Secondary Metabolism in Trichoderma: Chemo- and Geno-Diversity

  • Shikha Pachauri
  • Pramod D. Sherkhane
  • Prasun K. MukherjeeEmail author


Trichoderma species are filamentous ascomycetous fungi that have wide biotechnological applications in industry as well as agriculture. Having nearly 300 species, this genus represents one of the most diverse groups of fungi. Secondary metabolites are useful natural products having widespread applications in agriculture and medicine. Trichoderma species are prolific producers of secondary metabolites (natural products) with proven role in disease suppression. Genes for biosynthesis of these metabolites are often present as gene clusters, and one such cluster may be responsible for synthesis of a range of metabolites and intermediates. Depending on the chemical nature, these metabolites could be grouped as non-ribosomal peptides, polyketides, terpenes, steroids, etc. Three species of Trichoderma (T. virens, T. atroviride, and T. reesei) are well studied from genomics point of view, and this article focuses mainly on these three species. We discuss here the level of diversity with respect to secondary metabolite biosynthesis machinery at the genus, species, and strain level with genetic evidence where available. The article highlights the untapped potential of Trichoderma spp. as a source of a variety of secondary metabolites with potential applications in agriculture and medicine.


Secondary metabolism Trichoderma Viridin Gliotoxin Gliovirin Peptaibols Genomics 


  1. Atanasova L, Le Crom S, Gruber S, Coulpier F, Seidl-Seiboth V, Kubicek CP, Druzhinina IS (2013) Comparative transcriptomics reveals different strategies of Trichoderma mycoparasitism. BMC Genomics 14:121CrossRefGoogle Scholar
  2. Baker SE, Perrone G, Richardson NM, Gallo A, Kubicek CP (2012) Phylogenomic analysis of polyketide synthase-encoding genes in Trichoderma. Microbiology (Reading, UK) 158:147–154CrossRefGoogle Scholar
  3. Bansal R, Mukherjee P (2016) Identification of novel gene clusters for secondary metabolism in Trichoderma genomes. Microbiology 85(2):185–190CrossRefGoogle Scholar
  4. Bansal R, Sherkhane PD, Oulkar D, Khan Z, Banerjee K, Mukherjee PK (2018) The viridin biosynthesis gene cluster of Trichoderma virens and its conservancy in the bat white-nose fungus Pseudogymnoascus destructans. Chem Select 3(4):1289–1293Google Scholar
  5. Bortolus M, De Zotti M, Formaggio F, Maniero AL (2013) Alamethicin in bicelles: orientation, aggregation, and bilayer modification as a function of peptide concentration. Biochim Biophys Acta 1828:2620–2627CrossRefGoogle Scholar
  6. Brakhage AA, Schroeckh V (2011) Fungal secondary metabolites – strategies to activate silent gene clusters. Fungal Genet Biol 48:15–22CrossRefGoogle Scholar
  7. Cardoza RE, Vizcaino JA, Hermosa MR, Sousa S, Gonzalez FJ, Llobell A, Monte E, Gutierrez S (2006) Cloning and characterization of the erg1 gene of Trichoderma harzianum: effect of the erg1 silencing on ergosterol biosynthesis and resistance to terbinafine. Fungal Genet Biol 43:164–178CrossRefGoogle Scholar
  8. Cardoza RE, Malmierca MG, Gutierrez S (2014) Overexpression of erg1 gene in Trichoderma harzianum CECT 2413: effect on the induction of tomato defence-related genes. J Appl Microbiol 117:812–823CrossRefGoogle Scholar
