Advertisement

New Paradigm in Degradation of Lignocellulosic Biomass and Discovery of Novel Microbial Strains

  • Rohit Rai
  • Dhruv Agrawal
  • B. S. Chadha
Chapter

Abstract

Microbial degradation of lignocellulosic biomass (LCB) is of great human interest as it results in the production of numerous value-added products. 2G ethanol is an important lignocellulosics-based product that offers a long-term biotechnological solution to the depleting crude oil reserves without competing with food resources. The efficient degradation of LCB requires synergistic action of an array of microbial enzymes that include modular and non-modular glycosyl hydrolases (endoglucanase, exoglucanase, β-glucosidase, endoxylanase, β-xylosidase, α-arabinofuranosidase, α-glucuronidase, α-galactosidases and β-mannosidases), carbohydrate esterases (CE proteins) and other auxiliary enzymes (LPMOs, CDH and laccases). The genomics and proteomics studies have suggested a variety of culturable and non-culturable lignocellulolytic microorganisms inhabiting diverse ecological niches such as decaying plant materials, soil, compost piles, rumens, forest waste piles, wood processing plants, methanogenic sludge and surface of seashore. Among the rich microbial diversity, fungi are known for their ability to produce copious amounts of these lignocellulolytic enzymes. The wild-type fungal strains (with low specific activities) are subjected to several strain improvement strategies employing cyclic mutagenesis, recombinant technologies and other molecular techniques targeting regulatory elements to enhance their enzyme titres, specific activities and catalytic/hydrolytic efficiencies. The cellulase-/hemicellulase-rich preparations produced by growing developed strains on inexpensive agro-residues as carbon sources (under SSF and/or SmF) find potential applications in biorefineries, paper and pulp industry, animal feed, food and beverages industry and textile and detergent industry, making global business of USD 800 million per year.

Keywords

Glycosyl hydrolases Auxiliary enzymes Recombinant proteins Mutagenesis Protoplast transformation Hydrolysis 

References

  1. Adav SS, Ng CS, Arulmani M, Sze SK (2010) Quantitative iTRAQ secretome analysis of cellulolytic Thermobifida fusca. J Proteome Res 9:3016–3024CrossRefPubMedGoogle Scholar
  2. Adney WS, Baker JO, Decker SR, Chou YC, Himmel ME, Ding SY (2008) Superactive cellulase formulation using cellobiohydrolase-1 from Penicillium funiculosum (No. 7,449,550). GFO (Golden Field Office, Golden, CO (United States)Google Scholar
  3. Adsul MG, Ghule JE, Singh R, Shaikh H, Bastawde KB, Gokhale DV, Varma AJ (2004) Polysaccharides from bagasse: applications in cellulase and xylanase production. Carbohydr Polym 57:67–72CrossRefGoogle Scholar
  4. Adsul MG, Bastawde KB, Varma AJ, Gokhale DV (2007) Strain improvement of Penicillium janthinellum NCIM 1171 for increased cellulase production. Bioresour Technol 98:1467–1473CrossRefPubMedGoogle Scholar
  5. Agger JW, Isaksen T, Várnai A, Vidal-Melgosa S, Willats WG, Ludwig R, Horn SJ, Eijsink VG, Westereng B (2014) Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation. Proc Natl Acad Sci U S A 111:6287–6292CrossRefPubMedPubMedCentralGoogle Scholar
  6. Aguilar CN, Augur C, Favela-Torres E, Viniegra-González G (2001) Production of tannase by Aspergillus niger Aa-20 in submerged and solid-state fermentation: influence of glucose and tannic acid. J Ind Microbiol Biotechnol 26:296–302CrossRefPubMedGoogle Scholar
  7. Alvira P, Tomás-Pejó E, Ballesteros MJ, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861CrossRefPubMedGoogle Scholar
  8. Amore A, Pepe O, Ventorino V, Aliberti A, Faraco V (2013) Cellulolytic Bacillus strains from natural habitats-a review. Chimica Oggi/Chem Today 31:49–52Google Scholar
  9. Antonella A, Simona G, Vincenza F (2007) Trichoderma reesei homologue of Aspergillus nidualns CreB. Fungal Genetics Newslett 54:98Google Scholar
  10. Arfi Y, Shamshoum M, Rogachev I, Peleg Y, Bayer EA (2014) Integration of bacterial lytic polysaccharide monooxygenases into designer cellulosomes promotes enhanced cellulose degradation. Proc Natl Acad Sci U S A 111:9109–9114CrossRefPubMedPubMedCentralGoogle Scholar
  11. Arora DS, Sharma RK (2010) Ligninolytic fungal laccases and their biotechnological applications. Appl Biochem Biotechnol 160:1760–1788CrossRefGoogle Scholar
  12. Bai A, Zhao X, Jin Y, Yang G, Feng Y (2013) A novel thermophilic β-glucosidase from Caldicellulosiruptor bescii: characterization and its synergistic catalysis with other cellulases. J Mol Catal B: Enzym 85:248–256CrossRefGoogle Scholar
  13. Bajpai P (1997) Microbial xylanolytic enzyme system: properties and applications. Adv Appl Microbiol 43:141–194CrossRefPubMedGoogle Scholar
  14. Bayer EA, Smith SP, Noach I, Alber O, Adams JJ, Lamed R, Shimon LJW, Frolow F (2009) Can we crystallize a cellulosome. Biotechnology of lignocellulose degradation and biomass utilization. Springer, Netherlands, pp 183–205Google Scholar
  15. Beckham GT, Bomble YJ, Matthews JF, Taylor CB, Resch MG, Yarbrough JM, Decker SR, Bu L, Zhao X, McCabe C, Wohlert J (2010) The O-glycosylated linker from the Trichoderma reesei Family 7 cellulase is a flexible, disordered protein. Biophys J 99:3773–3781CrossRefPubMedPubMedCentralGoogle Scholar
  16. Beeson WT, Phillips CM, Cate JH, Marletta MA (2011) Oxidative cleavage of cellulose by fungal copper-dependent polysaccharide monooxygenases. J Am Chem Soc 134:890–892CrossRefPubMedGoogle Scholar
  17. Bensah EC, Mensah M (2013) Chemical pretreatment methods for the production of cellulosic ethanol: technologies and innovations. Int J Chem Eng 2013Google Scholar
  18. Bergquist PL, Gibbs MD, Morris DD, Te’o VJ, Saul DJ, Morgan HW (1999) Molecular diversity of thermophilic cellulolytic and hemicellulolytic bacteria. FEMS Microbiol Ecol 28:99–110CrossRefGoogle Scholar
  19. Bhalla A, Bischoff KM, Uppugundla N, Balan V, Sani RK (2014a) Novel thermostable endo-xylanase cloned and expressed from bacterium Geobacillus sp. WSUCF1. Bioresour Technol 165:314–318CrossRefGoogle Scholar
  20. Bhalla A, Bischoff KM, Sani RK (2014b) Highly thermostable GH39 β-xylosidase from a Geobacillus sp. strain WSUCF1. BMC Biotechnol 14:963CrossRefPubMedPubMedCentralGoogle Scholar
  21. Bhatia Y, Mishra S, Bisaria VS (2002) Microbial β-glucosidases: cloning, properties, and applications. Crit Rev Biotechnol 22:375–407CrossRefPubMedGoogle Scholar
  22. Bibi Z, Ansari A, Zohra RR, Aman A, Qader SAU (2014) Production of xylan degrading endo-1, 4-β-xylanase from thermophilic Geobacillus stearothermophilus KIBGE-IB29. J Radiat Res Appl Sci 7:478–485CrossRefGoogle Scholar
  23. Blouzard JC, Coutinho PM, Fierobe HP, Henrissat B, Lignon S, Tardif C, de Philip P (2010) Modulation of cellulosome composition in Clostridium cellulolyticum: adaptation to the polysaccharide environment revealed by proteomic and carbohydrate-active enzyme analyses. Proteomics 10:541–554CrossRefPubMedGoogle Scholar
  24. Blumer-Schuette SE, Brown SD, Sander KB, Bayer EA, Kataeva I, Zurawski JV, Conway JM, Adams MW, Kelly RM (2014) Thermophilic lignocellulose deconstruction. FEMS Microbiol Rev 38:393–448CrossRefPubMedGoogle Scholar
  25. Boraston AB, Bolam DN, Gilbert HJ, Davies GJ (2004) Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 382:769–781CrossRefPubMedPubMedCentralGoogle Scholar
  26. Bourbonnais R, Paice MG (1990) Oxidation of non-phenolic substrates: an expanded role for laccase in lignin biodegradation. FEBS Lett 267:99–102CrossRefPubMedGoogle Scholar
  27. Bourne Y, Henrissat B (2001) Glycoside hydrolases and glycosyltransferases: families and functional modules. Curr Opin Struct Biol 11:593–600CrossRefPubMedGoogle Scholar
  28. Bouws H, Wattenberg A, Zorn H (2008) Fungal secretomes—nature’s toolbox for white biotechnology. Appl Microbiol Biotechnol 80:381CrossRefPubMedGoogle Scholar
  29. Brown NA, de Gouvea PF, Krohn NG, Savoldi M, Goldman GH (2013) Functional characterisation of the non-essential protein kinases and phosphatases regulating Aspergillus nidulans hydrolytic enzyme production. Biotechnol Biofuels 6:91CrossRefPubMedPubMedCentralGoogle Scholar
  30. Brunzelle JS, Jordan DB, McCaslin DR, Olczak A, Wawrzak Z (2008) Structure of the two-subsite β-D-xylosidase from Selenomonas ruminantium in complex with 1, 3-bis [tris (hydroxymethyl) methylamino] propane. Arch Biochem Biophys 474:157–166CrossRefPubMedGoogle Scholar
  31. Bu L, Nimlos MR, Shirts MR, Ståhlberg J, Himmel ME, Crowley MF, Beckham GT (2012) Product binding varies dramatically between processive and nonprocessive cellulase enzymes. J Biol Chem 287:24807–24813CrossRefPubMedPubMedCentralGoogle Scholar
