Advertisement

Methanogens for Human Welfare: More Boon Than Bane

  • Prashant K. Dhakephalkar
  • Om Prakash
  • Vikram B. Lanjekar
  • Manasi P. Tukdeo
  • Dilip R. Ranade
Chapter

Abstract

Microorganisms that produce methane as an end product of their energy-generating metabolism are known as methanogens. They represent phylum Euryarchaeota and are one of the most diverse groups of archaea. The ability of methanogens to utilize carbon dioxide and other by-products of bacterial metabolism as a ‘C’ and ‘E’ source and eventually convert them into methane has become the focus of recent research. Methanogens make significant contribution to global warming through emission of methane, the greenhouse gas. Biogenic methane in the form of methane hydrate trapped in subsurface sediments amounts to massive deposits of methane. Methane emissions from such deposits as a consequence of tectonic shifts can contribute to global warming through creation of ozone holes. Methane hydrates on the other hand can also serve as an untapped source of energy. Methane, if recovered, can be used as fuel, for heating, electricity/energy production and also for the synthesis of valuable chemicals. Methanogenic waste treatment of high-strength industrial waste has made the effluent treatment a cost-efficient process rather than a cost-intensive one. Although emissions of methane have adverse impact on the environment, the desirable use of methanogens for reducing environmental pollution, renewable energy generation and the synthesis of valuable chemicals has made methanogens in the environment a ‘boon rather than bane’.

Keywords

Methanogens Archaea Anaerobes Extreme environment Biogas production Wastewater treatment Global climate change 

References

  1. Bär K, Mörs F, Götz M, Graf F (2015) Vergleich der biologischen und katalytischen Methanisierung für den Einsatz bei PtG-Konzepten. gwf-Gas7:1–8Google Scholar
  2. Bass C (1999) ZoBell’s contribution to petroleum microbiology. In: Proceedings of the 8th international symposium on microbial ecology. Microbial biosystems: New Frontiers. Atlantic Canada Society for Microbial Ecology, Halifax, CanadaGoogle Scholar
  3. Bastin ES, Greer FE, Merritt C, Moulton G (1926) The presence of sulphate reducing bacteria in oil field waters. Science 63(1618):21–24CrossRefPubMedGoogle Scholar
  4. Bellack A, Huber H, Rachel R, Wanner G, Wirth R (2011) Methanocaldococcus villosus sp. nov., a heavily flagellated archaeon that adheres to surfaces and forms cell–cell contacts. Intl J Syst Evolut Microbiol 61(6):1239–1245CrossRefGoogle Scholar
  5. Belyaev S, Obraztsova AY, Laurinavichus K, Bezrukova L (1986) Characteristics of rod-shaped methane-producing bacteria from an oil pool and description of methanobacterium-ivanovii sp-nov. Microbiology 55(6):821–826Google Scholar
  6. Bintrim SB, Donohue TJ, Handelsman J, Roberts GP, Goodman RM (1997) Molecular phylogeny of Archaea from soil. Proc Natl Acad Sci USA 94(1):277–282CrossRefPubMedGoogle Scholar
  7. Birkeland N (2004) Petroleum biotechnology – developments and perspectives – chapter 14: the microbial diversity of deep subsurface oil reservoirs. Elsevier Science BV, Amsterdam, pp 385–404CrossRefGoogle Scholar
  8. Blasco-Gómez R, Batlle-Vilanova P, Villano M, Balaguer MD, Colprim J, Puig S (2017) On the edge of research and technological application: a critical review of electromethanogenesis. Intl J Mol Sci 18(4):874CrossRefGoogle Scholar
  9. Bonch-Osmolovskaya EA, Miroshnichenko ML, Lebedinsky AV, Chernyh NA, Nazina TN, Ivoilov VS, Belyaev SS, Boulygina ES, Lysov YP, Perov AN (2003) Radioisotopic, culture-based, and oligonucleotide microchip analyses of thermophilic microbial communities in a continental high-temperature petroleum reservoir. Appl Environ Microbiol 69(10):6143–6151CrossRefPubMedPubMedCentralGoogle Scholar
  10. Boone DR, Bryant MP (1980) Propionate-degrading bacterium, Syntrophobacter wolinii sp. nov. gen. nov., from methanogenic ecosystems. Appl Environ Microbiol 40(3):626–632Google Scholar