  9. Contreras-Cornejo HA, Macías-Rodríguez L, Cortés-Penagos C, López-Bucio J (2009) Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol 149(3):1579–1592CrossRefGoogle Scholar
  10. Contreras-Cornejo HA, Macías-Rodríguez L, del-Val E, Larsen J (2016) Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants. FEMS Microbiol Ecol 92(4):fiw036CrossRefGoogle Scholar
  11. Crutcher FK, Parich A, Schuhmacher R, Mukherjee PK, Zeilinger S, Kenerley CM (2013) A putative terpene cyclase, vir4, is responsible for the biosynthesis of volatile terpene compounds in the biocontrol fungus Trichoderma virens. Fungal Genet Biol 56:67–77CrossRefGoogle Scholar
  12. Degenkolb T, Karimi Aghcheh R, Dieckmann R, Neuhof T, Baker SE, Druzhinina IS, Kubicek CP, Brückner H, von Döhren H (2012) The production of multiple small Peptaibol families by single 14-module peptide Synthetases in Trichoderma/Hypocrea. Chem Biodivers 9(3):499–535CrossRefGoogle Scholar
  13. Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A, Horwitz BA, Kenerley CM, Monte E, Mukherjee PK, Zeilinger S, Grigoriev IV, Kubicek CP (2011) Trichoderma: the genomics of opportunistic success. Nat Rev Microbiol 9:749–759CrossRefGoogle Scholar
  14. Howell CR, Stipanovic RD, Lumsden RD (1993) Antibiotic production by strains of Gliocladium virens and its relation to the biocontrol of cotton seedling diseases. Biocontrol Sci Technol 3:435–441CrossRefGoogle Scholar
  15. Jones RW, Hancock JG (1987) Conversion of viridin to viridiol by viridin-producing fungi. Can J Microbiol 33:963–966CrossRefGoogle Scholar
  16. Karimi Aghcheh R, Druzhinina IS, Kubicek CP (2013a) The putative protein methyltransferase LAE1 of Trichoderma atroviride is a key regulator of asexual development and mycoparasitism. PLoS One 8:67144CrossRefGoogle Scholar
  17. Karimi-Aghcheh R, Bok JW, Phatale PA, Smith KM, Baker SE, Lichius A, Omann M, Zeilinger S, Seiboth B, Rhee C, Keller NP, Freitag M, Kubicek CP (2013b) Functional analyses of Trichoderma reesei LAE1 reveal conserved and contrasting roles of this regulator. G3 (Bethesda) 3:369–378CrossRefGoogle Scholar
  18. Komon-Zelazowska M, Neuhof T, Dieckmann R, von Dohren H, Herrera-Estrella A, Kubicek CP, Druzhinina IS (2007) Formation of atroviridin by Hypocrea atroviridis is conidiation associated and positively regulated by blue light and the G protein GNA3. Eukaryot Cell 6:2332–2342CrossRefGoogle Scholar
  19. Kubicek CP, Herrera-Estrella A, Seidl-Seiboth V, Martinez DA, Druzhinina IS, Thon M, Zeilinger S, Casas-Flores S, Horwitz BA, Mukherjee PK, Mukherjee M et al (2011) Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol 12:R40CrossRefGoogle Scholar
  20. Mendoza-Mendoza A, Pozo MJ, Grzegorski D, Martinez P, Garcia JM, Olmedo-Monfil V, Cortes C, Kenerley C, Herrera-Estrella A (2003) Enhanced biocontrol activity of Trichoderma through inactivation of a mitogen-activated protein kinase. Proc Natl Acad Sci USA 100:15965–15970CrossRefGoogle Scholar
  21. Mukherjee PK, Kenerley CM (2010) Regulation of morphogenesis and biocontrol properties in Trichoderma virens by a VELVET protein, Vel1. Appl Environ Microbiol 76:2345–2352CrossRefGoogle Scholar