  32. Bukhtojarov FE, Ustinov BB, Salanovich TN, Antonov AI, Gusakov AV, Okunev ON, Sinitsyn AP (2004) Cellulase complex of the fungus Chrysosporium lucknowense: isolation and characterization of endoglucanases and cellobiohydrolases. Biochemistry (Mosc) 69:542–551CrossRefGoogle Scholar
  33. BURLACU A, CORNEA CP, ISRAEL-ROMING F (2016) Microbial xylanase: a review. Sci Bull Ser F Biotechnol 20:335–342Google Scholar
  34. Camassola M, Dillon AJP (2007) Production of cellulases and hemicellulases by Penicillium echinulatum grown on pretreated sugar cane bagasse and wheat bran in solid-state fermentation. J Appl Microbiol 103:2196–2204CrossRefPubMedGoogle Scholar
  35. Canam T, Town JR, Tsang A, McAllister TA, Dumonceaux TJ (2011) Biological pretreatment with a cellobiose dehydrogenase-deficient strain of Trametes versicolor enhances the biofuel potential of canola straw. Bioresour Technol 102:10020–10027CrossRefPubMedGoogle Scholar
  36. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2008) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238CrossRefPubMedPubMedCentralGoogle Scholar
  37. Cara C, Ruiz E, Oliva JM, Sáez F, Castro E (2008) Conversion of olive tree biomass into fermentable sugars by dilute acid pretreatment and enzymatic saccharification. Bioresour Technol 99:1869–1876CrossRefGoogle Scholar
  38. Castillo ZP, Villalonga-Santana M, Tamayo-Cortés J, Rivera-Muñoz G, Solís-Pereira S (2012) Purification and characterization of laccase from Trametes hirsuta Bm-2 and its contribution to dye and effluent decolorization. Afr J Biotechnol 11:3603–3611Google Scholar
  39. Chadha BS, Rubinder K, Saini HS (2005) Constitutive α-amylase producing mutant and recombinant haploid strains of thermophilic fungus Thermomyces lanuginosus. Folia Malacol 50:133–140Google Scholar
  40. Chandel AK, Singh OV, Chandrasekhar G, Rao LV, Narasu ML (2010) Key drivers influencing the commercialization of ethanol-based biorefineries. J Commer Biotechnol 16:239–257CrossRefGoogle Scholar
  41. Chekushina AV, Dotsenko GS, Sinitsyn AP (2013) Comparing the efficiency of plant material bioconversion processes using biocatalysts based on Trichoderma and Penicillium verruculosum enzyme preparations. Catal Ind 5:98–104CrossRefGoogle Scholar
  42. Chen H (2014) Brief introduction to the biotechnology of lignocellulose. In: Biotechnology of lignocellulose. Springer, Dordrecht, pp 1–24CrossRefGoogle Scholar
  43. Chen M, Qin Y, Liu Z, Liu K, Wang F, Qu Y (2010) Isolation and characterization of a β-glucosidase from Penicillium decumbens and improving hydrolysis of corncob residue by using it as cellulase supplementation. Enzyme Microb Technol 46:444–449CrossRefPubMedGoogle Scholar
  44. Chen Y, Luo Q, Zhou W, Xie Z, Cai YJ, Liao XR, Guan ZB (2016) Improving the catalytic efficiency of Bacillus pumilus CotA-laccase by site-directed mutagenesis. Appl Microbiol Biotechnol 8:1–10Google Scholar
  45. Chenchik A, Diachenko L, Moqadam F, Tarabykin V, Lukyanov S, Siebert PD (1996) Full-length cDNA cloning and determination of mRNA 5′ and 3′ ends by amplification of adaptor-ligated cDNA. Biotechniques 21:526–535CrossRefPubMedGoogle Scholar
  46. Cheng Y, Song X, Qin Y, Qu Y (2009) Genome shuffling improves production of cellulase by Penicillium decumbens JU-A10. J Appl Microbiol 107:1837–1846CrossRefPubMedGoogle Scholar
  47. Cherry JR, Fidantsef AL (2003) Directed evolution of industrial enzymes: an update. Curr Opin Biotechnol 14:438–443CrossRefPubMedGoogle Scholar
  48. Chundawat SP, Lipton MS, Purvine SO, Uppugundla N, Gao D, Balan V, Dale BE (2011) Proteomics-based compositional analysis of complex cellulase–hemicellulase mixtures. J Proteome Res 10:4365–4372CrossRefPubMedGoogle Scholar
  49. Chylenski P, Petrović DM, Müller G, Dahlström M, Bengtsson O, Lersch M, Siika-aho M, Horn SJ, Eijsink VG (2017) Enzymatic degradation of sulfite-pulped softwoods and the role of LPMOs. Biotechnol Biofuels 10:177CrossRefPubMedPubMedCentralGoogle Scholar
  50. Cohen R, Suzuki MR, Hammel KE (2005) Processive endoglucanase active in crystalline cellulose hydrolysis by the brown rot basidiomycete Gloeophyllum trabeum. Appl Environ Microbiol 71:2412–2417CrossRefPubMedPubMedCentralGoogle Scholar
  51. Dave BR, Sudhir AP, Subramanian RB (2015) Purification and properties of an endoglucanase from Thermoascus aurantiacus. Biotechnol Rep 6:85–90CrossRefGoogle Scholar
  52. Davies G, Henrissat B (1995) Structures and mechanisms of glycosyl hydrolases. Structure 3:853–859CrossRefGoogle Scholar
  53. Davies GJ, Wilson KS, Henrissat B (1997) Nomenclature for sugar-binding subsites in glycosyl hydrolases. Biochem J 321:557CrossRefPubMedPubMedCentralGoogle Scholar
  54. de Silva R, Lago ES, Merheb CW, Macchione MM, Park YK, Gomes E (2005) Production of xylanase and CMCase on solid state fermentation in different residues by Thermoascus aurantiacus miehe. Braz J Microbiol 36:235–241Google Scholar
  55. De Wet BJ, Matthew MK, Storbeck KH, Van Zyl WH, Prior BA (2008) Characterization of a family 54 α-L-arabinofuranosidase from Aureobasidium pullulans. Appl Microbiol Biotechnol 77:975–983CrossRefPubMedGoogle Scholar
  56. Decker CH, Visser J, Schreier P (2000) β-glucosidases from five black Aspergillus species: study of their physico-chemical and biocatalytic properties. J Agric Food Chem 48:4929–4936CrossRefPubMedGoogle Scholar
  57. Dillon AJ, Zorgi C, Camassola M, Henriques JAP (2006) Use of 2-deoxyglucose in liquid media for the selection of mutant strains of Penicillium echinulatum producing increased cellulase and β-glucosidase activities. Appl Microbiol Biotechnol 70:740CrossRefPubMedGoogle Scholar
  58. Dimarogona M, Topakas E, Olsson L, Christakopoulos P (2012) Lignin boosts the cellulase performance of a GH-61 enzyme from Sporotrichum thermophile. Bioresour Technol 110:480–487CrossRefPubMedGoogle Scholar
  59. Do Vale LH, Gómez-Mendoza DP, Kim MS, Pandey A, Ricart CA, Edivaldo Filho XF, Sousa MV (2012) Secretome analysis of the fungus Trichoderma harzianum grown on cellulose. Proteomics 12:2716–2728CrossRefPubMedGoogle Scholar
  60. Dodd D, Cann IK (2009) Enzymatic deconstruction of xylan for biofuel production. GCB Bioenergy 1:2–17CrossRefPubMedPubMedCentralGoogle Scholar
  61. Doi RH, Kosugi A (2004) Cellulosomes: plant-cell-wall-degrading enzyme complexes. Nat Rev Microbiol 2:541CrossRefPubMedGoogle Scholar
  62. dos Reis L, Fontana RC, da Silva Delabona P, da Silva Lima DJ, Camassola M, da Cruz Pradella JG, Dillon AJP (2013) Increased production of cellulases and xylanases by Penicillium echinulatum S1M29 in batch and fed-batch culture. Bioresour Technol 146:597–603CrossRefGoogle Scholar
  63. Dumonceaux T, Bartholomew K, Valeanu L, Charles T, Archibald F (2001) Cellobiose dehydrogenase is essential for wood invasion and nonessential for kraft pulp delignification by Trametes versicolor. Enzyme Microb Technol 29:478–489CrossRefGoogle Scholar
  64. Esteghlalian AR, Srivastava V, Gilkes N, Gregg DJ, Saddler JN (2001) An overview of factors influencing the enzymatic hydrolysis of lignocellulosic feedstocks. Am Chem Soc 769:100–111Google Scholar
  65. Evans BR, Gilman AK, Cordray K, Woodward J (2000) Mechanism of substrate hydrolysis by a thermophilic endoglucanase from Thermotoga maritima. Biotechnol Lett 22:735–740CrossRefGoogle Scholar
  66. Ezeilo UR, Zakaria II, Huyop F, Wahab RA (2017) Enzymatic breakdown of lignocellulosic biomass: the role of glycosyl hydrolases and lytic polysaccharide monooxygenases. Biotechnol Biotechnol Equip 31:1–16CrossRefGoogle Scholar
  67. Fan G, Yang S, Yan Q, Guo Y, Li Y, Jiang Z (2014) Characterization of a highly thermostable glycoside hydrolase family 10 xylanase from Malbranchea cinnamomea. Int J Biol Macromol 70:482–489CrossRefPubMedGoogle Scholar
  68. Fang X, Yano S, Inoue H, Sawayama S (2009) Strain improvement of Acremonium cellulolyticus for cellulase production by mutation. J Biosci Bioeng 107:256–261CrossRefPubMedGoogle Scholar
  69. Faure D (2002) The family-3 glycoside hydrolases: from housekeeping functions to host-microbe interactions. Appl Environ Microbiol 68:1485–1490CrossRefPubMedPubMedCentralGoogle Scholar
  70. Fendri I, Tardif C, Fierobe HP, Lignon S, Valette O, Perret S (2009) The cellulosomes from Clostridium cellulolyticum. FEBS J 276:3076–3086CrossRefPubMedGoogle Scholar
  71. Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsyth VT, Apperley DC, Kennedy CJ, Jarvis MC (2011) Nanostructure of cellulose microfibrils in spruce wood. Proc Natl Acad Sci USA 108:E1195–E1203CrossRefPubMedGoogle Scholar