  11. Boone DR, Whitman WB (1988) Proposal of minimal standards for describing new taxa of methanogenic bacteria. Intl J Syst Evolut Microbiol 38(2):212–219Google Scholar
  12. Borrel G, Parisot N, Harris HM, Peyretaillade E, Gaci N, Tottey W, Bardot O, Raymann K, Gribaldo S, Peyret P (2014) Comparative genomics highlights the unique biology of Methanomassiliicoccales, a Thermoplasmatales-related seventh order of methanogenic archaea that encodes pyrrolysine. BMC Genom 15(1):679CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bräuer SL, Cadillo-Quiroz H, Yashiro E, Yavitt JB, Zinder SH (2006) Isolation of a novel acidiphilic methanogen from an acidic peat bog. Nature 442(7099):192CrossRefPubMedGoogle Scholar
  14. Bryant M, Wolin E, Wolin M, Wolfe R (1967) Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Archiv für Mikrobiologie 59(1–3):20–31CrossRefPubMedGoogle Scholar
  15. Buckley DH, Baumgartner LK, Visscher PT (2008) Vertical distribution of methane metabolism in microbial mats of the Great Sippewissett Salt Marsh. Environ Microbiol 10(4):967–977CrossRefPubMedGoogle Scholar
  16. Cadillo-Quiroz H, Bräuer SL, Goodson N, Yavitt JB, Zinder SH (2014) Methanobacterium paludis sp. nov. and a novel strain of Methanobacterium lacus isolated from northern peatlands. Intl J Syst Evolut Microbiol 64(5):1473–1480CrossRefGoogle Scholar
  17. Carr SA, Schubotz F, Dunbar RB, Mills CT, Dias R, Summons RE, Mandernack KW (2018) Acetoclastic Methanosaeta are dominant methanogens in organic-rich Antarctic marine sediments. ISME J 12(2):330–342CrossRefPubMedGoogle Scholar
  18. Chaudhary P, Sirohi S (2009) Dominance of Methanomicrobium phylotype in methanogen population present in Murrah buffaloes (Bubalus bubalis). Lett Appl Microbiol 49(2):274–277CrossRefPubMedGoogle Scholar
  19. Chaudhary PP, Conway PL, Schlundt J (2018) Methanogens in humans: potentially beneficial or harmful for health. Appl Microbiol Biotechnol 102(7):3095–3104CrossRefPubMedGoogle Scholar
  20. Cheng L, Qiu T-L, Yin X-B, Wu X-L, Hu G-Q, Deng Y, Zhang H (2007) Methermicoccus shengliensis gen. nov., sp. nov., a thermophilic, methylotrophic methanogen isolated from oil-production water, and proposal of Methermicoccaceae fam. nov. Intl J Syst Evolut Microbiol 57(12):2964–2969CrossRefGoogle Scholar
  21. Cheng L, Qiu T-L, Li X, Wang W-D, Deng Y, Yin X-B, Zhang H (2008) Isolation and characterization of Methanoculleus receptaculi sp. nov. from Shengli oil field, China. FEMS Microbiol Lett 285(1):65–71CrossRefPubMedGoogle Scholar
  22. Cheng L, Dai L, Li X, Zhang H, Lu Y (2011) Isolation and characterization of Methanothermobacter crinale sp. nov, a novel hydrogenotrophic methanogen from Shengli Oilfields. Appl Environ Microbiol:00210–00211Google Scholar
  23. Costa KC, Leigh JA (2014) Metabolic versatility in methanogens. Curr Opin Biotechnol 29:70–75CrossRefPubMedGoogle Scholar
  24. Curson AR, Todd JD, Sullivan MJ, Johnston AW (2011) Catabolism of dimethylsulphoniopropionate: microorganisms, enzymes and genes. Nat Rev Microbiol 9(12):849CrossRefPubMedGoogle Scholar
  25. Dabir A, Honkalas V, Arora P, Pore S, Ranade D, Dhakephalkar PK (2014) Draft genome sequence of Methanoculleus sp. MH98A, a novel methanogen isolated from sub-seafloor methane hydrate deposits in Krishna Godavari basin. Mar Genomics 18:139–140CrossRefGoogle Scholar
  26. Demirel B, Scherer P (2008a) Production of methane from sugar beet silage without manure addition by a single-stage anaerobic digestion process. Biomass Bioenergy 32(3):203–209CrossRefGoogle Scholar
  27. Demirel B, Scherer P (2008b) The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review. Rev Environ Sci Biotechnol 7(2):173–190CrossRefGoogle Scholar
  28. Denman SE, Tomkins NW, McSweeney CS (2007) Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane. FEMS Microbiol Ecol 62(3):313–322CrossRefPubMedGoogle Scholar
