agents has re-invigorated. Several commercial formulations are already used by the farming community for the management of insect-pests. In this review, an attempt was made to appraise the status of these entomopathogenic fungi, their commercial exploitation, research gaps and way forward.

Keywords

Insect-pests Entomopathogenic fungi Beauveria Metarhizium Nomuraea Lecanicillium Biointensive insect-pest management 

References

  1. Agale SV, Gopalakrishnan S, Ambhure KG (2018) Mass production of entomopathogenic fungi (Metarhizium anisopliae) using different grains as a substrate. Int J Curr Microbiol App Sci 7(1):2227–2232CrossRefGoogle Scholar
  2. Ajay KP (2013) Field evaluation of Beauveria bassiana and Metarhizium anisopliae against the cutworm, Agrotis ipsilon (Hufnagel) damaging potato in Uttarakhand hills. J Biol Control 27(4):293–297Google Scholar
  3. Alter JA, Vandenberg JJD (2000) Factors that influencing the infectivity of isolates of Paecilomyces fumosoroseus against diamond Back Moth. J Invertebr Pathol 78:31–36CrossRefGoogle Scholar
  4. Alves SB (1998) Controle microbiano de insetos. FEALQ, Piracicaba. 1163pGoogle Scholar
  5. Anand R, Prasad B, Tiwary BN (2009) Relative susceptibility of Spodoptera litura pupae to selected entomopathogenic fungi. BioControl 54:85–92CrossRefGoogle Scholar
  6. Antía OP, Posada FJ, Bustillo AE, Gonzáles MT (1992) Producción en finca del hongo Beauveria bassiana para el control de la broca del café Cenicafé (Colombia). Avancestécnicos 182:12Google Scholar
  7. Avery PB, Faulla J, Simmands MSJ (2004) Effect of different photoperiods on the infectivity and colonization of Paecilomyces fumosoroseus. J Insect Sci 4:38–48CrossRefPubMedPubMedCentralGoogle Scholar
  8. Babu TR, Azam KM (1989) Biological control of grape mealy bug, Maconellicoccus hirsutus (Green). J Pl Protec Sci 17:123–126Google Scholar
  9. Babu V, Murugan S, Thangaraja P (2001) Laboratory studies on the efficacy of neem and the entomopathogenic fungus Beauveria bassiana on Spodopteralitura. Entomology 56:56–63Google Scholar
  10. Bałazy S (1993) Flora of Poland Fungi (Mycota). Entomophthorales 24:1–356Google Scholar
  11. Bhadani DJ, Kabaria BB, Ghelani MK (2017) Bio-efficacy of entomopathogenic fungi against mealy bug, Maconellicoccus hirsutus (Green) infesting custard apple in Junagadh. J Entomol Zool Stud 5(5):285–289Google Scholar
  12. Bischoff JF, Rehner SA, Humber RA (2009) A multilocus phylogeny of the Metarhizium anisopliae lineage. Mycologia 101(4):512–530CrossRefPubMedGoogle Scholar
  13. Burges AD, Hussey NW (1981) Microbial control of insect pests and mites. Academic, London, pp 161–167Google Scholar
  14. Bustillo AE, Posada FJ (1996) El uso de entomopatógenos en el control de la broca del café en Colombia. Manejo integrado de Plagas (Costa Rica) 42:1–13Google Scholar
  15. Butt TM, Jackson CW, Murugan W (2001) Fungi as biocontrol agents, progress, problems and potentials. CBBS Publishing Co, London, pp 240–242CrossRefGoogle Scholar
  16. Chandler D, Davidson G, Pell JK, Ball BV, Shaw K, Sunderland KD (2000) Fungal biocontrol of Acari. Biocontrol Sci Tech 10:357–384CrossRefGoogle Scholar
  17. Chandler D, Davidson G, Jacobson RJ (2005) Laboratory and glasshouse evaluation of entomopathogenic fungi against the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae), on tomato,Lycopersiconesculentum. Biocontrol Sci Tech 15:37–54CrossRefGoogle Scholar
