Advertisement

Diversity of Lichen Photobionts: Their Coevolution and Bioprospecting Potential

  • Khem Chand Saini
  • Sanjeeva Nayaka
  • Felix Bast
Chapter

Abstract

Lichens are the symbiotic association of green algae (phycobiont) or blue-green algae (cyanobiont) with fungus (mycobiont). Lichen-forming fungi consist of about 20,000 species, whereas the known photobionts are only about 156 species from 56 genera. A confounding reason for this disparity in the species richness is that most of the lichenologists are mycologists and their focus is on the mycobionts rather than photobionts. Therefore, mycobionts are comparatively well-characterized while the real diversity of photobionts remain elusive. Diversity and phylogeny of major photobiont lineages described till date are comprehensively covered in this systematic review, along with the data on ecology, patterns of phylogeography, and evolution. Current understanding of photobionts described from the Indian subcontinent is summarized revealing significant knowledge gaps in this field. Given that photobionts have relatively simple morphology and morphological plasticity, the relevance of DNA sequence-based molecular systematics for photobiont characterization is highlighted, and other challenges in photobiont research are discussed.

Keywords

Symbionts Lichenized fungi Molecular systematics Mycobionts Nostoc Trebouxia 

Notes

Acknowledgments

The authors thank the Vice Chancellor, Central University of Punjab, for his administrative help while giving a shape to this review. KCS gratefully acknowledges CSIR, New Delhi, India, for the financial support in the form of JRF. We would like to thank Sanjeeva Nayaka, Lichenology Laboratory CSIR-National Botanical Research Institute, Lucknow, for his valuable suggestions. The study was supported by a grant-in-aid from CSIR (No. 60(0114)/17/EMR-II) sanctioned to FB.