  29. Dridi B, Fardeau M-L, Ollivier B, Raoult D, Drancourt M (2012) Methanomassiliicoccus luminyensis gen. Nov., sp. nov., a methanogenic archaeon isolated from human faeces. Intl J Syst Evolut Microbiol 62(8):1902–1907CrossRefGoogle Scholar
  30. Enzmann F, Mayer F, Rother M, Holtmann D (2018) Methanogens: biochemical background and biotechnological applications. AMB Express 8(1):1Google Scholar
  31. Ferry JG (1992) Biochemistry of methanogenesis. Critic Rev Biochem Mol Biol 27(6):473–503CrossRefPubMedGoogle Scholar
  32. Ferry JG (2012) Methanogenesis: ecology, physiology, biochemistry & genetics. SpringerGoogle Scholar
  33. Franzmann PD, Liu Y, Balkwill DL, Aldrich HC, De Macario EC, Boone DR (1997) Methanogenium frigidum sp. nov., a psychrophilic, H2-using methanogen from ace Lake, Antarctica. Intl J Syst Evolut Microbiol 47(4):1068–1072Google Scholar
  34. Gaci N, Borrel G, Tottey W, O’Toole PW, Brugère J-F (2014) Archaea and the human gut: new beginning of an old story. World J Gastroenterol 20(43):16062CrossRefPubMedPubMedCentralGoogle Scholar
  35. Garcia J-L, Patel BK, Ollivier B (2000) Taxonomic, phylogenetic, and ecological diversity of methanogenic archaea. Anaerobe 6(4):205–226CrossRefPubMedGoogle Scholar
  36. Ge X, Yang L, Sheets JP, Yu Z, Li Y (2014) Biological conversion of methane to liquid fuels: status and opportunities. Biotechnol Adv 32(8):1460–1475CrossRefPubMedGoogle Scholar
  37. Gieg LM, Duncan KE, Suflita JM (2008) Bioenergy production via microbial conversion of residual oil to natural gas. Appl Environ Microbiol 74(10):3022–3029CrossRefPubMedPubMedCentralGoogle Scholar
  38. Gieg LM, Davidova IA, Duncan KE, Suflita JM (2010) Methanogenesis, sulfate reduction and crude oil biodegradation in hot Alaskan oilfields. Environ Microbiol 12(11):3074–3086CrossRefPubMedGoogle Scholar
  39. Goyal N, Zhou Z, Karimi IA (2016) Metabolic processes of Methanococcus maripaludis and potential applications. Microbial Cell Factories 15(1):107Google Scholar
  40. Grabowski A, Nercessian O, Fayolle F, Blanchet D, Jeanthon C (2005) Microbial diversity in production waters of a low-temperature biodegraded oil reservoir. FEMS Microbiol Ecol 54(3):427–443CrossRefPubMedGoogle Scholar
  41. Guerrero R (2001) Bergey’s manuals and the classification of prokaryotes. Intl Microbiol 4(2):103–109Google Scholar
  42. Hallmann C, Schwark L, Grice K (2008) Community dynamics of anaerobic bacteria in deep petroleum reservoirs. Nature Geosci 1(9):588CrossRefGoogle Scholar
  43. Hausinger RP, Orme-Johnson WH and Walsh C (1985) Factor 390 chromophores: phosphodiester between AMP or GMP and methanogenic factor 420. Biochemistry 24(7):1629–1633CrossRefPubMedGoogle Scholar
  44. Hebert AM, Kropinski AM, Jarrell KF (1991) Heat shock response of the archaebacterium Methanococcus voltae. J Bacteriol 173(10):3224–3227CrossRefPubMedPubMedCentralGoogle Scholar
  45. Hoehler TM, Bebout BM, Des Marais DJ (2001) The role of microbial mats in the production of reduced gases on the early Earth. Nature 412(6844):324CrossRefPubMedGoogle Scholar
  46. Holm-Nielsen JB, Al Seadi T, Oleskowicz-Popiel P (2009) The future of anaerobic digestion and biogas utilization. Bioresour Technol 100(22):5478–5484CrossRefPubMedGoogle Scholar
  47. Hovorka S (1987) Depositional environments of marine-dominated bedded halite, Permian San Andres Formation, Texas. Sedimentology 34(6):1029–1054CrossRefGoogle Scholar
  48. Huber H, Thomm M, König H, Thies G, Stetter KO (1982) Methanococcus thermolithotrophicus, a novel thermophilic lithotrophic methanogen. Archives Microbiol 132(1):47–50CrossRefGoogle Scholar
  49. Hungate R (1969) A roll tube method for cultivation of strict anaerobes. In: Norris JR, Ribbons DW (eds) Methods in microbiology, vol 3B. Academic, New York, pp 118–132Google Scholar
  50. Jabłoński S, Rodowicz P, Łukaszewicz M (2015) Methanogenic archaea database containing physiological and biochemical characteristics. Intl J Syst Evolut Microbiol 65(4):1360–1368CrossRefPubMedGoogle Scholar