  72. Ferri S, Sode K (2010) Functional expression of Phanerochaete chrysosporium cellobiose dehydrogenase flavin domain in Escherichia coli. Biotechnol Lett 32:855–859CrossRefPubMedGoogle Scholar
  73. Fierobe HP, Mingardon F, Mechaly A, Bélaïch A, Rincon MT, Pagès S, Lamed R, Tardif C, Bélaïch JP, Bayer EA (2005) Action of designer cellulosomes on homogeneous versus complex substrates controlled incorporation of three distinct enzymes into a defined trifunctional scaffoldin. World J Biol Chem 280:16325–16334CrossRefGoogle Scholar
  74. Fontes CM, Gilbert HJ (2010) Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates. Annu Rev Biochem 79:655–681CrossRefPubMedGoogle Scholar
  75. Fritz M, Ravanal MC, Braet C (2008) A family 51 α-L-arabinofuranosidase from Penicillium purpurogenum: purification, properties and amino acid sequence. Mycol Res 112:933–942CrossRefPubMedGoogle Scholar
  76. Frommhagen M, Koetsier MJ, Westphal AH, Visser J, Hinz SW, Vincken JP, Berkel WJ, Kabel MA, Gruppen H (2016) Lytic polysaccharide monooxygenases from Myceliophthora thermophila C1 differ in substrate preference and reducing agent specificity. Biotechnol Biofuels 9:186CrossRefPubMedPubMedCentralGoogle Scholar
  77. Fujii T, Fang X, Inoue H, Murakami K, Sawayama S (2009) Enzymatic hydrolyzing performance of Acremonium cellulolyticus and Trichoderma reesei against three lignocellulosic materials. Biotechnol Biofuels 2:24CrossRefPubMedPubMedCentralGoogle Scholar
  78. Fujii T, Inoue H, Ishikawa K (2013) Enhancing cellulase and hemicellulase production by genetic modification of the carbon catabolite repressor gene, creA, in Acremonium cellulolyticus. AMB Express 3:73CrossRefPubMedPubMedCentralGoogle Scholar
  79. Galbe M, Zacchi G (2007) Pretreatment of lignocellulosic materials for efficient bioethanol production. In: Biofuels. Springer, Berlin/Heidelberg, pp 41–65CrossRefGoogle Scholar
  80. Gautam SP, Bundela PS, Pandey AK, Awasthi MK, Sarsaiya S (2010) Optimization of the medium for the production of cellulase by the Trichoderma viride using submerged fermentation. Int J Environ Sci Technol 1:656Google Scholar
  81. Geysens S, Pakula T, Uusitalo J, Dewerte I, Penttilä M, Contreras R (2005) Cloning and characterization of the glucosidase II alpha subunit gene of Trichoderma reesei: a frameshift mutation results in the aberrant glycosylation profile of the hypercellulolytic strain Rut-C30. Appl Environ Microbiol 71:2910–2924CrossRefPubMedPubMedCentralGoogle Scholar
  82. Gilbert HJ, Stålbrand H, Brumer H (2008) How the walls come crumbling down: recent structural biochemistry of plant polysaccharide degradation. Curr Opin Plant Biol 11:338–348CrossRefPubMedGoogle Scholar
  83. Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Łukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101:4775–4800CrossRefPubMedGoogle Scholar
  84. Gokhale DV, Puntambekar US, Deobagkar DN (1993) Protoplast fusion: a tool for intergeneric gene transfer in bacteria. Biotechnol Adv 11:199–217CrossRefPubMedGoogle Scholar
  85. Gong G, Zheng Z, Liu H, Wang L, Diao J, Wang P, Zhao G (2014) Purification and characterization of a beta-glucosidase from Aspergillus niger and its application in the hydrolysis of geniposide to genipin. J Microbiol Biotechnol 24:788–794CrossRefPubMedGoogle Scholar
  86. Gong W, Zhang H, Liu S, Zhang L, Gao P, Chen G, Wang L (2015) Comparative secretome analysis of Aspergillus niger, Trichoderma reesei, and Penicillium oxalicum during solid-state fermentation. Appl Biochem Biotechnol 177:1252–1271CrossRefPubMedGoogle Scholar
  87. Gonzalez-Vogel A, Eyzaguirre J, Oleas G, Callegari E, Navarrete M (2011) Proteomic analysis in non-denaturing condition of the secretome reveals the presence of multienzyme complexes in Penicillium purpurogenum. Appl Microbiol Biotechnol 89:145–155CrossRefPubMedGoogle Scholar
  88. Guais O, Borderies G, Pichereaux C, Maestracci M, Neugnot V, Rossignol M, François JM (2008) Proteomics analysis of “Rovabio™ Excel”, a secreted protein cocktail from the filamentous fungus Penicillium funiculosum grown under industrial process fermentation. J Ind Microbiol Biotechnol 35:1659–1668CrossRefPubMedGoogle Scholar
  89. Guerfali M, Gargouri A, Belghith H (2008) Talaromyces thermophilus β-D-xylosidase: purification, characterization and xylobiose synthesis. Appl Biochem Biotechnol 150:267–279CrossRefPubMedGoogle Scholar
  90. Guerfali M, Gargouri A, Belghith H (2011) Catalytic properties of Talaromyces thermophilus α-l-arabinofuranosidase and its synergistic action with immobilized endo-β-1, 4-xylanase. J Mol Catal B: Enzym 68:192–199CrossRefGoogle Scholar
  91. Gusakov AV (2011) Alternatives to Trichoderma reesei in biofuel production. Trends Biotechnol 29:419–425CrossRefPubMedGoogle Scholar
  92. Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund MF, Lidén G, Zacchi G (2006) Bio-ethanol–the fuel of tomorrow from the residues of today. Trends Biotechnol 24:549–556CrossRefPubMedGoogle Scholar
  93. Hamberg Y, Ruimy-Israeli V, Dassa B, Barak Y, Lamed R, Cameron K, Fontes CM, Bayer EA, Fried DB (2014) Elaborate cellulosome architecture of Acetivibrio cellulolyticus revealed by selective screening of cohesin–dockerin interactions. Peer J 2:636CrossRefGoogle Scholar
  94. Hameed A, Shahina M, Lai WA, Lin SY, Young LS, Liu YC, Hsu YH, Young CC (2015) Oricola cellulosilytica gen. nov., sp. nov., a cellulose-degrading bacterium of the family Phyllobacteriaceae isolated from surface seashore water, and emended descriptions of Mesorhizobium loti and Phyllobacterium myrsinacearum. Antonie Van Leeuwenhoek 107:759–771CrossRefPubMedGoogle Scholar
  95. Hansen GH, Lübeck M, Frisvad JC, Lübeck PS, Andersen B (2015) Production of cellulolytic enzymes from ascomycetes: comparison of solid state and submerged fermentation. Process Biochem 50:1327–1341CrossRefGoogle Scholar
  96. Harreither W, Sygmund C, Augustin M, Narciso M, Rabinovich ML, Gorton L, Haltrich D, Ludwig R (2011) Catalytic properties and classification of cellobiose dehydrogenases from ascomycetes. Appl Environ Microbiol 77:1804–1815CrossRefPubMedPubMedCentralGoogle Scholar
  97. Harvey AJ, Hrmova M, De Gori R, Varghese JN, Fincher GB (2000) Comparative modeling of the three-dimensional structures of family 3 glycoside hydrolases. Proteins: Struct Funct Bioinf 41:257–269CrossRefGoogle Scholar
  98. Hasper AA, Dekkers E, van Mil M, van de Vondervoort PJ, de Graaff LH (2002) EglC, a new endoglucanase from Aspergillus niger with major activity towards xyloglucan. Appl Environ Microbiol 68:1556–1560CrossRefPubMedPubMedCentralGoogle Scholar
  99. Hayes DJ (2009) An examination of biorefining processes, catalysts and challenges. Catal Today 145:138–151CrossRefGoogle Scholar
  100. Henriksson G, Ander P, Pettersson B, Pettersson G (1995) Cellobiose dehydrogenase (cellobiose oxidase) from Phanerochaete chrysosporium as a wood-degrading enzyme. Studies on cellulose, xylan and synthetic lignin. Appl Microbiol Biotechnol 42:790–796CrossRefGoogle Scholar
  101. Hirvonen M, Papageorgiou AC (2003) Crystal structure of a family 45 endoglucanase from Melanocarpus albomyces: Mechanistic implications based on the free and cellobiose-bound forms. J Mol Biol 329:403–410CrossRefPubMedGoogle Scholar
  102. Hogg D, Woo EJ, Bolam DN, McKie VA, Gilbert HJ, Pickersgill RW (2001) Crystal structure of mannanase 26A from Pseudomonas cellulosa and analysis of residues involved in substrate binding. J Biol Chem 276:31186–31192CrossRefPubMedGoogle Scholar
  103. Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink V (2012) Novel enzymes for the degradation of cellulose. Biotechnol Biofuels 5:45CrossRefPubMedPubMedCentralGoogle Scholar
  104. Hreggvidsson GO, Kaiste E, Holst O, Eggertsson G, Palsdottir A, Kristjansson JK (1996) An extremely thermostable cellulase from the thermophilic eubacterium Rhodothermus marinus. Appl Environ Microbiol 62:3047–3049Google Scholar
  105. Huang Y, Qin X, Luo XM, Nong Q, Yang Q, Zhang Z, Gao Y, Lv F, Chen Y, Yu Z, Liu JL (2015) Efficient enzymatic hydrolysis and simultaneous saccharification and fermentation of sugarcane bagasse pulp for ethanol production by cellulase from Penicillium oxalicum EU2106 and thermotolerant Saccharomyces cerevisiae ZM1-5. Biomass Bioenergy 77:53–63CrossRefGoogle Scholar
  106. Igarashi K, Wada M, Samejima M (2007) Activation of crystalline cellulose to cellulose IIII results in efficient hydrolysis by cellobiohydrolase. FEBS J 274:1785–1792CrossRefPubMedGoogle Scholar
