Advertisement

Diversity of Nitrogen-Fixing Symbiotic Rhizobia with Special Reference to Indian Thar Desert

  • Nisha Tak
  • Hukam Singh Gehlot
Chapter

Abstract

The symbiotic nitrogen-fixing bacteria are found in diverse climatic conditions and are ecologically important. The classification of rhizobia has always been fascinating; with the advent of polyphasic approaches, it is continuously changing by addition of new genera and species and the reclassification and discovery of nontraditional rhizobia. In comparison with crop legumes, the study of symbiotic associations in wild/native legumes has led to the discovery of several genetically diverse rhizobia. In the era of global climate change, increasing desertification, and for food security, the identification and characterization of rhizobia adapted to arid and hot climatic conditions are important. With this aim desert rhizobia associated with several native legumes belonging to different tribes have been broadly studied from less-explored regions of Indian Thar Desert. The diverse legumes in alkaline soils of the Thar Desert are found to be nodulated by traditional rhizobial genera, Ensifer and Bradyrhizobium. On the basis of core gene phylogeny, the Ensifer strains affiliated to mimosoid, cesalpinioid, and papilionoid legumes clustered into novel clades and lineages. Bradyrhizobium strains phylogenetically diversified from the B. yuanmingense type strain are microsymbiont of species of Tephrosia, Alysicarpus, Crotalaria, and Chamaecrista in addition to strains of Ensifer. The tree rhizobia (isolated from Vachellia, Senegalia, Prosopis, Mimosa) have host range restricted to tree species and therefore could be used as an inoculum in forestry practices. The other native rhizobia isolated from wild legumes (Tephrosia and Chamaecrista) are compatible with crop legumes (Vigna, Cyamopsis, Glycine max) and can be useful in preparation of consortia for extension of agricultural practices.

Keywords

Root nodule bacteria Ensifer Bradyrhizobium Wild legumes Thar Desert 

References

  1. Appunu C, N’Zoue A, Laguerre G (2008) Genetic diversity of native bradyrhizobia isolated from soybeans (Glycine max L.) in different agricultural-ecological-climatic regions of India. Appl Environ Microbiol 74:5991–5996CrossRefPubMedPubMedCentralGoogle Scholar
  2. Appunu C, N’Zoue A, Moulin L, Depret G, Laguerre G (2009a) Vigna mungo, V. radiata and V. unguiculata plants sampled in different agronomical-ecological-climatic regions of India are nodulated by Bradyrhizobium yuanmingense. Syst Appl Microbiol 32:460–470CrossRefPubMedGoogle Scholar
  3. Appunu C, Sasirekha N, Prabavathi VR, Nair S (2009b) A significant proportion of indigenous rhizobia from India associated with soybean (Glycine max L.) distinctly belong to Bradyrhizobium and Ensifer genera. Biol Fertil Soils 46:57–63CrossRefGoogle Scholar
  4. Appunu C, Ganesan G, Kalita M, Kaushik R, Saranya B, Prabavathy VR, Sudha N (2011) Phylogenetic diversity of rhizobia associated with Horsegram [Macrotyloma uniflorum (Lam.) Verdc.] grown in South India based on glnII, recA and 16S-23S intergenic sequence analyses. Curr Microbiol 62:1230–1238CrossRefPubMedGoogle Scholar
  5. Ardley J (2017) Legumes of the Thar Desert and their nitrogen fixing Ensifer symbionts. Plant Soil 410:517–520CrossRefGoogle Scholar
  6. Ardley JK, Parker MA, de Meyer SE, Trengove RD, O’Hara GW, Reeve WG, Yates RJ, Dilworth MJ, Willems A, Howieson JG (2012) Microvirga lupini sp. nov., Microvirga lotononidis sp. nov., and Microvirga zambiensis sp. nov. are Alphaproteobacterial root nodule bacteria that specifically nodulate and fix nitrogen with geographically and taxonomically separate legume hosts. Int J Syst Evol Microbiol 62:2579–2588CrossRefPubMedGoogle Scholar