  51. Janssen PH, Kirs M (2008) Structure of the archaeal community of the rumen. Appl Environ Microbiol 74(12):3619–3625CrossRefPubMedPubMedCentralGoogle Scholar
  52. Jarvis GN, Strömpl C, Burgess DM, Skillman LC, Moore ER, Joblin KN (2000) Isolation and identification of ruminal methanogens from grazing cattle. Curr Microbiol 40(5):327–332CrossRefPubMedGoogle Scholar
  53. Jeanthon C, Nercessian O, Corre E, Grabowski-Lux A (2005) Hyperthermophilic and methanogenic archaea in oil fields. In Petroleum microbiology, American Society of Microbiology, Washington, DC, pp 55–69Google Scholar
  54. Jones D, Head I, Gray N, Adams J, Rowan A, Aitken C, Bennett B, Huang H, Brown A, Bowler B (2008) Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature 451(7175):176CrossRefPubMedGoogle Scholar
  55. Joshi A, Lanjekar V, Dhakephalkar PK, Dagar SS (2018) Cultivation of multiple genera of hydrogenotrophic methanogens from different environmental niches. Anaerobe 50:64–68CrossRefPubMedGoogle Scholar
  56. Karakashev D, Batstone DJ, Angelidaki I (2005) Influence of environmental conditions on methanogenic compositions in anaerobic biogas reactors. Appl Environ Microbiol 71(1):331–338CrossRefPubMedPubMedCentralGoogle Scholar
  57. Katayama T, Yoshioka H, Takahashi HA, Amo M, Fujii T, Sakata S, (2016) Changes in microbial communities associated with gas hydrates in subseafloor sediments from the Nankai Trough. FEMS Microbiol Ecol 92(8)CrossRefPubMedGoogle Scholar
  58. Kendall MM, Boone DR (2006) Cultivation of methanogens from shallow marine sediments at Hydrate Ridge, Oregon. Archaea 2(1):31–38CrossRefPubMedPubMedCentralGoogle Scholar
  59. Kiene RP, Visscher PT (1987) Production and fate of methylated sulfur compounds from methionine and dimethylsulfoniopropionate in anoxic salt marsh sediments. Appl Environ Microbiol 53(10):2426–2434PubMedPubMedCentralGoogle Scholar
  60. Kiene RP, Oremland RS, Catena A, Miller LG, Capone DG (1986) Metabolism of reduced methylated sulfur compounds in anaerobic sediments and by a pure culture of an estuarine methanogen. Appl Environ Microbiol 52(5):1037–1045PubMedPubMedCentralGoogle Scholar
  61. Kiener A, Leisinger T (1983) Oxygen sensitivity of methanogenic bacteria. System Appl Microbiol 4(3):305–312CrossRefPubMedGoogle Scholar
  62. Kim B-C, Jeong H (2018) Complete genome sequence of Methanobrevibacter smithii strain KB11, isolated from a Korean Fecal sample. Genome Announc 6(7):e00038–e00018CrossRefGoogle Scholar
  63. Kim DD, O’Farrell C, Toth CR, Montoya O, Gieg LM, Kwon TH, Yoon S (2018) Microbial community analyses of produced waters from high-temperature oil reservoirs reveal unexpected similarity between geographically distant oil reservoirs. Microb Biotechnol 11:788CrossRefPubMedPubMedCentralGoogle Scholar
  64. Kirby TW, Lancaster JR Jr, Fridovich I (1981) Isolation and characterization of the iron-containing superoxide dismutase of Methanobacterium bryantii. Arch Biochem Biophys 210(1):140–148CrossRefPubMedGoogle Scholar
  65. Kougias PG, Angelidaki I (2018) Biogas and its opportunities – a review. Front Environ Sci Eng 12:1–12CrossRefGoogle Scholar
  66. Krivushin KV, Shcherbakova VA, Petrovskaya LE, Rivkina EM (2010) Methanobacterium veterum sp. nov., from ancient Siberian permafrost. Int J Syst Evol Microbiol 60(2):455–459CrossRefPubMedGoogle Scholar
  67. Kulik EM, Sandmeier H, Hinni K, Meyer J (2001) Identification of archaeal rDNA from subgingival dental plaque by PCR amplification and sequence analysis. FEMS Microbiol Lett 196(2):129–133CrossRefPubMedGoogle Scholar
  68. Kumar S, Indugu N, Vecchiarelli B, Pitta DW (2015) Associative patterns among anaerobic fungi, methanogenic archaea, and bacterial communities in response to changes in diet and age in the rumen of dairy cows. Front Microbiol 6:781PubMedPubMedCentralGoogle Scholar
  69. Kumar S, Dagar SS, Agrawal R, Puniya AK (2018) Comparative diversity analysis of ruminal methanogens in Murrah buffaloes (Bubalus bubalis) in four states of North India. Anaerobe 52:52–63Google Scholar