  107. Igarashi K, Uchihashi T, Koivula A, Wada M, Kimura S, Okamoto T, Penttilä M, Ando T, Samejima M (2011) Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface. Science 333:1279–1282CrossRefPubMedGoogle Scholar
  108. Ilmen M, Thrane C, Penttilä M (1996) The glucose repressor genecre1 of Trichoderma: Isolation and expression of a full-length and a truncated mutant form. Mol Gen Genet 251:451–460PubMedGoogle Scholar
  109. Irwin D, Shin DH, Zhang S, Barr BK, Sakon J, Karplus PA, Wilson DB (1998) Roles of the catalytic domain and two cellulose binding domains of Thermomonospora fusca E4 in cellulose hydrolysis. J Bacteriol Mycol 180:1709–1714Google Scholar
  110. Jatinder K, Chadha BS, Saini HS (2006) Optimization of medium components for production of cellulases by Melanocarpus sp. MTCC 3922 under solid-state fermentation. World J Microbiol Biotechnol 22:15–22CrossRefGoogle Scholar
  111. Joo AR, Jeya M, Lee KM, Lee KM, Moon HJ, Kim YS, Lee JK (2010) Production and characterization of β-1, 4-glucosidase from a strain of Penicillium pinophilum. Process Biochem 45:851–858CrossRefGoogle Scholar
  112. Jørgensen H, Olsson L (2006) Production of cellulases by Penicillium brasilianum IBT 20888—Effect of substrate on hydrolytic performance. Enzyme Microb Technol 38:381–390CrossRefGoogle Scholar
  113. Jørgensen H, Eriksson T, Börjesson J, Tjerneld F, Olsson L (2003) Purification and characterization of five cellulases and one xylanase from Penicillium brasilianum IBT 20888. Enzyme Microb Technol 32:851–861CrossRefGoogle Scholar
  114. Jørgensen H, Mørkeberg A, Krogh KB, Olsson L (2005) Production of cellulases and hemicellulases by three Penicillium species: effect of substrate and evaluation of cellulase adsorption by capillary electrophoresis. Enzyme Microb Technol 36:42–48CrossRefGoogle Scholar
  115. Juturu V, Wu JC (2013) Insight into microbial hemicellulases other than xylanases: a review. J Chem Technol Biotechnol 88:353–363CrossRefGoogle Scholar
  116. Kaar WE, Holtzapple MT (2000) Using lime pretreatment to facilitate the enzymic hydrolysis of corn stover. Biomass Bioenergy 18:189–199CrossRefGoogle Scholar
  117. Kang SW, Park YS, Lee JS, Hong SI, Kim SW (2004) Production of cellulases and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass. Bioresour Technol 91:153–156CrossRefPubMedGoogle Scholar
  118. Katapodis P, Vršanská M, Kekos D, Nerinckx W, Biely P, Claeyssens M, Macris BJ, Christakopoulos P (2003) Biochemical and catalytic properties of an endoxylanase purified from the culture filtrate of Sporotrichum thermophile. Carbohydr Res 338:1881–1890CrossRefPubMedGoogle Scholar
  119. Kaur R, Chadha BS, Singh N, Saini HS, Singh S (2002) Amylase hyperproduction by deregulated mutants of the thermophilic fungus Thermomyces lanuginosus. J Ind Microbiol Biotechnol 29:70–74CrossRefGoogle Scholar
  120. Kaur B, Sharma M, Soni R, Oberoi HS, Chadha BS (2013) Proteome-based profiling of hypercellulase-producing strains developed through interspecific protoplast fusion between Aspergillus nidulans and Aspergillus tubingensis. Appl Biochem Biotechnol 169:393–407CrossRefPubMedGoogle Scholar
  121. Kaur B, Oberoi HS, Chadha BS (2014) Enhanced cellulase producing mutants developed from heterokaryotic Aspergillus strain. Bioresour Technol 156:100–107CrossRefPubMedGoogle Scholar
  122. Kavitha R, Umesh-Kumar S (2000) Genetic improvement of Aspergillus carbonarius for pectinase overproduction during solid state growth. Biotechnol Bioeng 67:121–125CrossRefPubMedGoogle Scholar
  123. Keshwani DR (2009) Microwave pretreatment of switchgrass for bioethanol production. North Carolina State University, RaleighGoogle Scholar
  124. Kim TH, Lee YY (2006) Fractionation of corn stover by hot-water and aqueous ammonia treatment. Bioresour Technol 97:224–232CrossRefPubMedGoogle Scholar
  125. Kim TH, Lee YY (2007) Pretreatment of corn stover by soaking in aqueous ammonia at moderate temperatures. Appl Biochem Biotechnol 137:81–92PubMedGoogle Scholar
  126. Kim TH, Kim JS, Sunwoo C, Lee YY (2003) Pretreatment of corn stover by aqueous ammonia. Bioresour Technol 90:39–47CrossRefPubMedGoogle Scholar
  127. Kim Y, Nandakumar MP, Marten MR (2008) The state of proteome profiling in the fungal genus Aspergillus. Brief Funct Genomic Proteomic 7:87–94CrossRefPubMedGoogle Scholar
  128. Kim S, Ståhlberg J, Sandgren M, Paton RS, Beckham GT (2014) Quantum mechanical calculations suggest that lytic polysaccharide monooxygenases use a copper-oxyl, oxygen-rebound mechanism. Proc Natl Acad Sci U S A 111:149–154CrossRefPubMedGoogle Scholar
  129. Knob A, Carmona EC (2009) Cell-associated acid β-xylosidase production by Penicillium sclerotiorum. Nat Biotechnol 26:60–67Google Scholar
  130. Knob A, Terrasan CRF, Carmona EC (2010) β-Xylosidases from filamentous fungi: an overview. World J Microbiol Biotechnol 26:389–407CrossRefGoogle Scholar
  131. Knob A, Beitel SM, Fortkamp D, Terrasan CRF, Almeida AFD (2013) Production, purification, and characterization of a major Penicillium glabrum xylanase using Brewer’s spent grain as substrate. Biomed Res Int 2013Google Scholar
  132. Kocabaş DS, Güder S, Özben N (2015) Purification strategies and properties of a low-molecular weight xylanase and its application in agricultural waste biomass hydrolysis. J Mol Catal B: Enzym 115:66–75CrossRefGoogle Scholar
  133. Kordowska-Wiater M, Polak-Berecka M, Wasko A, Targonski Z (2012) Protoplast fusion of Rhizopus oryzae and Rhizopus microsporus for enhanced fumaric acid production from glycerol. Biotechnologia 93:425CrossRefGoogle Scholar
  134. Koschorreck K, Richter SM, Ene AB, Roduner E, Schmid RD, Urlacher VB (2008) Cloning and characterization of a new laccase from Bacillus licheniformis catalyzing dimerization of phenolic acids. Appl Microbiol Biotechnol 79:217–224CrossRefPubMedGoogle Scholar
  135. Koshland DE Jr (1953) Stereochemistry and the mechanism of enzymatic reactions. Biol Rev 28:416–436CrossRefGoogle Scholar
  136. Krishna C (2005) Solid-state fermentation systems—an overview. Crit Rev Biotechnol 25:1–30CrossRefPubMedGoogle Scholar
  137. Kuhar S, Nair LM, Kuhad RC (2008) Pretreatment of lignocellulosic material with fungi capable of higher lignin degradation and lower carbohydrate degradation improves substrate acid hydrolysis and the eventual conversion to ethanol. Can J Microbiol 54:305–313CrossRefPubMedGoogle Scholar
  138. Kulkarni N, Shendye A, Rao M (1999) Molecular and biotechnological aspects of xylanases. FEMS Microbiol Rev 23:411–456CrossRefPubMedGoogle Scholar
  139. Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35:377–391CrossRefGoogle Scholar
  140. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729CrossRefGoogle Scholar
  141. Kunamneni A, Plou FJ, Ballesteros A, Alcalde M (2008) Laccases and their applications: a patent review. Recent Pat Biotechnol 2:10–24CrossRefGoogle Scholar
  142. Lansky S, Alalouf O, Solomon HV, Alhassid A, Govada L, Chayen NE, Belrhali H, Shoham Y, Shoham G (2014) A unique octameric structure of Axe2, an intracellular acetyl-xylooligosaccharide esterase from Geobacillus stearothermophilus. Acta Crystallogr Sect D 70:261–278CrossRefGoogle Scholar
  143. Laser M, Schulman D, Allen SG, Lichwa J, Antal MJ Jr, Lynd LR (2002) A comparison of liquid hot water and steam pretreatments of sugar cane bagasse for bioconversion to ethanol. Bioresour Technol 81:33–44CrossRefPubMedPubMedCentralGoogle Scholar
  144. Laureano-Perez L, Teymouri F, Alizadeh H, Dale BE (2005) Understanding factors that limit enzymatic hydrolysis of biomass. In: Twenty-sixth symposium on biotechnology for fuels and chemicals. Humana Press, New York, pp 1081–1099CrossRefGoogle Scholar
  145. Lee RC, Hrmova M, Burton RA, Lahnstein J, Fincher GB (2003) Bifunctional Family 3 Glycoside Hydrolases from Barley with α-l-Arabinofuranosidase and β-d-Xylosidase Activity characterization, primary structures, and cooh-terminal processing. J Biol Chem 278:5377–5387CrossRefPubMedGoogle Scholar
  146. Lee KM, Jeya M, Joo AR, Singh R, Kim IW, Lee JK (2010) Purification and characterization of a thermostable endo-β-1, 4-glucanase from a novel strain of Penicillium purpurogenum. Enzyme Microb Technol 46:206–211CrossRefGoogle Scholar
  147. Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissat B (2013) Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels 6:41CrossRefPubMedPubMedCentralGoogle Scholar
  148. Li Y, Irwin DC, Wilson DB (2007) Processivity, substrate binding, and mechanism of cellulose hydrolysis by Thermobifida fusca Cel9A. Appl Environ Microbiol 73:3165–3172CrossRefPubMedPubMedCentralGoogle Scholar
  149. Li DC, Li AN, Papageorgiou AC (2011) Cellulases from thermophilic fungi: recent insights and biotechnological potential. Enzym Res 2011Google Scholar