  7. Aserse AA, Räsänen LA, Aseffa F, Hailemariam A, Lindström K (2013) Diversity of sporadic symbionts and nonsymbiotic endophytic bacteria isolated from nodules of woody, shrub, and food legumes in Ethiopia. Appl Microbiol Biotechnol 97:10117–10134CrossRefPubMedGoogle Scholar
  8. Benhizia Y, Benhizia H, Benguedouar A, Muresu R, Giacomini A, Squartini A (2004) Gamma proteobacteria can nodulate legumes of the genus Hedysarum. Syst Appl Microbiol 27:462–468CrossRefPubMedGoogle Scholar
  9. Beukes CW, Stepkowski T, Venter SN, Cłapa T, Phalane FL, le Roux MM, Steenkamp ET (2016) Crotalarieae and Genisteae of the South African great escarpment are nodulated by novel Bradyrhizobium species with unique and diverse symbiotic loci. Mol Phylogenet Evol 100:206–218CrossRefPubMedGoogle Scholar
  10. Boukhatem ZF, Merabet C, Bekki A, Sekkour S, Domergue O, Dupponois R (2016) Nodular bacterial endophyte diversity associated with native Acacia spp. in desert region of Algeria. Afr J Microbiol Res 10:634–645CrossRefGoogle Scholar
  11. Bournaud C, de Faria SM, dos Santos JMF, Tisseyre P, Silva M, Chaintreuil C, Gross E, James EK, Prin Y, Moulin L (2013) Burkholderia species are the most common and preferred nodulating symbionts of the piptadenia group (Tribe mimoseae). PLoS One 8:e63478CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bournaud C, Moulin L, Cnockaert M, de Faria S, Prin Y, Severac D, Vandamme P (2017) Paraburkholderia piptadeniae sp. nov. and Paraburkholderia ribeironis sp. nov., two root-nodulating symbiotic species of Piptadenia gonoacantha in Brazil. Int J Syst Evol Microbiol 67:432–440CrossRefPubMedGoogle Scholar
  13. Chahboune R, Carro L, Peix A, Barrijal S, Velázquez E, Bedmar EJ (2011) Bradyrhizobium cytisi sp. nov., isolated from effective nodules of Cytisus villosus. Int J Syst Evol Microbiol 61:2922–2927CrossRefPubMedGoogle Scholar
  14. Chen WX, Yan GH, Li JL (1988) Numerical taxonomic study of fast-growing soybean rhizobia and a proposal that Rhizobium fredii be assigned to Sinorhizobium gen. nov. Int J Syst Bacteriol 38:392–397CrossRefGoogle Scholar
  15. Chen WM, Laevens S, Lee TM, Coenye T, de Vos P, Mergeay M, Vandamme P (2001) Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol 51:1729–1735CrossRefPubMedGoogle Scholar
  16. Chen WM, Moulin L, Bontemps C, Vandamme P, Béna G, Boivin-Masson C (2003) Legume symbiotic nitrogen fixation by beta-proteobacteria is widespread in nature. J Bacteriol 185:7266–7272CrossRefPubMedPubMedCentralGoogle Scholar
  17. Cheng Y, Watkin ELJ, O’Hara GW, Howieson JG (2002) Medicago sativa and Medicago murex differ in the nodulation response to soil acidity. Plant Soil 238:31–39CrossRefGoogle Scholar
  18. Choudhary S, Meghwal RR, Sankhla IS, Tak N, Gehlot HS (2017) Molecular characterization and phylogeny of novel diverse nitrogen fixing microsymbionts associated with Vachellia (Acacia) leucophloea in arid and semi-arid regions of Rajasthan. Indian For 143:266–278Google Scholar
  19. Choudhary S, Tak N, Gehlot HS (2018) Phylogeny and genetic diversity assessment of Ensifer strains nodulating Senegalia (Acacia) senegal (L.) Britton. in arid regions of Western Rajasthan, India. Microbiology 87:127–142CrossRefGoogle Scholar
  20. da Silva K, Florentino LA, da Silva KB, de Brandt E, Vandamme P, de Souza Moreira FM (2012) Cupriavidus necator isolates are able to fix nitrogen in symbiosis with different legume species. Syst Appl Microbiol 35:175–182CrossRefPubMedGoogle Scholar