  70. Kurr M, Huber R, König H, Jannasch HW, Fricke H, Trincone A, Kristjansson JK, Stetter KO (1991) Methanopyrus kandleri, gen. And sp. nov. represents a novel group of hyperthermophilic methanogens, growing at 110 C. Arch Microbiol 156(4):239–247CrossRefGoogle Scholar
  71. L’Haridon S, Chalopin M, Colombo D, Toffin L (2014) Methanococcoides vulcani sp. nov., a marine methylotrophic methanogen that uses betaine, choline and N, N-dimethylethanolamine for methanogenesis, isolated from a mud volcano, and emended description of the genus Methanococcoides. Int J Syst Evol Microbiol 64(6):1978–1983CrossRefPubMedGoogle Scholar
  72. Lay J-J, Li Y-Y, Noike T (1997) Influences of pH and moisture content on the methane production in high-solids sludge digestion. Water Res 31(6):1518–1524CrossRefGoogle Scholar
  73. Lebuhn M, Liu F, Heuwinkel H, Gronauer A (2008) Biogas production from mono-digestion of maize silage–long-term process stability and requirements. Water Sci Technol 58(8):1645–1651CrossRefPubMedGoogle Scholar
  74. Liu Y, Whitman WB (2008) Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann N Y Acad Sci 1125(1):171–189CrossRefPubMedGoogle Scholar
  75. Liu Y, Boone DR, Sleat R, Mah RA (1985) Methanosarcina mazei LYC, a new methanogenic isolate which produces a disaggregating enzyme. Appl Eenviron Microbiol 49(3):608–613Google Scholar
  76. Lovley DR, Dwyer DF, Klug MJ (1982) Kinetic analysis of competition between sulfate reducers and methanogens for hydrogen in sediments. Appl Environ Microbiol 43(6):1373–1379PubMedPubMedCentralGoogle Scholar
  77. Lupa B, Hendrickson EL, Leigh JA, Whitman WB (2008) Formate-dependent H2 production by the mesophilic methanogen Methanococcus maripaludis. Appl Environ Microbiol 74(21):6584–6590CrossRefPubMedPubMedCentralGoogle Scholar
  78. Maczulak AE, Wolin M, Miller TL (1989) Increase in colonic methanogens and total anaerobes in aging rats. Appl Environ Microbiol 55(10):2468–2473PubMedPubMedCentralGoogle Scholar
  79. McGenity TJ and Sorokin DY (2018) Methanogens and methanogenesis in hypersaline environments. Biogenesis of hydrocarbons. Cham, Cham Springer 1–27Google Scholar
  80. McInerney MJ, Bryant MP, Pfennig N (1979) Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens. Arch Microbiol 122(2):129–135CrossRefGoogle Scholar
  81. McInerney M, Bryant M, Hespell R, Costerton J (1981) Syntrophomonas wolfei gen. Nov. sp. nov., an anaerobic, syntrophic, fatty acid-oxidizing bacterium. Appl Environ Microbiol 41(4):1029–1039PubMedPubMedCentralGoogle Scholar
  82. McKay CP, Rask JC, Detweiler AM, Bebout BM, Everroad RC, Lee JZ, Chanton JP, Mayer MH, Caraballo AA, Kapili B (2016) An unusual inverted saline microbial mat community in an Interdune Sabkha in the Rub’al Khali (the Empty Quarter), United Arab Emirates. PLoS One 11(3):e0150342CrossRefPubMedPubMedCentralGoogle Scholar
  83. Mikucki JA, Liu Y, Delwiche M, Colwell FS, Boone DR (2003) Isolation of a methanogen from deep marine sediments that contain methane hydrates, and description of Methanoculleus submarinus sp. nov. Appl Environ Microbiol 69(6):3311–3316CrossRefPubMedPubMedCentralGoogle Scholar
  84. Miller TL, Lin C (2002) Description of Methanobrevibacter gottschalkii sp. nov., Methanobrevibacter thaueri sp. nov., Methanobrevibacter woesei sp. nov. and Methanobrevibacter wolinii sp. nov. Int J Syst Evol Microbiol 52(3):819–822PubMedGoogle Scholar
  85. Miller TL, Wolin M, de Macario EC, Macario A (1982) Isolation of Methanobrevibacter smithii from human feces. Appl Environ Microbiol 43(1):227–232PubMedPubMedCentralGoogle Scholar
  86. Morvan B, Dore J, Rieu-Lesme F, Foucat L, Fonty G, Gouet P (1994) Establishment of hydrogen-utilizing bacteria in the rumen of the newborn lamb. FEMS Microbiol Lett 117(3):249–256CrossRefPubMedGoogle Scholar