  18. Cerda R, Avelino J, Gary C, Tixier P, Lechevallier E, Allinne C (2017) Primary and secondary yield losses caused by pests and diseases: assessment and modeling in Coffee. PLoS One 12(1):e0169133.  https://doi.org/10.1371/journal.pone.0169133CrossRefPubMedPubMedCentralGoogle Scholar
  19. Chandrasekaran R, Revathi K, Jayanthi S (2015) Combined effect of Bacillus thuringiensis and Bacillus subtilis against Helicoverpa armigera. Int J Curr Microbiol App Sci 4(7):127–141Google Scholar
  20. Claydon N, Grove JF (1982) Insecticidal secondary metabolic products from the entomogenous fungus Verticillium lecanii. J Inverteb Pathol 40:413–418CrossRefGoogle Scholar
  21. Cortez-Madrigal H, Allatorre-Rosas R, Mora-Aguilera G, bravomojica H, Ortiz-Garcia CF, Aceves-Navarro LA (2003) Characterization of multisporic and monosporic isolates of Lecanicillium (=Verticillium) lecanii for the management of Toxoptera aurantii in cocoa. BioControl 48:321–334CrossRefGoogle Scholar
  22. Dara SK (2015) Reporting the occurrence of rice root aphid and honeysuckle aphid and their management in organic celery. UCANR eJournal Strawberries and Vegetables, 21 August 2015. http://ucanr.edu/blogs/blogcore/postdetail.cfm?postnum=18740
  23. Dhaliwal GS, Arora R (1994) Trends in agricultural insect pest management. Commonwealth Publishers, New DelhiGoogle Scholar
  24. Dhaliwal GS, Jindal V, Mohindru B (2015) Crop losses due to insect pests: global and Indian scenario. Indian J Entomol 77:165–168CrossRefGoogle Scholar
  25. Dick GL, Buschman LL (1995) Seasonal occurrence of a fungal pathogen, Neozygites adjarica (Entomophthorales: Neozygitaceae), infecting banks grass mites, Oligonychus pratensis, and two-spotted spider mites, Tetranychus urticae (Acari: Tetranychidae), in field corn. Journal of Kansas Entomological Society 68:425–436Google Scholar
  26. Dixit SS (2015) Seasonal incidence and evaluation of entomopathogenic fungi against the mealy bug on custard apple. Ph. D. thesis submitted to MPKV University, Rahuri, IndiaGoogle Scholar
  27. Fargues J, Goettel MS, Smits M, Ouedraogo A, Vidal C, Lacey LA, Lomer CJ, Rougier M (1996) Variability in susceptibility to simulated sunlight of conidia among isolates of entomopathogenic Hyphomycetes. Mycopathologia 135:171–181CrossRefPubMedGoogle Scholar
  28. Faria M, Wraight SP (2001) Biological control of Bremisia tabaci with fungi. Crop Prot 20:767–778CrossRefGoogle Scholar
  29. Faria MR, Wraight SP (2007) Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biol Control 43:237–256CrossRefGoogle Scholar
  30. Ferron P (1978) Biological control of insect pests by entomopathogenic fungi. Annu Rev Entomol 23:409–442CrossRefGoogle Scholar
  31. Ferron P (1981) Pest control by the fungi Beauveria and Metarhizium. In: Burges HD (ed) Microbial control of pests and diseases 1970–1980. Academic, LondonGoogle Scholar
  32. Fransen JJ (1990) Natural enemies of whiteflies: fungi. In: Gerling D (ed) Whiteflies: their bionomics, pest status and management. Intercept, Andover, pp 187–210Google Scholar
  33. Gatarayiha MC, Laing MD, Miller RM (2000) In vitro effects of flutriafol and azoxystrobin on Beauvaria bassiana and its efficacy against Tetranychus urticae. Pest Manag Sci 66:773–778CrossRefPubMedGoogle Scholar
  34. Glare TR, Milner RJ (1991) Ecology of entomopathogenic fungi. In: Arora DK, Ajello L, Mukerji KG (eds) Handbook of applied mycology. Marcel Dekker, New York, pp 547–612Google Scholar