  21. de Lajudie P, Willems A, Pot B, Dewettinck D, Maestrojuan G, Neyra M, Collins MD, Dreyfus B, Kersters K, Gillis M (1994) Polyphasic taxonomy of Rhizobia: emendation of the genus Sinorhizobium and description of Sinorhizobium meliloti comb. nov., Sinorhizobium saheli sp. nov., and Sinorhizobium teranga sp. nov. Int J Syst Bacteriol 44:715–733CrossRefGoogle Scholar
  22. de Lajudie P, Laurent-Fulele E, Willems A, Torck U, Coopman R, Collins MD, Kersters K, Dreyfus B, Gillis M (1998) Allorhizobium undicola gen. nov., nitrogen-fixing bacteria that efficiently nodulate Neptunia natans in Senegal. Int J Syst Bacteriol 48:1277–1290CrossRefPubMedGoogle Scholar
  23. de Lajudie P, Willems A, Nick G, Mohamed TS, Torck U, Filai-Maltouf A, Kersters K, Dreyfus B, Lindström K, Gillis M (1999) Agrobacterium biovar 1 strains isolated from nodules of tropical legumes. Syst Appl Microbiol 22:119–132CrossRefGoogle Scholar
  24. de Meyer SE, de Beuf K, Vekeman B, Willems A (2015) A large diversity of non-rhizobial endophytes found in legume root nodules in Flanders (Belgium). Soil Biol Biochem 83:1–11CrossRefGoogle Scholar
  25. de Souza Moreira FM, Cruz L, de Faria SM, Marsh T, Martinez-Romero E, de Pedrosa OF, Pitard RM, Young JPW (2006) Azorhizobium doebereinerae sp. nov. microsymbiont of Sesbania virgata (Caz.) Pers. Syst Appl Microbiol 29:197–206CrossRefGoogle Scholar
  26. Dobritsa AP, Samadpour M (2016) Transfer of eleven Burkholderia species to the genus Paraburkholderia and proposal of Caballeronia gen. nov., a new genus to accommodate twelve species of Burkholderia and Paraburkholderia. Int J Syst Evol Microbiol 66:2836–2846CrossRefPubMedGoogle Scholar
  27. dos Santos JMF, Alves PAC, Silva VC, Rhem MFK, James EK, Gross E (2017) Diverse genotypes of Bradyrhizobium nodulate herbaceous Chamaecrista (Moench) (Fabaceae, Caesalpinioideae) species in Brazil. Syst Appl Microbiol 40:69–79CrossRefPubMedGoogle Scholar
  28. Dreyfus B, Garcia JL, Gillis M (1988) Characterization of Azorhizobium caulinodans gen. nov., sp. nov., a stem-nodulating nitrogen-fixing bacterium isolated from Sesbania rostrata. Int J Syst Bacteriol 38:89–98CrossRefGoogle Scholar
  29. Eaglesham ARJ, Ellis JM, Evans WR, Fleischmann DE, Hungria M, Hardy RWF (1990) The first photosynthetic N2-fixing Rhizobium: characteristics. In: Gresshoff PM, Roth LE, Stacey G, Newton WE (eds) Nitrogen fixation: achievements and objectives. Chapman & Hall, New York, pp 805–811CrossRefGoogle Scholar
  30. El Batanony NH, Castellano-Hinojosa A, Correa-Galeote D, Bedmar EJ (2015) The diversity of rhizobia nodulating the Medicago, Melilotus and Trigonella inoculation group in Egypt is marked by the dominance of two genetic types. Symbiosis 67:3–10CrossRefGoogle Scholar
  31. Estrada-de los Santos P, Palmer M, Chávez-Ramírez B, Beukes C, Steenkamp ET, Briscoe L, Khan N, Maluk M, Lafos M, Humm E, Arrabit M, Crook M, Gross E, Simon MF, dos Reis Junior FB, Whitman WB, Shapiro N, Poole PS, Hirsch AM, Venter SN, James EK (2018) Whole genome analyses suggests that Burkholderia sensu lato contains two additional novel genera (Mycetohabitans gen. nov., and Trinickia gen. nov.): implications for the evolution of diazotrophy and nodulation in the Burkholderiaceae. Genes 9:389CrossRefPubMedCentralGoogle Scholar
  32. Garau G, Reeve WG, Brau L, Deiana P, Yates RJ, James D, Tiwari R, O’Hara GW, Howieson JG (2005) The symbiotic requirements of different Medicago spp. suggest the evolution of Sinorhizobium meliloti and S. medicae with hosts differentially adapted to soil pH. Plant Soil 176:263–277CrossRefGoogle Scholar
  33. Gaur S, Tak N, Rathi S, Choudhary S, Gehlot HS (2018) Identification and molecular characterization of root nodule-microsymbiont of Trigonella foenum-graecum L. growing in different soils from Western Rajasthan, India. J Environ Biol 39:684–692CrossRefGoogle Scholar