  87. Nakamura K, Takahashi A, Mori C, Tamaki H, Mochimaru H, Nakamura K, Takamizawa K, Kamagata Y (2013) Methanothermobacter tenebrarum sp. nov., a hydrogenotrophic, thermophilic methanogen isolated from gas-associated formation water of a natural gas field. Int J Syst Evol Microbiol 63(2):715–722CrossRefPubMedGoogle Scholar
  88. Ni S, Boone DR (1991) Isolation and characterization of a dimethyl sulfide-degrading methanogen, Methanolobus siciliae HI350, from an oil well, characterization of M. siciliae T4/MT, and emendation of M. siciliae. Int J Syst Evol Microbiol 41(3):410–416Google Scholar
  89. Nicholson MJ, Evans PN, Joblin KN (2007) Analysis of methanogen diversity in the rumen using temporal temperature gradient gel electrophoresis: identification of uncultured methanogens. Microb Ecol 54(1):141–150CrossRefPubMedGoogle Scholar
  90. Nilsen RK, Torsvik T (1996) Methanococcus thermolithotrophicus isolated from North Sea oil field reservoir water. Appl Environ Microbiol 62(2):728–731PubMedPubMedCentralGoogle Scholar
  91. Obraztsova A, Laurinavinchus K, Bezrukova L, Tsyban V, Belyaev S (1987a) Biological properties of methanosarcina not utilizing carbonic-acid and hydrogen. Microbiology 56(6):807–812Google Scholar
  92. Obraztsova AY, Shipin O, Bezrukova L, Belyaev S (1987b) Properties of the coccoid methylotrophic methanogen, Methanococcoides euhalobius sp-nov. Microbiology 56(4):523–527Google Scholar
  93. Ollivier B, Cayol J-L, Patel B, Magot M, Fardeau M-L, Garcia J-L (1997) Methanoplanus petrolearius sp. nov., a novel methanogenic bacterium from an oil-producing well. FEMS Microbiol Lett 147(1):51–56CrossRefPubMedGoogle Scholar
  94. Ollivier B, Fardeau M-L, Cayol J-L, Magot M, Patel BK, Prensier G, Garcia J-L (1998) Methanocalculus halotolerans gen. nov., sp. nov., isolated from an oil-producing well. Int J Syst Evol Microbiol 48(3):821–828Google Scholar
  95. Oremland RS, King GM (1989) Methanogenesis in hypersaline environments. CRC Press, Boca RatonGoogle Scholar
  96. Oremland RS, Marsh LM, Polcin S (1982) Methane production and simultaneous sulphate reduction in anoxic, salt marsh sediments. Nature 296(5853):143CrossRefGoogle Scholar
  97. Oren A (2011) Thermodynamic limits to microbial life at high salt concentrations. Environ Microbiol 13(8):1908–1923CrossRefPubMedGoogle Scholar
  98. Orphan V, Taylor L, Hafenbradl D, Delong E (2000) Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs. Appl Environ Microbiol 66(2):700–711CrossRefPubMedPubMedCentralGoogle Scholar
  99. Ranade D, Gore J, Deshpande P, Godbole S, Wagle P (1979) Use of dry dung-cakes for biogas production. Khadi Gramodyog (India), pp 502–506Google Scholar
  100. Rastogi G, Ranade DR, Yeole TY, Gupta AK, Patole MS, Shouche YS (2008) Molecular analyses of methanogen diversity associated with cattle dung. World J Microbiol Biotechnol 24(12):2973–2979CrossRefGoogle Scholar
  101. Rea S, Bowman JP, Popovski S, Pimm C, Wright A-DG (2007) Methanobrevibacter millerae sp. nov. and Methanobrevibacter olleyae sp. nov., methanogens from the ovine and bovine rumen that can utilize formate for growth. Int J Syst Evol Microbiol 57(3):450–456CrossRefPubMedGoogle Scholar
  102. Ren T, Patel MK, Blok K (2008) Steam cracking and methane to olefins: energy use, CO2 emissions and production costs. Energy 33(5):817–833Google Scholar
  103. Rimbault A, Niel P, Virelizier H, Darbord JC, Leluan G (1988) L-Methionine, a precursor of trace methane in some proteolytic clostridia. Appl Environ Microbiol 54(6):1581–1586PubMedPubMedCentralGoogle Scholar
  104. Rincón B, Borja R, González J, Portillo M, Sáiz-Jiménez C (2008) Influence of organic loading rate and hydraulic retention time on the performance, stability and microbial communities of one-stage anaerobic digestion of two-phase olive mill solid residue. Biochem Eng J 40(2):253–261CrossRefGoogle Scholar
  105. Rivkina E, Shcherbakova V, Laurinavichius K, Petrovskaya L, Krivushin K, Kraev G, Pecheritsina S, Gilichinsky D (2007) Biogeochemistry of methane and methanogenic archaea in permafrost. FEMS Microbiol Ecol 61(1):1–15CrossRefPubMedGoogle Scholar