  35. Goettel MS, Leger RJ, Rizzo NW, Staples RC, Roberts DW (1989) Ultrastructural localization of a cuticle degrading protease produced by the entomopathogenic fungus Metarhizium anisopliae during penetration of host (Manduca sexta) cuticle. J Gen Microbiol 135:2233–2239Google Scholar
  36. Gopalakrishnan C, Anusuya D, Narayanan K (1999) In vitro production of conidia of entomopathogenic fungus Parcilomyces farinosus. Entomology 24:389–392Google Scholar
  37. Gustafsson M (1969) On species of the genus Entomophthora Fres. In Sweden III. Possibility of usage in biological control. Landbrukshogskolans Annaler 35:235–274Google Scholar
  38. Hadiya GD, Kalariya GB, Kalola NA (2016) Efficacy of different entomopathogenic fungus on chilli thrips. Adv Life Sci 5(5):1658–1660. ISSN:2278-3849Google Scholar
  39. Harischandra RP, Naik S (2009) Field evaluation of different entomopathogenic fungal formulations against sucking pests of okra. Karnataka J Agric Sci 22:575–578Google Scholar
  40. Hatting JL, Humber RA, Poprawski TJ, Miller RM (1999) A survey of fungal pathogens from South Africa with special reference to cereal aphids. Biol Control 16:1–12CrossRefGoogle Scholar
  41. Hoque AKMR, Aslam AFM, Ahmed M, Mamun MSA, Howlader AJ (2016) Laboratory and field evaluation of an entomopathogenic fungus formulation-Bioterminator (Metarhizium anisopliae Metchnikoff) against termite infesting tea. J Tea Sci Res 6(9):1–6Google Scholar
  42. Hussain A, Ahmed S, Shahid M (2011) Laboratory and field evaluation of Metarhizium anisopliae var. anisopliae for controlling subterranean termites. Neotrop Entomol 40(2):244–250PubMedGoogle Scholar
  43. Inglis GD, Goettel MS, Butt TM, Strasser H (2001) Use of hyphomycetous fungi for managing insect pests. In: Butt TM, Jackson CW, Magan N (eds) Fungi as biocontrol agents: progress, problems and potential. CABI International/AAFC, Wallingford, pp 23–69CrossRefGoogle Scholar
  44. Jackson MA, Jaronski ST (2009) Production of microsclerotia of the fungal entomopathogen Metarhizium anisopliae and their potential for use as a biocontrol agent for soil-inhabiting insects. Mycol Res 113:842–850CrossRefPubMedGoogle Scholar
  45. Jenkins NE (1995) Studies on mass production and field efficacy of Metarhizium flavoviride for biological control of locusts and grasshoppers. Phd thesis submitted to Cranfield University, UKGoogle Scholar
  46. Kanaoka M (1978) Bassianolide, a New Insecticidal Cyclodepsipeptide from Beauveria bassiana and Verticillium lecanii. Agric Biol Chem 42:629–640Google Scholar
  47. Kaur H, Kaur H, Rishi P (2015) In vitro evaluation of nematicidal action of neem and bt formulations on Meloidogyne incognita. Int J Microbiol Parasitol 1(1):1–10Google Scholar
  48. Keller S (1987) Arthropod-pathogenic Entomophthorales of Switzerland I. Conidiobolus, Entomophaga and Entomophthora. Sydowia 40:122–167Google Scholar
  49. Keller S (1991) Arthropod-pathogenic Entomophthorales of Switzerland II. Erynia, Eryniopsis, Neozygites, Zoophthora, and Tarichium. Sydowia 43:39–122Google Scholar
  50. Keller S (1997) The genus Neozygites (Zygomycetes, Entomophthorales) with special reference to species found in tropical regions. Sydowia 49:118–146Google Scholar
  51. Khachatourians GG, Sohail SQ (2008) Entomopathogenic Fungi. In: Brakhage AA, Zipfel PF (eds) Biochemistry and molecular biology, human and animal relationships, The Mycota VI, 2nd edn. Springer, Berlin/Heidelberg, pp 465–482Google Scholar