  34. Gehlot HS, Panwar D, Tak N, Tak A, Sankhla IS, Poonar N, Parihar R, Shekhawat NS, Kumar M, Tiwari R, Ardley J, James EK, Sprent JI (2012) Nodulation of legumes from the Thar Desert of India and molecular characterization of their rhizobia. Plant Soil 357:227–243CrossRefGoogle Scholar
  35. Gehlot HS, Tak N, Kaushik M, Mitra S, Chen WM, Poweleit N, Panwar D, Poonar N, Parihar R, Tak A, Sankhla IS, Ojha A, Rao SR, Simon MF, dos Reis Junior FB, Perigolo N, Tripathi AK, Sprent JI, Young JPW, James EK, Gyaneshwar P (2013) An invasive Mimosa in India does not adopt the symbionts of its native relatives. Ann Bot 112:179–196CrossRefPubMedPubMedCentralGoogle Scholar
  36. Gehlot HS, Tak N, Dagla HR, Davis TD (2014) Indigenous and modern scientific strategies for characterization, conservation and sustainable utilization of bio-resources of the Indian Thar Desert. J Arid Land Stud 24:5–8Google Scholar
  37. Gehlot HS, Ardley J, Tak N, Tian R, Poonar N, Meghwal RR, Rathi S, Tiwari R, Adnawani W, Seshadri R, Reddy TBK (2016) High-quality permanent draft genome sequence of Ensifer sp. PC2, isolated from a nitrogen-fixing root nodule of the legume tree (Khejri) native to the Thar Desert of India. Stand Genomic Sci 11:43CrossRefPubMedPubMedCentralGoogle Scholar
  38. Graham PH, Sadowsky MJ, Keyser HH, Barnet YM, Bradley RS, Cooper JE, de Ley DJ, Jarvis BDW, Roslycky EB, Strijdon BW, Young JPW (1991) Proposed minimal standards for the description of new genera and species of root- and stem- nodulating bacteria. Int J Syst Bacteriol 41:582–587CrossRefGoogle Scholar
  39. Gyaneshwar P, Hirsch AM, Moulin L, Chen WM, Elliott GN, Bontemps C, Estrada-de los Santos P, Gross E, dos Reis Junior FB, Sprent JI, JPW Y, James EK (2011) Legume-nodulating beta-proteobacteria: diversity, host range and future prospects. Mol Plant-Microbe Interact 24:1276–1288CrossRefPubMedGoogle Scholar
  40. Hassen AI, Bopape FL, Habig J, Lamprecht SC (2012) Nodulation of rooibos (Aspalathus linearis Burm. f.), an indigenous South African legume, by members of both the α-proteobacteria and β-proteobacteria. Biol Fertil Soils 48:295–303CrossRefGoogle Scholar
  41. Hoque MS, Broadhurst LM, Thrall PH (2011) Genetic characterization of root-nodule bacteria associated with Acacia salicina and A. stenophylla (Mimosaceae) across South-Eastern Australia. Int J Syst Evol Microbiol 61:299–309CrossRefPubMedGoogle Scholar
  42. Islam MS, Kawasaki H, Muramatsu Y, Nakagawa Y, Seki T (2008) Bradyrhizobium iriomotense sp. nov., isolated from a tumor-like root of the legume Entada koshunensis from Iriomote Island in Japan. Biosci Biotechnol Biochem 72:1416–1429CrossRefPubMedGoogle Scholar
  43. Jarvis BDW, van Berkum P, Chen WX, Nour SM, Fernandez MP, Cleyet-Marel JC, Gillis M (1997) Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov. Int J Syst Bacteriol 47:895–898CrossRefGoogle Scholar
  44. Jordan DC (1982) Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants. Int J Syst Bacteriol 32:136–139CrossRefGoogle Scholar
  45. Jourand P, Giraud E, Béna G, Sy A, Willems A, Gillis M, Dreyfus B, de Lajudie P (2004) Methylobacterium nodulans sp. nov., for a group of aerobic, facultatively methylotrophic, legume root nodule- forming and nitrogen-fixing bacteria. Int J Syst Evol Microbiol 54:2269–2273CrossRefPubMedGoogle Scholar
  46. Kathiravan R, Jegan S, Ganga V, Prabavathy VR, Tushar L, Sasikala C, Ramana CV (2013) Ciceribacter lividus gen. nov., sp. nov., isolated from rhizosphere soil of chick pea (Cicer arietinum L.). Int J Syst Evol Microbiol 63:4484–4488CrossRefPubMedGoogle Scholar