References

  1. Ahmadjian V (1982) Algal/fungal symbioses. Progress in Phycological Research, pp 179–233Google Scholar
  2. Ahmadjian V (1987) Coevolution in lichens. Ann N Y Acad Sci 503(1):307–315CrossRefGoogle Scholar
  3. Ahmadjian V (1988) The lichen alga Trebouxia: does it occur free-living? Plant Syst Evol 158:243–247CrossRefGoogle Scholar
  4. Ahmadjian V (1993a) The lichen photobiont: what can it tell us about lichen systematics? Bryologist 96:310–313CrossRefGoogle Scholar
  5. Ahmadjian V (1993b) The lichen symbiosis. Wiley, New York, pp 30–52Google Scholar
  6. Ahmadjian V, Jacobs J (1983) Algal-fungal relationships in lichens: recognition, synthesis, and development [Phycobionts]. In: Goffpp LJ (ed) Algal symbiosis: a continuum of interaction strategies. Cambridge University Press, Cambridge, pp 147–171Google Scholar
  7. Anna V, Lyudmyla D, Rai H, Upreti DK, Rai H, Upreti D (2013) Photobiont diversity of soil crust lichens along substrate ecology and altitudinal gradients in Himalayas: a case study from Garhwal Himalaya. Terricolous Lichens in India: Volume 1: Diversity Patterns and Distribution Ecology pp 73–87Google Scholar
  8. Barrett J (1983) Plant-fungus symbiosesGoogle Scholar
  9. Bast F (2013) Sequence similarity search, multiple sequence alignment, model selection, distance matrix and phylogeny reconstruction. Nature Protocol ExchangeGoogle Scholar
  10. Beck A (1999) Photobiont inventory of a lichen community growing on heavy-metal-rich rock. Lichenologist 31:501–510CrossRefGoogle Scholar
  11. Beck A, Friedl T, Rambold G (1998) Selectivity of photobiont choice in a defined lichen community: inferences from cultural and molecular studies. New Phytol 139:709–720CrossRefGoogle Scholar
  12. Bhattacharya D, Friedl T, Damberger S (1996) Nuclear-encoded rDNA group I introns: origin and phylogenetic relationships of insertion site lineages in the green algae. Mol Biol Evol 13:978–989CrossRefPubMedGoogle Scholar
  13. Brickley MR (2017) Development of a live cell imaging method for mitochondria in Trebouxia photobionts. Lichenologist 49:275–286CrossRefGoogle Scholar
  14. Bubrick P (1988) Effects of symbiosis on the photobiont. CRC Handbook Lichenol 2:133–144Google Scholar
  15. Buckley HL, Rafat A, Ridden JD, Cruickshank RH, Ridgway HJ, Paterson AM (2014) Phylogenetic congruence of lichenised fungi and algae is affected by spatial scale and taxonomic diversity. Peer J573:1–17Google Scholar
  16. Büdel B (1992) Taxonomy of lichenized prokaryotic blue-green algae. In: Reisser W (ed.) Algae and symbioses. Biopress Limited, pp 301–324Google Scholar
  17. Büdel B, Darienko T, Deutschewitz K, Dojani S, Friedl T, Mohr KI, Salisch M, Reisser W, Weber B (2009) Southern African biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency. Microb Ecol 57:229–247CrossRefPubMedGoogle Scholar
  18. Casano, L. M., del Campo, E. M., García-Breijo, F. J., Reig-Armiñana, J., Gasulla, F., Del Hoyo, A., Alfredo Guéra, Barreno, E. (2011). Two Trebouxia algae with different physiological performances are ever-present in lichen thalli of Ramalina farinacea. Coexistence versus Competition? Environ Microbiol 13: 806–818CrossRefPubMedGoogle Scholar
  19. Conti M, Cecchetti G (2001) Biological monitoring: lichens as bioindicators of air pollution assessment—a review. Environ Pollut 114:471–492CrossRefPubMedGoogle Scholar
  20. Crespo A, Kauff F, Divakar PK, del Prado R, Pérez-Ortega S, de Paz GA et al (2010) Phylogenetic generic classification of parmelioid lichens (Parmeliaceae, Ascomycota) based on molecular, morphological and chemical evidence. Taxon 59:1735–1753CrossRefGoogle Scholar
  21. Dal Grande F, Alors D, Divakar PK, Bálint M, Crespo A, Schmitt I (2014) Insights into intrathalline genetic diversity of the cosmopolitan lichen symbiotic green alga Trebouxia decolorans Ahmadjian using microsatellite markers. Mol Phylogenet Evol 72:54–60CrossRefPubMedGoogle Scholar
  22. De Bary A (1879) Die erscheinung der symbiose: Verlag von Karl J. TrübnerGoogle Scholar
  23. DePriest PT (2004) Early molecular investigations of lichen-forming symbionts: 1986–2001. Annu Rev Microbiol 58:273–301CrossRefPubMedGoogle Scholar
  24. DePriest PT, Been MD (1992) Numerous group I introns with variable distributions in the ribosomal DNA of a lichen fungus. J Mol Biol 2:315–321CrossRefGoogle Scholar
  25. Doering M, Piercey-Normore MD (2009) Genetically divergent algae shape an epiphytic lichen community on Jack Pine in Manitoba. Lichenologist 4:69–80CrossRefGoogle Scholar
  26. Duggan PS, Thiel T, Adams DG (2013) Symbiosis between the cyanobacterium Nostoc and the liverwort Blasia requires a CheR-type MCP methyltransferase. Symbiosis 59:111–120CrossRefGoogle Scholar
  27. Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in coevolution. Evolution 18:586–608CrossRefGoogle Scholar
  28. Elenkin A (1902) K-Voprosu o” vnutrennem-saprofitizme” [“ éndosaprofitizme”] u lišajnikovGoogle Scholar