  52. Kim JJ, Lee MH, Yoon CS, Kim HS, Yoo JK, Kim KC (2002) Control of cotton aphid and greenhouse whitefly with a fungal pathogen. J Natl Inst Agric Sci Technol:7–14 http://dx.doi.org/10.1155/2012/126819Google Scholar
  53. Kiuchi M, Yasui H, Hayasaka S, Kamimura M (2003) Entomogenous fungus Nomuraea rileyi inhibits host insect molting by C22-oxidizing inactivation of hemolymph ecdysteroids. Archiv Insect Biochem Physiol 52:35–44CrossRefGoogle Scholar
  54. Kryukov VI, Khodyrev VP, Iaroslavtseva ON, Kamenova AS, Duisembekov BA, Glupov VV (2009) Synergistic action of entomopathogenic hypomycetes and the bacteria Bacillus thuringiensis spp. Morrisoni in the infection of Colorado potato beetle Leptinotarsa decemlineata. Prikl Biokhim Mikrobiol 45(5):571–576Google Scholar
  55. Kulkarni KA & Shekarappa (2001). Integrated management of chilli fruit borer Helicoverpa armigera Hub. In: Proceedings of II national symposium on Integrated Pest Management (IPM) in Horticulture Crops, New Molecules, Biopesticides and Environment, Bangalore, 17–19th October, pp 59–60Google Scholar
  56. Kumar RN, Mukerji KG (1996) Integrated disease management future perspectives. In: Mukerji KG, Mathur B, Chamala BP, Chitralekha C (eds) Advances in botany. APH Publishing Corporation, New Delhi, pp 335–347Google Scholar
  57. Kumari P, Mishra GC, Srivastava CP (2013) Forecasting of productivity and pod damage by Helicoverpa armigera using artificial neural network model in Pigeonpea (Cajanus cajan). IJAEB 6(2):335–340Google Scholar
  58. Lakshminarayana M, And Duraimurugan P (2014) Assessment of avoidable yield losses due to insect pests in castor (Ricinus communis L.). J Oilseeds Res 31(2):140–144Google Scholar
  59. Leger RJ, Cooper RM, Charnley AK (1986) Cuticle degrading enzymes of entomopathogenic fungi: Cuticle degradation in vitro by enzymes from entomopathogens. J Invertebr Pathol 47:167–177CrossRefGoogle Scholar
  60. Leger RJ, Cooper RM, Charnley AK (1987) Production of cuticle degrading enzymes by the entomopathogenic Metarhizium anisopliae during infection of cuticles from Calliphora vomitoria and Manduca sexta. J Gen Microbiol 133:1371–1382Google Scholar
  61. Liu M, Chaverri P, Hodge KT (2006) A taxonomic revision of the insect biocontrol fungus Aschersonia aleyrodis, its allies with white stromata and their Hypocrella sexual states. Mycol Res 110:537–554CrossRefPubMedGoogle Scholar
  62. Liu W, Xie Y, Xue J, Zhang Y, Zhang X (2011) Ultrastructural and cytochemical characterization of brown soft scale Coccus hesperidum (Hemiptera:Coccidae) infected by the Lecanicillium lecanii (Ascomycota: Hypoceales). Micron 42:71–79CrossRefPubMedGoogle Scholar
  63. Lomer CJ, Prior C, Kooyman C (1997) Development of Metarhizium sp. for the control of grasshoppers and locusts. In: Goettel MS, Johnson DL (eds) Microbial control of Grasshoppers and Locust, vol 171. Memoirs of the Entomological Society of Canada, Ottawa, pp 265–286Google Scholar
  64. Long DW, GA Drummond, E Groden (2000) Horizontal transmission of Beauveria bassiana. Agriculture and Forest Entomology 2:11–17. NOP. 2000. USDA National Organic Program Regulations, 7CFR 205.206(e). http://www.ams.usda.gov/nop
  65. Manisegaran S, Lakshmi SM, Srimohanapriya V (2011) Field Evaluation of Metarhizium anisopliae (Metschnikoff) Sorokin against Holotrichia serrata (Blanch) in sugarcane. J Biopest 4(2):190–193Google Scholar