  47. Knösel DH (1984) Genus IV Phyllobacterium nom rev. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology. Williams and Wilkins Co, Baltimore, pp 254–256Google Scholar
  48. Le Queré A, Tak N, Gehlot HS, Lavire C, Meyer T, Chapulliot D, Rathi S, Sakrouhi I, Rocha G, Rohmer M, Severac D, Filali-Maltou A (2017) Genomic characterization of Ensifer aridi, a proposed new species of nitrogen-fixing rhizobium recovered from Asian, African and American deserts. BMC Genomics 18:85CrossRefPubMedPubMedCentralGoogle Scholar
  49. Li QQ, Wang ET, Chang YL, Zhang YZ, Zhang YM, Sui XH, Chen WF, Chen WX (2011) Ensifer sojae sp. nov., isolated from root nodules of Glycine max grown in saline-alkaline soils. Int J Syst Evol Microbiol 61:1981–1988CrossRefPubMedGoogle Scholar
  50. Li Y, Li X, Liu Y, Wang ET, Ren C, Liu W, Xu H, Wu H, Jiang N, Li Y, Zhang X, Xie Z (2016) Genetic diversity and community structure of rhizobia nodulating Sesbania cannabina in saline-alkaline soils. Syst Appl Microbiol 39:195–202CrossRefPubMedGoogle Scholar
  51. Lin DX, Wang ET, Tang H, Han TX, He YR, Guan SH, Chen WX (2008) Shinella kummerowiae sp. nov., a symbiotic bacterium isolated from root nodules of the herbal legume Kummerowia stipulacea. Int J Syst Evol Microbiol 58:1409–1413CrossRefPubMedGoogle Scholar
  52. Lloret L, Ormeño-Orrillo E, Rincón R, Martínez-Romero J, Rogel-Hernández MA, Martínez-Romero E (2007) Ensifer mexicanus sp. nov. a new species nodulating Acacia angustissima (Mill.) Kuntze in Mexico. Syst Appl Microbiol 30:280–290CrossRefPubMedGoogle Scholar
  53. Madhaiyan M, Poonguzhali S, Ryu J, Sa T (2006) Regulation of ethylene levels in canola (Brassica campestris) by 1-aminocyclopropane-1-carboxylate deaminase containing Methylobacterium fujisawaense. Planta 224:268–278CrossRefPubMedGoogle Scholar
  54. Martínez-Aguilar L, Salazar-Salazar C, Méndez RD, Caballero-Mellado J, Hirsch AM, Vásquez-Murrieta MS, Estrada-de los Santos P (2013) Burkholderia caballeronis sp. nov., a nitrogen fixing species isolated from tomato (Lycopersicon esculentum) with the ability to effectively nodulate Phaseolus vulgaris. Antonie Van Leeuwenhoek 104:1063–1071CrossRefPubMedGoogle Scholar
  55. Martínez-Hidalgo P, Hirsch AM (2017) The nodule microbiome: N2-fixing rhizobia do not live alone. Phytobiomes 1:70–82CrossRefGoogle Scholar
  56. Maynaud G, Willems A, Soussou S, Vidal C, Mauré L, Moulin L, Cleyet-Marel JC, Brunelc B (2012) Molecular and phenotypic characterization of strains nodulating Anthyllis vulneraria in mine tailings, and proposal of Aminobacter anthyllidis sp. nov., the first definition of Aminobacter as legume-nodulating bacteria. Syst Appl Microbiol 35:65–72CrossRefPubMedGoogle Scholar
  57. Mhamdi R, Mrabet M, Laguerre G, Tiwari R, Aouani ME (2005) Colonisation of Phaseolus vulgaris nodules by Agrobacterium-like strains. Can J Microbiol 51:105–111CrossRefPubMedGoogle Scholar
  58. Molouba F, Lorquin J, Willems A, Hoste B, Giraud E, Dreyfus B, Gillis M, de Lajudie P, Masson-Boivin C (1999) Photosynthetic bradyrhizobia from Aeschynomene spp. are specific to stem-nodulated species and form a separate 16S ribosomal DNA restriction fragment length polymorphism group. Appl Environ Microbiol 65:3084–3094PubMedPubMedCentralGoogle Scholar
  59. Moulin L, Munive A, Dreyfus B, Boivin-Masson C (2001) Nodulation of legumes by members of the β subclass of Proteobacteria. Nature 411:948–950CrossRefPubMedGoogle Scholar
  60. Mousavi SA, Österman J, Wahlberg N, Nesme X, Lavire C, Vial L, Paulin L, de Lajudie P, Lindström K (2014) Phylogeny of the Rhizobium-Allorhizobium-Agrobacterium clade supports the delineation of Neorhizobium gen. nov. Syst Appl Microbiol 37:208–215CrossRefPubMedGoogle Scholar