  150. Li X, Beeson WT IV, Phillips CM, Marletta MA, Cate JH (2012) Structural basis for substrate targeting and catalysis by fungal polysaccharide monooxygenases. Structure 20:1051–1061CrossRefPubMedPubMedCentralGoogle Scholar
  151. Li Q, Pei J, Zhao L, Xie J, Cao F, Wang G (2014) Overexpression and characterization of laccase from Trametes versicolor in Pichia pastoris. Appl Biochem Microbiol 50:140CrossRefGoogle Scholar
  152. Liao H, Li S, Wei Z, Shen Q, Xu Y (2014) Insights into high-efficiency lignocellulolytic enzyme production by Penicillium oxalicum GZ-2 induced by a complex substrate. Biotechnol Biofuels 7:162CrossRefPubMedPubMedCentralGoogle Scholar
  153. Lima LH, Serpa VI, Rosseto FR, Sartori GR, de Oliveira Neto M, Martínez L, Polikarpov I (2013) Small-angle X-ray scattering and structural modeling of full-length: cellobiohydrolase I from Trichoderma harzianum. Cellulose 20:1573–1585CrossRefGoogle Scholar
  154. Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69:627–642CrossRefPubMedGoogle Scholar
  155. Liu D, Li J, Zhao S, Zhang R, Wang M, Miao Y, Shen Y, Shen Q (2013a) Secretome diversity and quantitative analysis of cellulolytic Aspergillus fumigatus Z5 in the presence of different carbon sources. Biotechnol Biofuels 6:149CrossRefPubMedPubMedCentralGoogle Scholar
  156. Liu G, Zhang L, Qin Y, Zou G, Li Z, Yan X, Wei X, Chen M, Chen L, Zheng K, Zhang J (2013b) Long-term strain improvements accumulate mutations in regulatory elements responsible for hyper-production of cellulolytic enzymes. Sci Rep 3:1569CrossRefPubMedPubMedCentralGoogle Scholar
  157. Liu G, Zhang L, Wei X, Zou G, Qin Y, Ma L, Li J, Zheng H, Wang S, Wang C, Xun L (2013c) Genomic and secretomic analyses reveal unique features of the lignocellulolytic enzyme system of Penicillium decumbens. PLoS One 8:e55185CrossRefPubMedPubMedCentralGoogle Scholar
  158. Liu GT, Ma L, Duan W, Wang BC, Li JH, Xu HG, Yan XQ, Yan BF, Li SH, Wang LJ (2014) Differential proteomic analysis of grapevine leaves by iTRAQ reveals responses to heat stress and subsequent recovery. BMC Plant Boil 14:110CrossRefGoogle Scholar
  159. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2013) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–D495CrossRefPubMedPubMedCentralGoogle Scholar
  160. Luo Y, Li Z, Li X, Liu X, Fan J, Clark JH, Hu C (2018) The production of furfural directly from hemicellulose in lignocellulosic biomass: a review. Catal TodayGoogle Scholar
  161. Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577CrossRefPubMedPubMedCentralGoogle Scholar
  162. Ma SJ, Leng B, Xu XQ, Zhu XZ, Shi Y, Tao YM, Chen SX, Long MN, Chen QX (2011) Purification and characterization of b-1, 4-glucosidase from Aspergillus glaucus. Afr J Biotechnol 10:19607–19614CrossRefGoogle Scholar
  163. Mahajan C, Basotra N, Singh S, Di Falco M, Tsang A, Chadha BS (2016) Malbranchea cinnamomea: a thermophilic fungal source of catalytically efficient lignocellulolytic glycosyl hydrolases and metal dependent enzymes. Bioresour Technol 200:55–63CrossRefPubMedGoogle Scholar
  164. McPhillips K, Waters DM, Parlet C, Walsh DJ, Arendt EK, Murray PG (2014) Purification and characterisation of a β-1,4-Xylanase from Remersonia thermophila CBS 540.69 and its application in bread making. Appl Biochem Biotechnol 172(4):1747–1762CrossRefPubMedGoogle Scholar
  165. Mai V, Wiegel J, Lorenz WW (2000) Cloning, sequencing, and characterization of the bifunctional xylosidase-arabinosidase from the anaerobic thermophile Thermoanaerobacter ethanolicus. Gene 247:137–143CrossRefPubMedGoogle Scholar
  166. Maki M, Leung KT, Qin W (2009) The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. Int J Biol Sci 5:500–516CrossRefPubMedPubMedCentralGoogle Scholar
  167. Mandelman D, Belaich A, Belaich JP, Aghajari N, Driguez H, Haser R (2003) X-ray crystal structure of the multidomain endoglucanase Cel9G from Clostridium cellulolyticum complexed with natural and synthetic cello-oligosaccharides. J Bacteriol 185:4127–4135CrossRefPubMedPubMedCentralGoogle Scholar
  168. Margeot A, Hahn-Hagerdal B, Edlund M, Slade R, Monot F (2009) New improvements for lignocellulosic ethanol. Curr Opin Biotechnol 20:372–380CrossRefPubMedGoogle Scholar
  169. Marjamaa K, Toth K, Bromann PA, Szakacs G, Kruus K (2013) Novel Penicillium cellulases for total hydrolysis of lignocellulosics. Enzyme Microb Technol 52:358–369CrossRefPubMedGoogle Scholar
  170. Martins LF, Kolling D, Camassola M, Dillon AJ, Ramos LP (2008) Comparison of Penicillium echinulatum and Trichoderma reesei cellulases in relation to their activity against various cellulosic substrates. Bioresour Technol 99:1417–1424CrossRefPubMedGoogle Scholar
  171. Marx IJ, van Wyk N, Smit S, Jacobson D, Viljoen-Bloom M, Volschenk H (2013) Comparative secretome analysis of Trichoderma asperellum S4F8 and Trichoderma reesei Rut C30 during solid-state fermentation on sugarcane bagasse. Biotechnol Biofuels 6:172CrossRefPubMedPubMedCentralGoogle Scholar
  172. Mba Medie F, Davies GJ, Drancourt M, Henrissat B (2012) Genome analyses highlight the different biological roles of cellulases. Nat Rev Microbiol 10:227–234CrossRefPubMedGoogle Scholar
  173. McLean BW, Bray MR, Boraston AB, Gilkes NR, Haynes CA, Kilburn DG (2000) Analysis of binding of the family 2a carbohydrate-binding module from Cellulomonas fimi xylanase 10A to cellulose: specificity and identification of functionally important amino acid residues. Protein Eng 13:801–809CrossRefPubMedGoogle Scholar
  174. Merino ST, Cherry J (2007) Progress and challenges in enzyme development for biomass utilization. In: Biofuels. Springer, Berlin/Heidelberg, pp 95–120CrossRefGoogle Scholar
  175. Mesa L, González E, Cara C, González M, Castro E, Mussatto SI (2011) The effect of organosolv pretreatment variables on enzymatic hydrolysis of sugarcane bagasse. Chem Eng J 168:1157–1162CrossRefGoogle Scholar
  176. Messerschmidt A, Huber R (1990) The blue oxidases, ascorbate oxidase, laccase and ceruloplasmin modelling and structural relationships. Eur J Biochem 187:341–352CrossRefPubMedGoogle Scholar
  177. Mingardon F, Chanal A, López-Contreras AM, Dray C, Bayer EA, Fierobe HP (2007) Incorporation of fungal cellulases in bacterial minicellulosomes yields viable, synergistically acting cellulolytic complexes. Appl Environ Microbiol 73:3822–3832CrossRefPubMedPubMedCentralGoogle Scholar
  178. Miotto LS, de Rezende CA, Bernardes A, Serpa VI, Tsang A, Polikarpov I (2014) The characterization of the endoglucanase Cel12A from Gloeophyllum trabeum reveals an enzyme highly active on β-glucan. PLoS One 9:e108393CrossRefPubMedPubMedCentralGoogle Scholar
  179. Modenbach A (2013) Sodium hydroxide pretreatment of corn stover and subsequent enzymatic hydrolysis: an investigation of yields, kinetic modeling and glucose recoveryGoogle Scholar
  180. Molinier AL, Nouailler M, Valette O, Tardif C, Receveur-Bréchot V, Fierobe HP (2011) Synergy, structure and conformational flexibility of hybrid cellulosomes displaying various inter-cohesins linkers. J Mol Biol 405:143–157CrossRefPubMedGoogle Scholar
  181. Montibeller VW, de Souza Vandenberghe LP, Amore A, Soccol CR, Birolo L, Vinciguerra R, Salmon DNX, Spier MR, Faraco V (2014) Characterization of hemicellulolytic enzymes produced by Aspergillus niger NRRL 328 under solid state fermentation on soybean husks. BioResources 9:7128–7140Google Scholar
  182. Moraïs S, Morag E, Barak Y, Goldman D, Hadar Y, Lamed R, Shoham Y, Wilson DB, Bayer EA (2012) Deconstruction of lignocellulose into soluble sugars by native and designer cellulosomes. MBio 3:e00508-e00512CrossRefGoogle Scholar
  183. Mosier N, Hendrickson R, Ho N, Sedlak M, Ladisch MR (2005) Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresour Technol 96:1986–1993CrossRefGoogle Scholar
  184. Motta FL, Andrade CCP, Santana MHA (2013) A review of xylanase production by the fermentation of xylan: classification, characterization and applications. In: Sustainable degradation of lignocellulosic biomass-techniques, applications and commercialization. IntechGoogle Scholar
  185. Müller G, Kalyani DC, Horn SJ (2017) LPMOs in cellulase mixtures affect fermentation strategies for lactic acid production from lignocellulosic biomass. Biotechnol Bioeng 114:552–559CrossRefPubMedGoogle Scholar
  186. Nakagame S, Furujyo A, Sugiura J (2006) Purification and characterization of cellobiose dehydrogenase from white-rot basidiomycete Trametes hirsuta. Biosci Biotechnol Biochem 70:1629–1635CrossRefPubMedGoogle Scholar