  66. Mantzoukas S, Milonas P, Kontodimas D, Angelopoulos K (2013) Interaction between the entomopathogenic bacterium Bacillus thuringiensissubsp. kurstakiand two entomopathogenic fungi in bio-control of Sesamia nonagrioides(Lefebvre) (Lepidoptera: Noctuidae). Ann Microbiol 63(3):1083–1091.  https://doi.org/10.1007/s13213-012-0565-xCrossRefGoogle Scholar
  67. Mietkiewski et al (1993) Observations on a mycosis of spider mites (Acari: Tetranychidae) caused by Neozygites floridana in Poland. J Invertebr Pathol 61:317–319CrossRefGoogle Scholar
  68. Muralidharan K, Pasalu IC (2006) Assessments of crop losses in rice ecosystems due to stem borer damage (Lepidoptera: Pyralidae). Crop Protec 25:409–417CrossRefGoogle Scholar
  69. Nath DK, Sen B, Pal SR (1977) Insect pests occurring in Sunflower, Helianthus annuus in West Bengal. Sci Cult 43:180–181Google Scholar
  70. Nunez E, Iannacone J, Gomez H (2008) Effect of two entomopathogenic fungi in controlling Aleurodicus cocois (Curtis, 1846) (Hemiptera: Aleyrodidae). Chil J Agric Res 68:21–30Google Scholar
  71. Padanad MS, Krishnaraj PU (2009) Pathogenicity of native entomopathogenic fungus Nomuraea rileyi against Spodoptera litura. Online Plant Health Prog.  https://doi.org/10.1094/PHP-2009-0807-01-RSCrossRefGoogle Scholar
  72. Pandey AK (2013) Field evaluation of Beauveria bassiana and Metarhizium anisopliae against the cutworm, Agrotis ipsilon (Hufnagel) damaging potato in Uttarakhand hills. J Biol Control 27(4):293–297Google Scholar
  73. Pell JK, Eilenberg J, Hajek AE, Steinkraus DC (2001) Biology, ecology and pest management potential of Entomophthorales. In: Butt TM, Jackson C, Magan N (eds) Fungi as biocontrol agents: progress, problems and potential. CAB International, Wallingford, pp 71–153CrossRefGoogle Scholar
  74. Quinlan RJ (1988) Use of fungi to control insects in glasshouses. In: Burge MN (ed) Fungi in biological control systems. Manchester University Press, Manchester, pp 19–85Google Scholar
  75. Reddy PP (2012) Biointensive integrated pest management. In: Recent advances in crop protection. Springer, New Delhi. ISBN:978-81-322-0722-1.  https://doi.org/10.1007/978-81-322-0723-8_14CrossRefGoogle Scholar
  76. Roberts DW (1989) World picture of biological control of insects by fungi. Mem Inst Oswaldo Cruz, Rio de Janeiro 84:89–100CrossRefGoogle Scholar
  77. Romback MC (1989) Production of Beauveria bassiana conidia in submerged culture. Entomophaga 5:45–52CrossRefGoogle Scholar
  78. Rousson S, Rainbautt M, Lonsane BK (1983) Zymotics a large scale fermenter design and evaluation. Appl Biochem Biotechnol 42:161–167Google Scholar
  79. Sahayaraj K, Karthick SRN (2008) Mass production of entomopathogenic fungi using agricultural products and by products. Afr J Biotechol 7(12):1907–1910CrossRefGoogle Scholar
  80. Sahayaraj K, Namachivayam SKR (2011) Field evaluation of three entomopathogenic fungi on Groundnut pests. Tropicultura 29(3):143–147Google Scholar
  81. Samson RA, Evans HC, Latg JP (1988) Atlas of entomopathogenic fungi. Springer, Berlin/HeidelbergCrossRefGoogle Scholar
  82. Samuels KDZ, Pinnick DE, Bull RM (1990) Scarabeid larvae control in sugarcane using Metarhizium anisopliae. J Invertebr Pathol 55:135–137CrossRefGoogle Scholar