  61. Mousavi SA, Willems A, Nesme X, de Lajudie P, Lindström K (2015) Revised phylogeny of Rhizobiaceae: proposal of the delineation of Pararhizobium gen. nov., and 13 new species combinations. Syst Appl Microbiol 38:84–90CrossRefPubMedGoogle Scholar
  62. Muresu R, Polone E, Sulas L, Baldan B, Tondello A, Delogu G, Cappuccinelli P, Alberghini S, Benhizia Y, Benhizia H, Benguedouar A, Mori B, Calamassi R, Dazzo FB, Squartini A (2008) Coexistence of predominantly nonculturable rhizobia with diverse, endophytic bacterial taxa within nodules of wild legumes. FEMS Microbiol Ecol 63:383–400CrossRefPubMedGoogle Scholar
  63. Nick G, de Lajudie P, Eardly BD, Soumalainen S, Paulin L, Zhang X, Gillis M, Lindström K (1999) Sinorhizobium arboris sp. nov. and Sinorhizobium kostiense sp. nov., isolated from leguminous trees in Sudan and Kenya. Int J Syst Bacteriol 49:1359–1368CrossRefPubMedGoogle Scholar
  64. Ogasawara M, Suzuki T, Mutoh I, Annapurna K, Arora NK, Nishimura Y, Maheshwari DK (2003) Sinorhizobium indiaense sp. nov. and Sinorhizobium abri sp. nov. isolated from tropical legumes, Sesbania rostrata and Abrus precatorius, respectively. Symbiosis 34:53–68Google Scholar
  65. Ojha A, Rao CS, Tak N, Gehlot HS, Rao SR (2015) Genetic diversity analysis of rhizobial symbionts associated with legumes of India for Efficient Biological Nitrogen Fixation (BNF) Technology and Natural Soil Fertility. In: Choudhury H (ed) Biology, biotechnology and sustainable development. Research India Publications, New Delhi, pp 183–196Google Scholar
  66. Ojha A, Tak N, Rathi S, Chouhan B, Rao SR, Barik SK, Joshi SR, Sprent JS, James EK, Gehlot HS (2017) Molecular characterization of novel Bradyrhizobium strains nodulating Eriosema chinense and Flemingia vestita, Important unexplored native legumes of the Sub-Himalayan region (Meghalaya) of India. Syst Appl Microbiol 40:334–344CrossRefPubMedGoogle Scholar
  67. Panwar D, Tak N, Gehlot HS (2014) Nodulated native legumes in an arid environment of Indian Thar Desert. In: Fulekar MH, Kale RK (eds) Recent trends in plant sciences. IK International Publishing House Pvt. Ltd, New Delhi, pp 284–298Google Scholar
  68. Peix A, Ramírez-Bahena MH, Velázquez E, Bedmar EJ (2015) Bacterial associations with legumes. Crit Rev Plant Sci 34:17–42CrossRefGoogle Scholar
  69. Ramírez-Bahena MH, Peix A, Rivas R, Camacho M, Rodriguez-Navarro DN, Mateos PF, Martinez-Molina E, Willems A, Velazquez E (2009) Bradyrhizobium pachyrhizi sp. nov. and Bradyrhizobium jicamae sp. nov., isolated from effective nodules of Pachyrhizus erosus. Int J Syst Evol Microbiol 59:1929–1934CrossRefPubMedGoogle Scholar
  70. Rathi S, Gaur S, Tak N, Tak A, Gehlot HS (2017) Genetically diverse root nodule bacteria associated with Alysicarpus vaginalis from alkaline soil of Rajasthan, India. Plant Archives 17:495–505Google Scholar
  71. Rathi S, Tak N, Bissa G, Chouhan B, Ojha A, Adhikari D, Barik SK, Satyawada RR, Sprent JI, James EK, Gehlot HS (2018) Selection of Bradyrhizobium or Ensifer symbionts by the native Indian caesalpinioid legume Chamaecrista pumila depends on soil pH and other edaphic and climatic factors. FEMS Microbiol Ecol 94:fiy180. doi.org/10.1093/femsec/fiy180CrossRefGoogle Scholar
  72. Rivas R, Willems A, Subba-Rao NS, Mateos PF, Dazzo FB, Kroppenstedt RM, Martínez-Molina E, Gillis M, Velázquez E (2003) Description of Devosia neptuniae sp. nov. that nodulates and fixes nitrogen in symbiosis with Neptunia natans, an aquatic legume from India. Syst Appl Microbiol 26:47–53CrossRefPubMedGoogle Scholar
  73. Rome S, Fernandez MP, Brunel B, Normand P, Cleyet-Marel JC (1996) Sinorhizobium medicae sp. nov., isolated from annual Medicago spp. Int J Syst Bacteriol 46:972–980CrossRefPubMedGoogle Scholar