  187. Nitta M, Furukawa T, Shida Y, Mori K, Kuhara S, Morikawa Y, Ogasawara W (2012) A new Zn(II)(2)Cys(6)-type transcription factor BglR regulates β-glucosidase expression in Trichoderma reesei. Fungal Genet Biol 49:388–397CrossRefPubMedGoogle Scholar
  188. Noach I, Levy-Assaraf M, Lamed R, Shimon LJ, Frolow F, Bayer EA (2010) Modular arrangement of a cellulosomal scaffoldin subunit revealed from the crystal structure of a cohesin dyad. J Mol Biol 399:294–305CrossRefPubMedGoogle Scholar
  189. Nurizzo D, Turkenburg JP, Charnock SJ, Roberts SM, Dodson EJ, McKie VA, Taylor EJ, Gilbert HJ, Davies GJ (2002) Cellvibrio japonicus alpha-L-arabinanase 43A has a novel five-blade beta-propeller fold. Nat Struct Biol 9:665–668CrossRefPubMedGoogle Scholar
  190. Ogawa K, Ohara H, Koide T, Toyama N (1989) Intraspecific hybridization of Trichoderma reesei by protoplast fusion. J Ferment Bioeng 67:207–209CrossRefGoogle Scholar
  191. Ogawa A, Suzumatsu A, Takizawa S, Kubota H, Sawada K, Hakamada Y, Kawai S, Kobayashi T, Ito S (2007) Endoglucanases from Paenibacillus spp. form a new clan in glycoside hydrolase family 5. J Biotechnol 129:406–414CrossRefPubMedGoogle Scholar
  192. Ogunmolu FE, Kaur I, Gupta M, Bashir Z, Pasari N, Yazdani SS (2015) Proteomics Insights into the Biomass Hydrolysis Potentials of a Hypercellulolytic Fungus Penicillium funiculosum. J Proteome Res 14(10):4342–4358CrossRefPubMedGoogle Scholar
  193. Ohta K, Fujimoto H, Fujii S, Wakiyama M (2010) Cell-associated beta-xylosidase from Aureobasidium pullulans ATCC 20524: Purification, properties, and characterization of the encoding gene. J Biosci Bioeng 110:152–157CrossRefPubMedGoogle Scholar
  194. Oiatchenko L, Lau YFC et al (1996) Suppression Substractive hybridization: A method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci U S A 93:6025–6030CrossRefGoogle Scholar
  195. Ottenheim C, Werner KA, Zimmermann W, Wu JC (2015) Improved endoxylanase production and colony morphology of Aspergillus niger DSM 26641 by γ-ray induced mutagenesis. Biochem Eng J 94:9–14CrossRefGoogle Scholar
  196. Oyekola OO, Ngesi N, Whiteley CG (2007) Isolation, purification and characterisation of an endoglucanase and β-glucosidase from an anaerobic sulphidogenic bioreactor. Enzyme Microb Technol 40:637–644CrossRefGoogle Scholar
  197. Paës G, Berrin JG, Beaugrand J (2012) GH11 xylanases: structure/function/properties relationships and applications. Biotechnol Adv 30:564–592CrossRefPubMedGoogle Scholar
  198. Pan X, Xie D, Gilkes N, Gregg DJ, Saddler JN (2005) Strategies to enhance the enzymatic hydrolysis of pretreated softwood with high residual lignin content. Appl Biochem Biotechnol 124:1069–1079CrossRefGoogle Scholar
  199. Panagiotou G, Olavarria R, Olsson L (2007) Penicillium brasilianum as an enzyme factory; the essential role of feruloyl esterases for the hydrolysis of the plant cell wall. J Biotechnol 130:219–228CrossRefPubMedGoogle Scholar
  200. Pandey A (2003) Solid-state fermentation. Biochem Eng J 13:81–84CrossRefGoogle Scholar
  201. Pandey A, Soccol CR, Mitchell D (2000) New developments in solid state fermentation: I-bioprocesses and products. Process Biochem 35:1153–1169CrossRefGoogle Scholar
  202. Pang J, Liu ZY, Hao M, Zhang YF, Qi QS (2017) An isolated cellulolytic Escherichia coli from bovine rumen produces ethanol and hydrogen from corn straw. Biotechnol Biofuels 10:165CrossRefPubMedPubMedCentralGoogle Scholar
  203. Pasha C, Kuhad RC, Rao LV (2007) Strain improvement of thermotolerant Saccharomyces cerevisiae VS3 strain for better utilization of lignocellulosic substrates. J Appl Microbiol 103:1480–1489CrossRefPubMedGoogle Scholar
  204. Pavlou MP, Diamandis EP (2010) The cancer cell secretome: a good source for discovering biomarkers? J Proteomics 73:1896–1906CrossRefPubMedGoogle Scholar
  205. Pawlik A, Wójcik M, Rułka K, Motyl-Gorzel K, Osińska-Jaroszuk M, Wielbo J, Marek-Kozaczuk M, Skorupska A, Rogalski J, Janusz G (2016) Purification and characterization of laccase from Sinorhizobium meliloti and analysis of the lacc gene. Int J Biol Macromol 92:138–147CrossRefPubMedGoogle Scholar
  206. Payne CM, Knott BC, Mayes HB, Hansson H, Himmel ME, Sandgren M, Ståhlberg J, Beckham GT (2015) Fungal cellulases. Chem Rev 115:1308–1448CrossRefPubMedGoogle Scholar
  207. Pérez JA, Ballesteros I, Ballesteros M, Sáez F, Negro MJ, Manzanares P (2008) Optimizing liquid hot water pretreatment conditions to enhance sugar recovery from wheat straw for fuel-ethanol production. Fuel 87:3640–3647CrossRefGoogle Scholar
  208. Petri R, Schmidt-Dannert C (2004) Dealing with complexity: evolutionary engineering and genome shuffling. Curr Opin Biotechnol 15:298–304CrossRefPubMedGoogle Scholar
  209. Phillips CM, Beeson WT, Cate JH, Marletta MA (2011) Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa. ACS Chem Biol 6:1399–1406CrossRefPubMedGoogle Scholar
  210. Phitsuwan P, Laohakunjit N, Kerdchoechuen O, Kyu KL, Ratanakhanokchai K (2013) Present and potential applications of cellulases in agriculture, biotechnology, and bioenergy. Folia Microbiol (Praha) 58:163–176CrossRefGoogle Scholar
  211. Poidevin L, Feliu J, Doan A, Berrin JG, Bey M, Coutinho PM, Henrissat B, Record E, Heiss-Blanquet S (2013) Insights into exo- and endoglucanase activities of family 6 glycoside hydrolases from Podospora anserina. Appl Environ Microbiol 79:4220–4229CrossRefPubMedPubMedCentralGoogle Scholar
  212. Prabavathy VR, Mathivanan N, Sagadevan E, Murugesan K, Lalithakumari D (2006) Intra-strain protoplast fusion enhances carboxymethyl cellulase activity in Trichoderma reesei. Enzyme Microb Technol 38:719–723CrossRefGoogle Scholar
  213. Prasad RK, Chatterjee S, Sharma S, Mazumder PB, Vairale MG, Raju PS (2018) Insect gut bacteria and their potential application in degradation of lignocellulosic biomass: a review. In: Bioremediation: applications for environmental protection and management. Springer, Singapore, pp 277–299CrossRefGoogle Scholar
  214. Pu Y, Zhang D, Singh PM, Ragauskas AJ (2008) The new forestry biofuels sector. Biofuel Bioprod Biorefin 2:58–73CrossRefGoogle Scholar
  215. Quinlan RJ, Sweeney MD, Lo Leggio L, Otten H, Poulsen JC, Johansen KS, Krogh KB, Jørgensen CI, Tovborg M, Anthonsen A, Tryfona T, Walter CP, Dupree P, Xu F, Davies GJ, Walton PH (2011) Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc Natl Acad Sci U S A 108:15079–15084CrossRefPubMedPubMedCentralGoogle Scholar
  216. Rai R, Kaur B, Chadha BS (2016a) A method for rapid purification and evaluation of catalytically distinct lignocellulolytic glycosyl hydrolases from thermotolerant fungus Acrophialophora sp. Renew Energy 98:254–263CrossRefGoogle Scholar
  217. Rai R, Kaur B, Singh S, Di Falco M, Tsang A, Chadha BS (2016b) Evaluation of secretome of highly efficient lignocellulolytic Penicillium sp. Dal 5 isolated from rhizosphere of conifers. Bioresour Technol 216:958–967CrossRefPubMedGoogle Scholar
  218. Rakotoarivonina H, Hermant B, Chabbert B, Touzel JP, Remond C (2011) A thermostable feruloyl-esterase from the hemicellulolytic bacterium Thermobacillus xylanilyticus releases phenolic acids from non-pretreated plant cell walls. Appl Microbiol Biotechnol 90:541–552CrossRefPubMedGoogle Scholar
  219. Ralser M, Wamelink MM, Struys EA, Joppich C, Krobitsch S, Jakobs C, Lehrach H (2008) A catabolic block does not sufficiently explain how 2-deoxy-D-glucose inhibits cell growth. Proc Natl Acad Sci U S A 105:17807–17811CrossRefPubMedPubMedCentralGoogle Scholar
  220. Ramírez-Cavazos LI, Junghanns C, Ornelas-Soto N, Cárdenas-Chávez DL, Hernández-Luna C, Demarche P, Enaud E, García-Morales R, Agathos SN, Parra R (2014) Purification and characterization of two thermostable laccases from Pycnoporus sanguineus and potential role in degradation of endocrine disrupting chemicals. J Mol Catal B: Enzym 108:32–42CrossRefGoogle Scholar
  221. Ravalason H, Jan G, Mollé D, Pasco M, Coutinho PM, Lapierre C, Pollet B, Bertaud F, Petit-Conil M, Grisel S, Sigoillot JC (2008) Secretome analysis of Phanerochaete chrysosporium strain CIRM-BRFM41 grown on softwood. Appl Microbiol Biotechnol 80:719CrossRefPubMedGoogle Scholar
  222. Ravanal MC, Alegría-Arcos M, Gonzalez-Nilo FD, Eyzaguirre J (2013) Penicillium purpurogenum produces two GH family 43 enzymes with β-xylosidase activity, one monofunctional and the other bifunctional: Biochemical and structural analyses explain the difference. Arch Biochem Biophys 540:117–124CrossRefPubMedGoogle Scholar
  223. Rehman L, Su X, Guo H, Qi X, Cheng H (2016) Protoplast transformation as a potential platform for exploring gene function in Verticillium dahliae. BMC Biotechnol 16:57CrossRefPubMedPubMedCentralGoogle Scholar