  22. Mukherjee M, Horwitz BA, Sherkhane PD, Hadar R, Mukherjee PK (2006) A secondary metabolite biosynthesis cluster in Trichoderma virens: evidence from analysis of genes underexpressed in a mutant defective in morphogenesis and antibiotic production. Curr Genet 50:193–202CrossRefGoogle Scholar
  23. Mukherjee M, Mukherjee PK, Kale SP (2007) cAMP signaling is involved in growth, germination, mycoparasitism and secondary metabolism in Trichoderma virens. Microbiology (Reading, UK) 153:1734–1742CrossRefGoogle Scholar
  24. Mukherjee PK, Wiest A, Ruiz N, Keightley A, Moran-Diez ME, McCluskey K, Pouchus YF, Kenerley CM (2011) Two classes of new peptaibols are synthesized by a single non-ribosomal peptide synthetase of Trichoderma virens. J Biol Chem 286:4544–4554CrossRefGoogle Scholar
  25. Mukherjee PK, Buensanteai N, Moran-Diez ME, Druzhinina IS, Kenerley CM (2012a) Functional analysis of non-ribosomal peptide synthetases (NRPSs) in Trichoderma virens reveals a polyketide synthase (PKS)/NRPS hybrid enzyme involved in the induced systemic resistance response in maize. Microbiology (Reading, UK) 158:155–165CrossRefGoogle Scholar
  26. Mukherjee PK, Horwitz BA, Kenerley CM (2012b) Secondary metabolism in Trichoderma – a genomic perspective. Microbiology (Reading, UK) 158:35–45CrossRefGoogle Scholar
  27. Mukherjee PK, Horwitz BA, Herrera-Estrella A, Schmoll M, Kenerley CM (2013a) Trichoderma research in the genome era. Ann Rev Phytopathol 51:105–129CrossRefGoogle Scholar
  28. Mukherjee PK, Horwitz BA, Singh US, Mukherjee M, Schmoll M (2013b) Trichoderma: biology and applications. CABI, WallingfordCrossRefGoogle Scholar
  29. Mukherjee PK, Hurley JF, Taylor JT, Puckhaber L, Lehner S, Druzhinina I, Schumacher R, Kenerley CM (2018) Ferricrocin, the intracellular siderophore of Trichoderma virens, is involved in growth, conidiation, gliotoxin biosynthesis and induction of systemic resistance in maize. Biochem Biophys Res Commun. Scholar
  30. Pachauri S, Chatterjee S, Kumar V, Mukherjee PK (2018) A dedicated glyceraldehyde-3-phosphate dehydrogenase is involved in the biosynthesis of volatile sesquiterpenes in Trichoderma virens—evidence for the role of a fungal GAPDH in secondary metabolism. Curr Genet. Scholar
  31. Reino JL, Guerrero RF, Hernandez-Galan R (2008) Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem Rev 7:89–123CrossRefGoogle Scholar
  32. Reithner B, Brunner K, Schuhmacher R, Peissl I, Seidl V, Krska R, Zeilinger S (2005) The G protein alpha subunit Tga1 of Trichoderma atroviride is involved in chitinase formation and differential production of antifungal metabolites. Fungal Genet Biol 42:749760CrossRefGoogle Scholar
  33. Reithner B, Schuhmacher R, Stoppacher N, Pucher M, Brunner K, Zeilinger S (2007) Signaling via the Trichoderma atroviride mitogen-activated protein kinase Tmk 1 differentially affects mycoparasitism and plant protection. Fungal Genet Biol 44:1123–1133CrossRefGoogle Scholar
  34. Robbertse B, Strope PK, Chaverri P, Gazis R, Ciufo S, Domrachev M, Schoch CL (2017) Improving taxonomic accuracy for fungi in public sequence databases: applying ‘one name one species’ in well-defined genera with Trichoderma/Hypocrea as a test case. DATABASE-OXFORD 2017: bax072Google Scholar
  35. Rubio MB, Hermosa R, Reino JL, Collado IG, Monte E (2009) Thctf1 transcription factor of Trichoderma harzianum is involved in 6-pentyl-2H-pyran-2-one production and antifungal activity. Fungal Genet Biol 46:17–27CrossRefGoogle Scholar