  106. Rosselló-Móra R, Amann R (2015) Past and future species definitions for Bacteria and Archaea. Syst Appl Microbiol 38(4):209–216CrossRefGoogle Scholar
  107. Sakata S, Mayumi D, Mochimaru H, Tamaki H, Yamamoto K, Yoshioka H, Suzuki Y, Kamagata Y (2017) Methane production from coal by a single methanogen. AGU Fall Meeting AbstractsGoogle Scholar
  108. Savant D, Shouche Y, Prakash S, Ranade D (2002) Methanobrevibacter acididurans sp. nov., a novel methanogen from a sour anaerobic digester. Int J Syst Evol Microbiol 52(4):1081–1087PubMedGoogle Scholar
  109. Shcherbakova V, Rivkina E, Pecheritsyna S, Laurinavichius K, Suzina N, Gilichinsky D (2011) Methanobacterium arcticum sp. nov., a methanogenic archaeon from Holocene Arctic permafrost. Int J Syst Evol Microbiol 61(1):144–147CrossRefPubMedGoogle Scholar
  110. Shinzato N, Matsumoto T, Yamaoka I, Oshima T, Yamagishi A (1999) Phylogenetic diversity of symbiotic methanogens living in the hindgut of the lower termite Reticulitermes speratus analyzed by PCR and in situ hybridization. Appl Environ Microbiol 65(2):837–840PubMedPubMedCentralGoogle Scholar
  111. Singh N, Kendall MM, Liu Y, Boone DR (2005) Isolation and characterization of methylotrophic methanogens from anoxic marine sediments in Skan Bay, Alaska: description of Methanococcoides alaskense sp. nov., and emended description of Methanosarcina baltica. Int J Syst Evol Microbiol 55(6):2531–2538CrossRefPubMedGoogle Scholar
  112. Sirohi SK, Chaudhary PP, Singh N, Singh D, Puniya AK (2013) The 16S rRNA and mcrA gene based comparative diversity of methanogens in cattle fed on high fibre based diet. Gene 523(2):161–166CrossRefPubMedGoogle Scholar
  113. Skillman LC, Evans PN, Naylor GE, Morvan B, Jarvis GN, Joblin KN (2004) 16S ribosomal DNA-directed PCR primers for ruminal methanogens and identification of methanogens colonising young lambs. Anaerobe 10(5):277–285CrossRefPubMedGoogle Scholar
  114. Sorokin DY, Makarova KS, Abbas B, Ferrer M, Golyshin PN, Galinski EA, Ciordia S, Mena MC, Merkel AY, Wolf YI (2017) Discovery of extremely halophilic, methyl-reducing euryarchaea provides insights into the evolutionary origin of methanogenesis. Nat Microbiol 2(8):17081CrossRefPubMedPubMedCentralGoogle Scholar
  115. Sprenger WW, Hackstein JH, Keltjens JT (2007) The competitive success of Methanomicrococcus blatticola, a dominant methylotrophic methanogen in the cockroach hindgut, is supported by high substrate affinities and favorable thermodynamics. FEMS Microbiol Ecol 60(2):266–275CrossRefPubMedGoogle Scholar
  116. Stewart LC, Jung J-H, Kim Y-T, Kwon S-W, Park C-S, Holden JF (2015) Methanocaldococcus bathoardescens sp. nov., a hyperthermophilic methanogen isolated from a volcanically active deep-sea hydrothermal vent. Int J Syst Evol Microbiol 65(4):1280–1283CrossRefPubMedGoogle Scholar
  117. Strong PJ, Xie S, Clarke WP (2015) Methane as a resource: can the methanotrophs add value? Environ Sci Technol 49(7):4001–4018CrossRefPubMedPubMedCentralGoogle Scholar
  118. Sundset MA, Edwards JE, Cheng YF, Senosiain RS, Fraile MN, Northwood KS, Præsteng KE, Glad T, Mathiesen SD, Wright A-DG (2009a) Molecular diversity of the rumen microbiome of Norwegian reindeer on natural summer pasture. Microb Ecol 57(2):335–348CrossRefPubMedGoogle Scholar
  119. Sundset MA, Edwards JE, Cheng YF, Senosiain RS, Fraile MN, Northwood KS, Præsteng KE, Glad T, Mathiesen SD, Wright A-DG (2009b) Rumen microbial diversity in Svalbard reindeer, with particular emphasis on methanogenic archaea. FEMS Microbiol Ecol 70(3):553–562CrossRefPubMedGoogle Scholar
  120. Toth CR, Gieg LM (2018) Time Course-Dependent Methanogenic Crude Oil Biodegradation: Dynamics of Fumarate Addition Metabolites, Biodegradative Genes, and Microbial Community Composition. Front Microbiol 8:2610CrossRefPubMedPubMedCentralGoogle Scholar