  224. Roig A, Cayuela ML, Sánchez-Monedero MA (2006) An overview on olive mill wastes and their valorisation methods. Waste Manag 26:960–969CrossRefPubMedGoogle Scholar
  225. Romero MD, Aguado J, González L, Ladero M (1999) Cellulase production by Neurospora crassa on wheat straw. Enzyme Microb Technol 25:244–250CrossRefGoogle Scholar
  226. Ruijter GJ, Visser J (1997) Carbon repression in Aspergilli. FEMS Microbiol Lett 151:103–114CrossRefPubMedGoogle Scholar
  227. Sadhu S, Maiti TK (2013) Cellulase production by bacteria: a review. Br Microbiol Res J 3:235CrossRefGoogle Scholar
  228. Saha BC (2000) α-L-Arabinofuranosidases: biochemistry, molecular biology and application in biotechnology. Biotechnol Adv 18:403–423CrossRefPubMedGoogle Scholar
  229. Saha BC, Iten LB, Cotta MA, Wu YV (2005) Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem 40:3693–3700CrossRefGoogle Scholar
  230. Saha T, Ghosh D, Mukherjee S, Bose S, Mukherjee M (2008) Cellobiose dehydrogenase production by the mycelial culture of the mushroom Termitomyces clypeatus. Process Biochem 43:634–641CrossRefGoogle Scholar
  231. Saini JK, Singhania RR, Satlewal A, Saini R, Gupta R, Tuli D, Mathur A, Adsul M (2016) Improvement of wheat straw hydrolysis by cellulolytic blends of two Penicillium spp. Renew Energy 98:43–50CrossRefGoogle Scholar
  232. Sakon J, Adney WS, Himmel ME, Thomas SR, Karplus PA (1996) Crystal structure of thermostable family 5 endocellulase E1 from Acidothermus cellulolyticus in complex with cellotetraose. Biochemistry 35:10648–10660CrossRefGoogle Scholar
  233. Sammond DW, Payne CM, Brunecky R, Himmel ME, Crowley MF, Beckham GT (2012) Cellulase linkers are optimized based on domain type and function: insights from sequence analysis, biophysical measurements, and molecular simulation. PLoS One 7:e48615CrossRefPubMedPubMedCentralGoogle Scholar
  234. Sánchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27:185–194CrossRefPubMedGoogle Scholar
  235. Sato S, Liu F, Koc H, Tien M (2007) Expression analysis of extracellular proteins from Phanerochaete chrysosporium grown on different liquid and solid substrates. Microbiology 153:3023–3033CrossRefPubMedPubMedCentralGoogle Scholar
  236. Savitha S, Sadhasivam S, Swaminathan K (2010) Regeneration and molecular characterization of an intergeneric hybrid between Graphium putredinis and Trichoderma harzianum by protoplasmic fusion. Biotechnol Adv 28:285–292CrossRefPubMedGoogle Scholar
  237. Sawicka-Zukowska R, Juszczakiewicz D, Misiewicz A, Krakowiak A, Jêdrychowska B (2004) Intensification of lipase biosynthesis as a result of electrofusion of Rhizopus cohnii protoplasts. J Appl Genet 45:37–48PubMedGoogle Scholar
  238. Schacht C, Zetzl C, Brunner G (2008) From plant materials to ethanol by means of supercritical fluid technology. J Supercrit Fluids 46:299–321CrossRefGoogle Scholar
  239. Schmer MR, Vogel KP, Mitchell RB, Perrin RK (2008) Net energy of cellulosic ethanol from switchgrass. Proc Natl Acad Sci USA 105:464–469CrossRefPubMedGoogle Scholar
  240. Sehnem NT, de Bittencourt LR, Camassola M, Dillon AJ (2006) Cellulase production by Penicillium echinulatum on lactose. Appl Microbiol Biotechnol 72:163–167CrossRefPubMedGoogle Scholar
  241. Shah A, Patel H, Narra M (2017) Bioproduction of fungal cellulases and hemicellulases through solid state fermentation. Fungal Metabolites:349–393Google Scholar
  242. Shallom D, Shoham Y (2003) Microbial hemicellulases. Curr Opin Microbiol 6:219–228CrossRefPubMedGoogle Scholar
  243. Sharma M, Chadha BS, Saini HS (2010) Purification and characterization of two thermostable xylanases from Malbranchea flava active under alkaline conditions. Bioresour Technol 101:8834–8842CrossRefPubMedGoogle Scholar
  244. Shi J, Chinn MS, Sharma-Shivappa RR (2008) Microbial pretreatment of cotton stalks by solid state cultivation of Phanerochaete chrysosporium. Bioresour Technol 99:6556–6564CrossRefGoogle Scholar
  245. Shibafuji Y, Nakamura A, Uchihashi T, Sugimoto N, Fukuda S, Watanabe H, Samejima M, Ando T, Noji H, Koivula A, Igarashi K (2014) Single-molecule imaging analysis of elementary reaction steps of Trichoderma reesei cellobiohydrolase I (Cel7A) hydrolyzing crystalline cellulose Iα and IIII. J Biol Chem 289:14056–14065CrossRefPubMedPubMedCentralGoogle Scholar
  246. Shinoda S, Kanamasa S, Arai M (2012) Cloning of an endoglycanase gene from Paenibacillus cookie and characterization of the recombinant enzyme. Biotechnol Lett 34:281–286CrossRefPubMedGoogle Scholar
  247. Shinozaki A, Kawakami T, Hosokawa S, Sakamoto T (2014) A novel GH43 α-l-arabinofuranosidase of Penicillium chrysogenum that preferentially degrades single-substituted arabinosyl side chains in arabinan. Enzyme Microb Technol 58:80–86CrossRefPubMedGoogle Scholar
  248. Singh P, Suman A, Tiwari P, Arya N, Gaur A, Shrivastava AK (2008) Biological pretreatment of sugarcane trash for its conversion to fermentable sugars. World J Microbiol Biotechnol 24:667–673CrossRefGoogle Scholar
  249. Singh A, Singh N, Bishnoi NR (2009a) Production of cellulases by Aspergillus heteromorphus from wheat straw under submerged fermentation. Int J Civil Env Eng 1Google Scholar
  250. Singh R, Varma AJ, Laxman RS, Rao M (2009b) Hydrolysis of cellulose derived from steam exploded bagasse by Penicillium cellulases: comparison with commercial cellulase. Bioresour Technol 100:6679–6681CrossRefPubMedGoogle Scholar
  251. Singhania RR, Patel AK, Sukumaran RK, Larroche C, Pandey A (2013) Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresour Technol 127:500–507CrossRefPubMedGoogle Scholar
  252. Sinnott ML (1990) Catalytic mechanism of enzymic glycosyl transfer. Chem Rev 90:1171–1202CrossRefGoogle Scholar
  253. Smith SP, Bayer EA (2013) Insights into cellulosome assembly and dynamics: from dissection to reconstruction of the supramolecular enzyme complex. Curr Opin Struct Biol 23:686–694CrossRefPubMedGoogle Scholar
  254. Smith SP, Bayer EA, Czjzek M (2017) Continually emerging mechanistic complexity of the multi-enzyme cellulosome complex. Curr Opin Struct Biol 44:151–160CrossRefPubMedGoogle Scholar
  255. Socha AM, Parthasarathi R, Shi J, Pattathil S, Whyte D, Bergeron M, George A, Tran K, Stavila V, Venkatachalam S, Hahn MG (2014) Efficient biomass pretreatment using ionic liquids derived from lignin and hemicellulose. Proc Natl Acad Sci 111:3587–3595CrossRefGoogle Scholar
  256. Song W, Han X, Qian Y, Liu G, Yao G, Zhong Y, Qu Y (2016) Proteomic analysis of the biomass hydrolytic potentials of Penicillium oxalicum lignocellulolytic enzyme system. Biotechnol Biofuels 9:68CrossRefPubMedPubMedCentralGoogle Scholar
  257. Souza FHM, Nascimento CV, Rosa JC, Masui DC, Leone FA, Jorge JA, Furriel RPM (2010) Purification and biochemical characterization of a mycelial glucose-and xylose-stimulated β-glucosidase from the thermophilic fungus Humicola insolens. Process Biochem 45:272–278CrossRefGoogle Scholar
  258. Stern J, Moraïs S, Lamed R, Bayer EA (2016) Adaptor scaffoldins: An original strategy for extended designer cellulosomes, inspired from nature. MBio 7:e00083-16CrossRefPubMedPubMedCentralGoogle Scholar
  259. Sukumaran RK, Surender VJ, Sindhu R, Binod P, Janu KU, Sajna KV, Rajasree KP, Pandey A (2010) Lignocellulosic ethanol in India: prospects, challenges and feedstock availability. Bioresour Technol 101:4826–4833CrossRefPubMedGoogle Scholar
  260. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11CrossRefGoogle Scholar
  261. Sun X, Liu Z, Zheng K, Song X, Qu Y (2008) The composition of basal and induced cellulase systems in Penicillium decumbens under induction or repression conditions. Enzyme Microb Technol 42:560–567CrossRefGoogle Scholar
  262. Sweeney MD, Xu F (2012) Biomass converting enzymes as industrial biocatalysts for fuels and chemicals: recent developments. Catalysts 2:244–263CrossRefGoogle Scholar
  263. Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651CrossRefPubMedPubMedCentralGoogle Scholar
  264. Tan TC, Kracher D, Gandini R, Sygmund C, Kittl R, Haltrich D, Hällberg BM, Ludwig R, Divne C (2015) Structural basis for cellobiose dehydrogenase action during oxidative cellulose degradation. Nat Commun 6:7542CrossRefPubMedPubMedCentralGoogle Scholar
  265. Tenkanen M, Vršanská M, Siikaaho M, Wong DW, Puchart V, Penttilä M, Saloheimo M, Biely P (2013) Xylanase XYN IV from Trichoderma reesei showing exo and endo xylanase activity. FEBS J 280:285–301CrossRefPubMedGoogle Scholar
  266. Terrasan CRF, Temer B, Duarte MCT, Carmona EC (2010) Production of xylanolytic enzymes by Penicillium janczewskii. Bioresour Technol 101:4139–4143CrossRefPubMedGoogle Scholar