  74. Sánchez M, Ramírez-Bahena MH, Peix A, Lorite MJ, Sanjuán J, Velázquez E, Monza J (2014) Phyllobacterium loti sp. nov. isolated from nodules of Lotus corniculatus. Int J Syst Evol Microbiol 64:781–786CrossRefPubMedPubMedCentralGoogle Scholar
  75. Sankhla IS, Meghwal RR, Tak N, Tak A, Gehlot HS (2015) Phenotypic and molecular characterization of microsymbionts associated with Crotalaria medicagenia: a native legume of the Indian Thar desert. Plant Archives 15:1003–1010Google Scholar
  76. Sankhla IS, Tak N, Meghwal RR, Choudhary S, Tak A, Rathi S, Sprent JI, James EK, Gehlot HS (2017) Molecular characterization of nitrogen fixing microsymbionts from root nodules of Vachellia (Acacia) jacquemontii, a native legume from the Thar Desert of India. Plant Soil 410:21–40CrossRefGoogle Scholar
  77. Sankhla IS, Meghwal RR, Choudhary S, Rathi S, Tak N, Tak A, Gehlot HS (2018) Molecular characterization of microsymbionts associated with root nodules of Crotalaria burhia Buch.-Ham. ex Benth., a native keystone legume species from Thar Desert of India. Indian J Exp Biol 56:373–385Google Scholar
  78. Sawada H, Kuykendall LD, Young JM (2003) Changing concepts in the systematics of bacterial nitrogen-fixing legume symbionts. J Gen Appl Microbiol 49:155–179CrossRefPubMedGoogle Scholar
  79. Sawana A, Adeolu M, Gupta RS (2014) Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species. Front Genet 5:429CrossRefPubMedPubMedCentralGoogle Scholar
  80. Shamseldin A, Abdelkhalek A, Sadowsky MJ (2017) Recent changes to the classification of symbiotic, nitrogen-fixing, legume-associating bacteria: a review. Symbiosis 71:91–109CrossRefGoogle Scholar
  81. Shiraishi A, Matsushita N, Hougetsu T (2010) Nodulation in black locust by the Gamma-Proteobacteria Pseudomonas sp. and the Beta-Proteobacteria Burkholderia sp. Syst Appl Microbiol 33:269–274CrossRefPubMedGoogle Scholar
  82. Sprent JI (2001) Nodulation in Legumes. Royal Botanic Gardens. In: KewGoogle Scholar
  83. Sprent JI, Gehlot HS (2010) Nodulated legumes in arid and semi-arid environments: are they important? Plant Ecol Divers 3:211–219CrossRefGoogle Scholar
  84. Sprent JI, Ardley J, James EK (2017) Biogeography of nodulated legumes and their nitrogen fixing symbionts. New Phytol 215:40–56CrossRefPubMedGoogle Scholar
  85. Sy A, Giraud E, Jourand P, Garcia N, Willems A, de Lajudie P, Prin Y, Neyra M, Gillis M, Boivin-Masson C, Dreyfus B (2001) Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J Bacteriol 183:214–220CrossRefPubMedPubMedCentralGoogle Scholar
  86. Tak N, Gehlot HS, Kaushik M, Choudhary S, Tiwari R, Tian R, Hill Y, Bräu L, Goodwin L, Han J, Liolios K, Huntemann M, Palaniappan K, Pati A, Mavromatis K, Ivanova N, Markowitz V, Woyke T, Kyrpides N, Reeve W (2013) Genome sequence of Ensifer sp. TW10; a Tephrosia wallichii (Biyani) microsymbiont native to the Indian Thar Desert. Stand Genomic Sci 9:304–314CrossRefPubMedPubMedCentralGoogle Scholar
  87. Tak A, Tak N, Sankhla IS, Meghwal RR, Gehlot HS (2016a) Molecular characterization of nitrogen fixing Ensifer species from Vigna trilobata growing in alkaline soil of Thar Desert. Green Farming 7:300–304Google Scholar
  88. Tak N, Awasthi E, Bissa G, Meghwal RR, James EK, Sprent JS, Gehlot HS (2016b) Multi locus sequence analysis and symbiotic characterization of novel Ensifer strains nodulating Tephrosia spp. in the Indian Thar Desert. Syst Appl Microbiol 39:534–545CrossRefPubMedGoogle Scholar
  89. Tian CF, Zhou YJ, Zhang YM, Li QQ, Zhang YZ, Li DF, Wang S, Wang J, Gilbert LB, Li YR, Chen WX (2012) Comparative genomics of rhizobia nodulating soybean suggests extensive recruitment of lineage-specific genes in adaptations. Proc Natl Acad Sci U S A 109:8629–8634CrossRefPubMedPubMedCentralGoogle Scholar