  83. Sandhu, SS & Mishra, M (1994). Larvicidal activity of fungal isolates Beaveria bassiana, Metarhizium anisopliae and Aspergillus flavus against mosquito sp. Culex pipiens. In: Proceedings of the national symposium on ‘Advances in Biological Control of Insect Pests’, Muzaffarnagar, India, pp 145–150Google Scholar
  84. Sandhu SS, Sharma AK, Beniwal V, Goel G, Batra P, Kumar A, Jaglan S, Sharma AK, Malhotra S (2012) Myco-biocontrol of insect pests: factors involved, mechanism, and regulation. J Pathogens. (Article ID 126819, 10 pages)  https://doi.org/10.1155/2012/126819CrossRefGoogle Scholar
  85. Sayed AMM, Behle RW (2017) Evaluating a dual microbial agent biopesticide with Bacillus thuringiensis var. kurstaki and Beauveria bassiana blastospores. Biocontrol Sci Tech 27:461.  https://doi.org/10.1080/09583157.2017.1303662CrossRefGoogle Scholar
  86. Schuler T (1991) Verticillium lecanii (Zimmermann) Viegas (Hyphomycetales: Moniliaceae): Geschichte, Systematik, Verbreitung, Biologie und Anwendung im Pflanzenschutz. Mitteilungen aus der Biologischen Bundesanstalt für Land u. Forstwirtschaft, Berlin-Dahlem. Heft 269:154Google Scholar
  87. Shaalan EAS, Canyon DV, Younes MWF, Abdel-Wahab H, Mansour AH (2005) Synergistic efficacy of botanical blends with and without synergetic insecticides against Ades aegypti and Culex annulirostris mosquitoes. J Vector Ecol 30:284–288PubMedGoogle Scholar
  88. Shanthakumar SP, Murali PD, Malarvannan S, Prabavathy VR, Nair S (2010) Laboratory evaluation on the potential of entomopathogenic fungi, Nomuraea rileyi against tobacco caterpillar, Spodoptera litura Fabricius (Noctuidae: Lepidoptera) and its safety to Trichogramma sp. J Biopest 3(1):132–137Google Scholar
  89. Sharma K (2004) Bionatural management of pests in organic farming. Agrobiosnews L 2:296–325Google Scholar
  90. Sharma JH, Anoorag RT (2017) Evaluation of bio-Rational pesticides, against brinjal fruit and shoot borer, Leucinodes orbonalis Guen. on brinjal at Allahabad agroclimatic region. Int J Curr Microbiol App Sci 6(6):2049–2054. ISSN: 2319-7706CrossRefGoogle Scholar
  91. Shinde SV, Purohit MS, Sabalpara AN, Patel MB (2010) First report of entomopathogenic fungus Lecanicillium lecanii (Zimm.) Zare and Games on sugarcane whitefly Aleurolobus barodensis (Maskell) from Gujarat. Trends Biosci 3(1):76–78Google Scholar
  92. Singh KB (1997) Chickpea (Cicer arietinum L.). Field Crop Res 53:161–170CrossRefGoogle Scholar
  93. Singh BK, Pandey JG, Gupta RP, Verghes A (2011) Efficacy of entomopathogenic fungi for the management of onion thrips, Thrips tabaci Lind. Pest Manag Hortic Ecosyst 17(2):92–98Google Scholar
  94. Singha D, Singha B, Dutta BK (2011) Potential of Metarhizium anisopliae and Beauveria bassiana in the control of tea termite Microtermes obesi Holmgren in vitro and under field conditions. J Pest Sci 48(1):69–75CrossRefGoogle Scholar
  95. Soman AG, Gloer JB, Angawi RF, Wicklow DT, Dowd PF (2001) Vertilecanins: New phenopicolinic acid analogues from Verticillium lecanii. J Nat Prod 64:189–192CrossRefPubMedGoogle Scholar
  96. Srinivasa Rao M, Srinivas K, Vanaja M, Rao GGSN, Venkateswarlu B, Ramakrishna YS (2009) Host plant (Ricinus communis Linn) mediated effects of elevated CO2 on growth performance of two insect folivores. Curr Sci 97(7):1047–1054Google Scholar
  97. Srisukchayakul P, Wiwat C, Pantuwatana S (2005) Studies on the pathogenesis of the local isolates of Nomuraea rileyi against Spodoptera litura. Sci Asia 31:273–276CrossRefGoogle Scholar