  267. Thangamani D (2005) Strain improvement of industrially important filamentous fungi through protoplast fusion and their biotechnological applicationsGoogle Scholar
  268. Tian C, Beeson WT, Iavarone AT, Sun J, Marletta MA, Cate JH, Glass NL (2009) Systems analysis of plant cell wall degradation by the model filamentous fungus Neurospora crassa. Proc Natl Acad Sci USA 106:22157–22162CrossRefPubMedGoogle Scholar
  269. Tian SQ, Zhao RY, Chen ZC (2018) Review of the pretreatment and bioconversion of lignocellulosic biomass from wheat straw materials. Renew Sustain Energy Rev 91:483–489CrossRefGoogle Scholar
  270. Todd RB, Lockington RA, Kelly JM (2000) The Aspergillus nidulans creC gene involved in carbon catabolite repression encodes a WD40 repeat protein. Mol Gen Genet 263:561–570CrossRefPubMedGoogle Scholar
  271. Uday USP, Choudhury P, Bandyopadhyay TK, Bhunia B (2016) Classification, mode of action and production strategy of xylanase and its application for biofuel production from water hyacinth. Int J Biol Macromol 82:1041–1054CrossRefPubMedGoogle Scholar
  272. Ulaganathan K, Goud B, Reddy M, Kumar V, Balsingh J, Radhakrishna S (2015) Proteins for breaking barriers in lignocellulosic bioethanol production. Curr Protein Pept Sci 16:100–134CrossRefPubMedGoogle Scholar
  273. Vaaje-Kolstad G, Westereng B, Horn SJ, Liu Z, Zhai H, Sørlie M, Eijsink VG (2010) An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 330:219–222CrossRefPubMedGoogle Scholar
  274. Vaidyanathan S, Macaloney G, Vaughan J, McNeil B, Harvey LM (1999) Monitoring of submerged bioprocesses. Crit Rev Biotechnol 19:277–316CrossRefGoogle Scholar
  275. Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) Lignin biosynthesis and structure. Plant Physiol 153:895–905CrossRefPubMedPubMedCentralGoogle Scholar
  276. Vardakou M, Flint J, Christakopoulos P, Lewis RJ, Gilbert HJ, Murray JW (2005) A family 10 Thermoascus aurantiacus Xylanase utilizes arabinose decorations of Xylan as significant substrate specificity determinants. J Mol Biol 352(5):1060–1067Google Scholar
  277. Vardakou M, Dumon C, Murray JW, Christakopoulos P, Weiner DP, Juge N, Lewis RJ, Gilbert HJ, Flint JE (2008) Understanding the structural basis for substrate and inhibitor recognition in eukaryotic GH11 xylanases. J Mol Biol 375:1293–1305CrossRefPubMedGoogle Scholar
  278. Vazana Y, Moraïs S, Barak Y, Lamed R, Bayer EA (2012) Designer cellulosomes for enhanced hydrolysis of cellulosic substrates. Methods Enzymol 510:429–452CrossRefPubMedGoogle Scholar
  279. Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270:484CrossRefPubMedGoogle Scholar
  280. Vu VV, Beeson WT, Span EA, Farquhar ER, Marletta MA (2014) A family of starch-active polysaccharide monooxygenases. Proc Natl Acad Sci U S A 111:13822–13827CrossRefPubMedPubMedCentralGoogle Scholar
  281. Vuong TV, Wilson DB (2010) Glycoside hydrolases: catalytic base/nucleophile diversity. Biotechnol Bioeng 107:195–205CrossRefPubMedGoogle Scholar
  282. Wang T, Liu X, Yu Q, Zhang X, Qu Y, Gao P, Wang T (2005) Directed evolution for engineering pH profile of endoglucanase III from Trichoderma reesei. Biomol Eng 22:89–94CrossRefPubMedGoogle Scholar
  283. Wang M, Kurland CG, Caetano-Anollés G (2011) Reductive evolution of proteomes and protein structures. Proc Natl Acad Sci U S A 108:11954–11958CrossRefPubMedPubMedCentralGoogle Scholar
  284. Warnick TA, Methe BA, Leschine SB (2002) Clostridium phytofermentans sp. Nov. a cellulolytic mesophile from forest soil. Int J Syst Evol Microbiol 52:1155–1160CrossRefPubMedGoogle Scholar
  285. Watson BJ, Zhang H, Longmire AG, Moon YH, Hutcheson SW (2009) Processive endoglucanases mediate degradation of cellulose by Saccharophagus degradans. J Bacteriol 191:5697–5705CrossRefPubMedPubMedCentralGoogle Scholar
  286. Westereng B, Ishida T, Vaaje-Kolstad G, Wu M, Eijsink VG, Igarashi K, Samejima M, Ståhlberg J, Horn SJ, Sandgren M (2011) The putative endoglucanase PcGH61D from Phanerochaete chrysosporium is a metal-dependent oxidative enzyme that cleaves cellulose. PLoS One 6:27807CrossRefGoogle Scholar
  287. Wijaya YP, Putra RDD, Widyaya VT, Ha JM, Suh DJ, Kim CS (2014) Comparative study on two-step concentrated acid hydrolysis for the extraction of sugars from lignocellulosic biomass. Bioresour Technol 164:221–231CrossRefPubMedGoogle Scholar
  288. Wong KK, Saddler JN (1992) Trichoderma xylanases, their properties and application. Crit Rev Biotechnol 12:413–435CrossRefGoogle Scholar
  289. Wood TM, McCRAE SI, Bhat KM (1989) The mechanism of fungal cellulase action, Synergism between enzyme components of Penicillium pinophilum cellulase in solubilizing hydrogen bond-ordered cellulose. Biochem J 260:37–43CrossRefPubMedPubMedCentralGoogle Scholar
  290. Woon JSK, Murad AMA, Abu Bakar FD (2015) Isolation, molecular cloning and expression of cellobiohydrolase B (CbhB) from Aspergillus niger in Escherichia coli. In AIP Conference Proceedings 1678: 30004Google Scholar
  291. Wu YR, Luo ZH, Chow RKK, Vrijmoed LLP (2010) Purification and characterization of an extracellular laccase from the anthracene-degrading fungus Fusarium solani MAS2. Bioresour Technol 101:9772–9777CrossRefPubMedGoogle Scholar
  292. Wyman C (1996) Handbook on bioethanol: production and utilization. CRC Press, Boca RatonGoogle Scholar
  293. Xiao W, Yin W, Xia S, Ma P (2012) The study of factors affecting the enzymatic hydrolysis of cellulose after ionic liquid pretreatment. Carbohydr Polym 87:2019–2023CrossRefGoogle Scholar
  294. Xu F, Ding H (2007) A new kinetic model for heterogeneous (or spatially confined) enzymatic catalysis: contributions from the fractal and jamming (overcrowding) effects. Appl Catal Gen 317:70–81CrossRefGoogle Scholar
  295. Yachmenev V, Condon B, Klasson T, Lambert A (2009) Acceleration of the enzymatic hydrolysis of corn stover and sugar cane bagasse celluloses by low intensity uniform ultrasound. J Biobased Mater Bio 3:25–31CrossRefGoogle Scholar
  296. Yang B, Wyman CE (2006) BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Biotechnol Bioeng 94:611–617CrossRefGoogle Scholar
  297. Yang F, Gong Y, Liu G, Zhao S, Wang J (2015) Enhancing cellulase production in thermophilic fungus Myceliophthora thermophila ATCC42464 by RNA interference of cre1 gene expression. J Microbiol Biotechnol 25:1101–1107CrossRefPubMedGoogle Scholar
  298. Yao G, Li Z, Gao L, Wu R, Kan Q, Liu G, Qu Y (2015) Redesigning the regulatory pathway to enhance cellulase production in Penicillium oxalicum. Biotechnol Biofuels 8:71CrossRefPubMedPubMedCentralGoogle Scholar
  299. Yoo CG, Nghiem NP, Hicks KB, Kim TH (2011) Pretreatment of corn stover using low-moisture anhydrous ammonia (LMAA) process. Bioresour Technol 102:10028–10034CrossRefGoogle Scholar
  300. Zambare VP, Bhalla A, Muthukumarappan K, Sani RK, Christopher LP (2011) Bioprocessing of agricultural residues to ethanol utilizing a cellulolytic extremophile. Extremophiles 15:611CrossRefPubMedGoogle Scholar
  301. Zamocky M, Ludwig R, Peterbauer C, Hallberg BM, Divne C, Nicholls P, Haltrich D (2006) Cellobiose dehydrogenase-a flavocytochrome from wood-degrading, phytopathogenic and saprotropic fungi. Curr Protein Pept Sci 7:255–280CrossRefPubMedGoogle Scholar
  302. Zeng R, Hu Q, Yin XY, Huang H, Yan JB, Gong ZW, Yang ZH (2016) Cloning a novel endo-1, 4-β-d-glucanase gene from Trichoderma virens and heterologous expression in E. coli. AMB Express 6:108CrossRefPubMedPubMedCentralGoogle Scholar
  303. Zhang Q, Cai W (2008) Enzymatic hydrolysis of alkali-pretreated rice straw by Trichoderma reesei ZM4-F3. Biomass Bioenergy 32:1130–1135CrossRefGoogle Scholar
  304. Zhang YHP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88:797–824CrossRefGoogle Scholar
  305. Zhang YHP, Lynd LR (2006) A functionally based model for hydrolysis of cellulose by fungal cellulase. Biotechnol Bioeng 94:888–898CrossRefPubMedGoogle Scholar
  306. Zhang YHP, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24:452–481CrossRefGoogle Scholar
  307. Zhang C, Wang Y, Li Z, Zhou X, Zhang W, Zhao Y, Lu X (2014) Characterization of a multi-function processive endoglucanase CHU_2103 from Cytophaga hutchinsonii. Appl Microbiol Biotechnol 98:6679–6687CrossRefPubMedGoogle Scholar
  308. Zhao X, Cheng K, Liu D (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbial Biotechnol 82:815CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Rohit Rai
    • 1
  • Dhruv Agrawal
    • 1
  • B. S. Chadha
    • 1
  1. 1.Department of MicrobiologyGuru Nanak Dev UniversityAmritsarIndia

Personalised recommendations