  90. Toledo I, Lloret L, Martínez-Romero E (2003) Sinorhizobium americanus sp. nov., a new Sinorhizobium species nodulating native Acacia spp. in Mexico. Syst Appl Microbiol 26:54–64CrossRefPubMedGoogle Scholar
  91. Trinick MJ (1973) Symbiosis between Rhizobium and the non-legume, Trema aspera. Nature 244:459–460CrossRefGoogle Scholar
  92. Trujillo ME, Willems A, Abril A, Planchuelo AM, Rivas R, Ludeña D, Mateos PF, Martínez-Molina E, Velázquez E (2005) Nodulation of Lupinus albus by strains of Ochrobactrum lupini sp. nov. Appl Environ Microbiol 71:1318–1327CrossRefPubMedPubMedCentralGoogle Scholar
  93. Valverde A, Velázquez E, Gutiérrez C, Cervantes E, Ventosa A, Igual JM (2003) Herbaspirillum lusitanum sp. nov., a novel nitrogen-fixing bacterium associated with root nodules of Phaseolus vulgaris. Int J Syst Evol Microbiol 53:1979–1983CrossRefPubMedGoogle Scholar
  94. Valverde A, Velázquez E, Fernández-Santos F, Vizcaíno N, Rivas R, Mateos PF, Martínez-Molina E, Igual JM, Willems A (2005) Phyllobacterium trifolii sp. nov., nodulating Trifolium and Lupinus in Spanish soils. Int J Syst Evol Microbiol 55:1985–1989CrossRefPubMedGoogle Scholar
  95. van Berkum P, Eardly BD (2002) The aquatic budding bacterium Blastobacter denitrificans is a nitrogen-fixing symbiont of Aeschynomene indica. Appl Environ Microbiol 68:1132–1136CrossRefPubMedPubMedCentralGoogle Scholar
  96. Vinuesa P, León-Barrios M, Silva C, Willems A, Jarabo-Lorenzo A, Pérez-Galdona R, Werner D, Martínez-Romero E (2005) Bradyrhizobium canariense sp. nov., an acid-tolerant endosymbiont that nodulates endemic genistoid legumes (Papilionoideae: Genisteae) from the Canary Islands, along with Bradyrhizobium japonicum bv. genistearum, Bradyrhizobium genospecies alpha and Bradyrhizobium genospecies beta. Int J Syst Evol Microbiol 55:569–575CrossRefPubMedGoogle Scholar
  97. Vinuesa P, Rojas-Jiménez K, Contreras-Moreira B, Mahna SK, Prasad BN, Moe H, Selvaraju SB, Thierfelder H, Werner D (2008) Multilocus sequence analysis for assessment of the biogeography and evolutionary genetics of four Bradyrhizobium species that nodulate soybeans on the Asiatic continent. Appl Environ Microbiol 74:6987–6996CrossRefPubMedPubMedCentralGoogle Scholar
  98. Yao ZY, Kan FL, Wang ET, Wei GH, Chen W (2002) Characterization of rhizobia that nodulate legume species of the genus Lespedeza and description of Bradyrhizobium yuanmingense sp. nov. Int J Syst Evol Microbiol 52:2219–2230PubMedGoogle Scholar
  99. Young JM, Kuykendall LD, Martinez-Romero E, Kerr A, Sawada H (2003) Classification and nomenclature of Agrobacterium and Rhizobium-a reply to Farrand et al. (2003). Int J Syst Evol Microbiol 53:1689–1695Google Scholar
  100. Zahran HH (2001) Rhizobia from wild legumes: diversity, taxonomy, ecology, nitrogen fixation and biotechnology. J Biotechnol 91:43–53CrossRefGoogle Scholar
  101. Zhang JJ, Lou K, Jin X, Mao PH, Wang ET, Tian CF, Sui XH, Chen WF, Chen WX (2012) Distinctive Mesorhizobium populations associated with Cicer arietinum L. in alkaline soils of Xinjiang, China. Plant Soil 353:123–134CrossRefGoogle Scholar
  102. Zurdo-Piñeiro JL, Rivas R, Trujillo ME, Vizcaíno N, Carrasco JA, Chamber M, Palomares A, Mateos PF, Martínez-Molina E, Velázquez E (2007) Ochrobactrum cytisi sp. nov., isolated from nodules of Cytisus scoparius in Spain. Int J Syst Evol Microbiol 57:784–788CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Nisha Tak
    • 1
  • Hukam Singh Gehlot
    • 1
  1. 1.BNF and Microbial Genomics Lab., Department of Botany, Center of Advanced StudyJai Narain Vyas UniversityJodhpurIndia

Personalised recommendations