  36. Ruiz N, Roullier C, Petit K, Nemont CS, Grovel O, Pouchus YF (2013) Marine-derived Trichoderma: a source of new bioactive metabolites. In: Mukherjee PK, Horwitz BA, Singh US, Mukherjee M, Schmoll M (eds) Trichoderma: biology and applications. CABI, WallingfordGoogle Scholar
  37. Scharf DH, Brakhage AA, Mukherjee PK (2016) Gliotoxin – bane or boon? Environ Microbiol 18:1096–1109CrossRefGoogle Scholar
  38. Sherkhane PD, Bansal R, Banerjee K, Chatterjee S, Oulkar D, Jain P, Rosenfelder L, Elgavish S, Horwitz BA, Mukherjee PK (2017) Genomics-Driven Discovery of the Gliovirin Biosynthesis Gene Cluster in the Plant Beneficial Fungus Trichoderma virens. Chem Select 2:3347–3352Google Scholar
  39. Singh V, Ray S, Bisen K, Keswani C, Upadhyay RS, Sarma BK, Singh HB (2017) Unravelling the dual applications of Trichoderma spp. as biopesticide and biofertilizer. In: Singh HB, Sarma BK, Keswani C (eds) Advances in PGPR research. CABI, WallingfordCrossRefGoogle Scholar
  40. Stoppacher N, Kluger B, Zeilinger S, Krska R, Schuhmacher R (2010) Identification and profiling of volatile metabolites of the biocontrol fungus Trichoderma atroviride by HS-SPME-GC-MS. J Microbiol Methods 81:187–193CrossRefGoogle Scholar
  41. Tijerino A, Cardoza RE, Moraga J, Malmierca MG, Vicente F, Aleu J, Collado IG, Gutierrez S, Monte E, Hermosa R (2011a) Overexpression of the trichodiene synthase gene tri5 increases trichodermin production and antimicrobial activity in Trichoderma brevicompactum. Fungal Genet Biol 48:285–296CrossRefGoogle Scholar
  42. Tijerino A, Hermosa R, Cardoza RE, Moraga J, Malmierca MG, Aleu J, Collado IG, Monte E, Gutierrez S (2011b) Overexpression of the Trichoderma brevicompactum tri5 gene: effect on the expression of the trichodermin biosynthetic genes and on tomato seedlings. Toxins 3:1220–1232CrossRefGoogle Scholar
  43. Vargas WA, Mukherjee PK, Laughlin D, Wiest A, Moran-Diez ME, Kenerley CM (2014) Role of gliotoxin in the symbiotic and pathogenic interactions of Trichoderma virens. Microbiology (Reading, UK) 160:2319–2330CrossRefGoogle Scholar
  44. Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Barbetti MJ, Li H, Woo SL, Lorito M (2008) A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiol Mol Plant Pathol 72:80–86CrossRefGoogle Scholar
  45. Viterbo A, Wiest A, Brotman Y, Chet I, Kenerley C (2007) The 18mer peptaibols from Trichoderma virens elicit plant defence responses. Mol Plant Pathol 8:737–746CrossRefGoogle Scholar
  46. Wiest A, Grzegorski D, Xu BW, Goulard C, Rebuffat S, Ebbole DJ, Bodo B, Kenerley C (2002) Identification of peptaibols from Trichoderma virens and cloning of a peptaibol synthetase. J Biol Chem 277:20862–20868CrossRefGoogle Scholar
  47. Zeilinger S, Grubera S, Bansal R, Mukherjee PK (2016) Secondary metabolism in Trichoderma – chemistry meets genomics. Fungal Biol Rev 30:74–90CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Shikha Pachauri
    • 1
    • 2
  • Pramod D. Sherkhane
    • 1
  • Prasun K. Mukherjee
    • 1
    Email author
  1. 1.Nuclear Agriculture and Biotechnology DivisionBhabha Atomic Research CentreMumbaiIndia
  2. 2.HomiBhabha National InstituteMumbaiIndia

Personalised recommendations