  121. Valentine DL (2002) Biogeochemistry and microbial ecology of methane oxidation in anoxic environments: a review. Antonie Van Leeuwenhoek 81(1–4):271–282CrossRefPubMedGoogle Scholar
  122. Valentine DL (2011) Emerging topics in marine methane biogeochemistry. Annu Rev Mar Sci 3:147–171CrossRefGoogle Scholar
  123. Valentine DL, Blanton DC, Reeburgh WS (2000) Hydrogen production by methanogens under low-hydrogen conditions. Arch Microbiol 174(6):415–421CrossRefPubMedGoogle Scholar
  124. Vandaele AC, Neefs E, Drummond R, Thomas IR, Daerden F, Lopez-Moreno J-J, Rodriguez J, Patel MR, Bellucci G, Allen M (2015) Science objectives and performances of NOMAD, a spectrometer suite for the ExoMars TGO mission. Planet Space Sci 119:233–249CrossRefGoogle Scholar
  125. Vanegas C, Bartlett J (2013) Anaerobic digestion of Laminaria digitata: the effect of temperature on biogas production and composition. Waste Biomass Valorizat 4(3):509–515CrossRefGoogle Scholar
  126. Varjani SJ, Gnansounou E (2017) Microbial dynamics in petroleum oilfields and their relationship with physiological properties of petroleum oil reservoirs. Bioresour Technol 245:1258CrossRefPubMedGoogle Scholar
  127. Vigneron A, Bishop A, Alsop EB, Hull K, Rhodes I, Hendricks R, Head IM, Tsesmetzis N (2017) Microbial and isotopic evidence for methane cycling in hydrocarbon-containing groundwater from the Pennsylvania region. Front Microbiol 8:593CrossRefPubMedPubMedCentralGoogle Scholar
  128. Vishnivetskaya TA, Buongiorno J, Bird J, Krivushin K, Spirina EV, Oshurkova V, Shcherbakova VA, Wilson G, Lloyd KG, Rivkina EM (2018) Methanogens in the Antarctic Dry Valley Permafrost. FEMS Microbiol Ecol 94Google Scholar
  129. Voordouw G (2011) Production-related petroleum microbiology: progress and prospects. Curr Opin Biotechnol 22(3):401–405CrossRefPubMedGoogle Scholar
  130. Wasserfallen A, Nölling J, Pfister P, Reeve J, De Macario EC (2000) Phylogenetic analysis of 18 thermophilic Methanobacterium isolates supports the proposals to create a new genus, Methanothermobacter gen. Nov., and to reclassify several isolates in three species, Methanothermobacter thermautotrophicus comb. nov., Methanothermobacter wolfeii comb. nov., and Methanothermobacter marburgensis sp. nov. Int J Syst Evol Microbiol 50(1):43–53CrossRefPubMedGoogle Scholar
  131. Watkins AJ, Roussel EG, Parkes RJ, Sass H (2014) Glycine betaine as a direct substrate for methanogens (Methanococcoides spp.). Appl Environ Microbiol 80(1):289–293CrossRefPubMedGoogle Scholar
  132. Whitman WB (2015) Bergey’s manual of systematics of Archaea and Bacteria. Wiley Online LibraryGoogle Scholar
  133. Whitman WB, Bowen TL, Boone DR (2006) The methanogenic bacteria. In: The prokaryotes. Springer, New York, pp 165–207CrossRefGoogle Scholar
  134. Wilms R, Sass H, Köpke B, Cypionka H, Engelen B (2007) Methane and sulfate profiles within the subsurface of a tidal flat are reflected by the distribution of sulfate-reducing bacteria and methanogenic archaea. FEMS Microbiol Ecol 59(3):611–621CrossRefPubMedGoogle Scholar
  135. Winfrey MR, Ward DM (1983) Substrates for sulfate reduction and methane production in intertidal sediments. Appl Environ Microbiol 45(1):193–199PubMedPubMedCentralGoogle Scholar
  136. Zinder SH (1993) Physiological ecology of methanogens. In: Methanogenesis. Springer, New York, pp 128–206CrossRefGoogle Scholar
  137. Zuo G, Hao B (2015) CVTree3 web server for whole-genome-based and alignment-free prokaryotic phylogeny and taxonomy. Genomics Proteomics Bioinformatics 13(5):321–331CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Prashant K. Dhakephalkar
    • 1
  • Om Prakash
    • 2
  • Vikram B. Lanjekar
    • 1
  • Manasi P. Tukdeo
    • 3
  • Dilip R. Ranade
    • 2
  1. 1.Bioenergy GroupMACS-Agharkar Research InstitutePuneIndia
  2. 2.NCCS-National Centre for Microbial ResourcePuneIndia
  3. 3.Department of MicrobiologyModern College of Arts, Science and Commerce, GaneshkhindPuneIndia

Personalised recommendations