  98. Suzuki A, Kanaoka M, Isogai A, Murakoshi S, Ichinoe M, Tamura S (1977) Bassianolide – new insecticidal cyclodepsipeptide from Beauveria bassiana and Verticillium lecanii. Tetrahedron Lett 18(25):2167–2170CrossRefGoogle Scholar
  99. Tanda Y, Kaya HK (1993) Insect Pathology. Academic, San DiegoGoogle Scholar
  100. Thamaraichelvi C, Rhichard TW, Kandasamy R (2010) Laboratory culture & virulence of Beauveria brangniarti isolates on sugarcane white grub, Holotrichia serrata f. J Biopest 3(1):177–179Google Scholar
  101. Vargas LRB, Rossato M, Dasilva-ribeiro RT, De-barros NM (2003) Characterization of Nomuraea rileyi strains using polymorphic DNA, virulence, and enzyme activity. Brazil Arch Biol Technol 46:13–18CrossRefGoogle Scholar
  102. Vimala Devi PS (1994) Conidial production of entomopathogenic fungus Nomuraearileyi and its evaluation for control of Spodopteralitura (Fab.) on Ricinus communis. J Invertebr Pathol 63:145–150CrossRefGoogle Scholar
  103. Vinayaka J, Patil RR, Prabhu ST (2018) Field evaluation of EC formulations of Metarhizium anisopliae (Meschinikoff) Sorokin and few insecticides against arecanut white grub, Leucopholis lepidophora, Blanchard. J Entomol Zool Stud 6(2):1034–1037Google Scholar
  104. Visalakshi M, Bhavani B, Govindrao S (2015) Field evaluation of entomopathogenic fungi against white grub, Holotrichia consanguinea Blanch in sugarcane. J Biol Control 29(2):103–106CrossRefGoogle Scholar
  105. Wraight SP, Ramos ME (2017) Characterization of the synergistic interaction between Beauveria bassiana strain GHA and Bacillus thuringiensis morrisoni strain tenebrionis applied against Colorado potato beetle larvae. J Invertebr Pathol.  https://doi.org/10.1016/j.jip.2017.01.007CrossRefPubMedGoogle Scholar
  106. Wraight SP, Jackson MA, de Kock SL (2001) Production, stabilization and formulation of fungal biological agents. In: Butt TM, Jackson C, Magan N (eds) Fungi as biocontrol agents. CABI International, Wallingford, pp 253–287Google Scholar
  107. Yeo H (2000) Mycoinsecticides for aphid management: a biorational approach. Phd thesis, University of NottinghamGoogle Scholar
  108. Zhu YP, Guan X, Pan JR, Qiu JZ (2008) Optimization of nutritional requirements for mycelial growth and sporulation of entomogenous fungus Aschersonia aleyrodis Webber. Braz J Microbiol 39(4):770–775CrossRefPubMedPubMedCentralGoogle Scholar
  109. Zimmermann G (1986) Insect pathogenic fungi as pest control agents. Progressive Zoology 32:217–231Google Scholar
  110. Zimmermann G (2008) The entomopathogenic fungi Isaria farinosa (formerly Paecilomyces farinosus) and the Isaria fumosorosea species complex (formerly Paecilomyces fumosoroseus): biology, ecology and use in biological control. Biocontrol Sci Tech 18:865–901CrossRefGoogle Scholar
  111. Zare, Gams (2001) A revision of Verticillium section Prostrata. IV. The genera Lecanicilliumand Simplicilliumgen, nov. Nova Hedvigia 73:1–50Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Suseelendra Desai
    • 1
  • T. V. Prasad
    • 2
  • G. Praveen Kumar
    • 3
  • John Peter
    • 4
  • Leo Danile Amalraj
    • 4
  1. 1.Plant PathologyICAR-Central Research Institute for Dryland AgricultureSantoshnagarIndia
  2. 2.Agricultural EntomologyICAR-Central Research Institute for Dryland AgricultureSantoshnagarIndia
  3. 3.Drugs Control Laboratory, Govt. of Andhra Pradesh, SMC CampusVijayawadaIndia
  4. 4.Varsha Bioscience and Technology India Pvt. Ltd.VinaynagarIndia

Personalised recommendations