  29. Elvebakk A, Papaefthimiou D, Robertsen EH, Liaimer A (2008) Phylogenetic patterns among Nostoc cyanobionts within bi-and tripartite lichens of the genus Pannaria. J Phycol 44:1049–1059CrossRefPubMedGoogle Scholar
  30. Ertz D, Tehler A (2011) The phylogeny of Arthoniales (Pezizomycotina) inferred from nucLSU and RPB2 sequences. Fungal Divers 49:47–71CrossRefGoogle Scholar
  31. Fedrowitz K, Kaasalainen U, Rikkinen J (2011) Genotype variability of Nostoc symbionts associated with three epiphytic Nephroma species in a boreal forest landscape. Bryologist 114:220–230CrossRefGoogle Scholar
  32. Friedl T (1987) Thallus development and phycobionts of the parasitic lichen Diploschistes muscorum. Lichenologist 19:183–191CrossRefGoogle Scholar
  33. Friedl T, Büdel B (2008) Photobionts. Lichen Biol 2:9–26CrossRefGoogle Scholar
  34. Friedl T, Rokitta C (1997) Species relationships in the lichen alga Trebouxia (Chlorophyta, Trebouxiophyceae): molecular phylogenetic analyses of nuclear-encoded large subunit rRNA gene sequences. Symbiosis 23:125–148Google Scholar
  35. Friedl HP, Till GO, Ryan US, Ward PA (1989) Mediator-induced activation of xanthine oxidase in endothelial cells. FASEB J 13:2512–2518CrossRefGoogle Scholar
  36. Galloway D (1992) Biodiversity: a lichenological perspective. Biodivers Conserv 1:312–323CrossRefGoogle Scholar
  37. Gargas A, DePriest PT, Grube M, Tehler A (1995) Multiple origins of lichen symbioses in fungi suggested by SSU rDNA phylogeny. Science 268:1492–1495CrossRefPubMedGoogle Scholar
  38. Garrido-Benavent I, Pérez-Ortega S, de los Ríos A (2017) From Alaska to Antarctica: Species boundaries and genetic diversity of Prasiola (Trebouxiophyceae), a foliose chlorophyte associated with the bipolar lichen-forming fungus Mastodia tessellata. Mol Phylogenet Evol 107:117–131CrossRefPubMedGoogle Scholar
  39. Grande D et al (2012) Vertical and horizontal photobiont transmission within populations of a lichen symbiosis. Mol Ecol 21:3159–3172CrossRefGoogle Scholar
  40. Hale ME (1990) A synopsis of the lichen genus Xanthoparmelia (Vainio) Hale (Ascomycotina, Parmeliaceae). Smithsonian Contributions to Botany (USA) 40:360Google Scholar
  41. Hawksworth D (1988a) Coevolution of fungi with algae and cyanobacteria in lichen symbioses. Coevolution of Fungi with Plants and Animals (edited by KA Pirozynski and DL Hawksworth). Mycologia 81:490–494Google Scholar
  42. Hawksworth D (1988b) The variety of fungal-algal symbioses, their evolutionary significance, and the nature of lichens. Bot J Linn Soc 96:3–20CrossRefGoogle Scholar
  43. Henskens FL, Green TA, Wilkins A (2012) Cyanolichens can have both cyanobacteria and green algae in a common layer as major contributors to photosynthesis. Ann Bot 110:555–563CrossRefPubMedPubMedCentralGoogle Scholar
  44. Hill DJ (2009) Asymmetric co-evolution in the lichen symbiosis caused by a limited capacity for adaptation in the photobiont. Bot Rev 75:326–338CrossRefGoogle Scholar
  45. Honegger R (1991) Functional aspects of the lichen symbiosis. Annu Rev Plant Biol 42:553–578CrossRefGoogle Scholar
  46. Honegger R (2001) The symbiotic phenotype of lichen-forming ascomycete Fungal associations. Springer, Berlin, pp 165–188Google Scholar
  47. Honegger R (2009) Lichen-forming fungi and their photobionts. In: Plant relationships. Springer, Berlin/Heidelberg, pp 307–333Google Scholar
  48. James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, Cox CJ et al (2006) Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443:818–822CrossRefGoogle Scholar
  49. Jørgensen PM (1996) On the nomenclature of lichen phototypes. Taxon 45:663–664CrossRefGoogle Scholar
  50. Kirk P, Cannon P, Minter D, Stalpers J (2008) Dictionary of the Fungi, 10th edn. CABI, WallingfordGoogle Scholar
  51. Kosugi M, Shizuma R, Moriyama Y, Koike H, Fukunaga Y, Takeuchi A et al (2014) Ideal osmotic spaces for chlorobionts or cyanobionts are differentially realized by lichenized fungi. Plant Physiol 166:337–348CrossRefPubMedPubMedCentralGoogle Scholar
  52. Kroken S, Taylor JW (2000) Phylogenetic species, reproductive mode, and specificity of the green alga Trebouxia forming lichens with the fungal genus Letharia. Bryologist 103:645–660CrossRefGoogle Scholar
  53. Leavitt SD, Kraichak E, Nelsen MP, Altermann S, Divakar PK, Alors D, Esslinger TL, Crespo A, Lumbsch T (2015) Fungal specificity and selectivity for algae play a major role in determining lichen partnerships across diverse ecogeographic regions in the lichen-forming family Parmeliaceae (Ascomycota). Mol Ecol 24:3779–3797CrossRefPubMedGoogle Scholar
  54. Leliaert F, Verbruggen H, Vanormelingen P, Steen F, López-Bautista JM, Zuccarello GC, De Clerck O (2014) DNA-based species delimitation in algae. Eur J Phycol 49:179–196CrossRefGoogle Scholar
  55. Lewis LA, Wilcox LW, Fuerst PA, Floyd GL (1992) Concordance of molecular and ultrastructural data in the study of zoosporic chlorococcalean green algae. J Phycol 28:375–380CrossRefGoogle Scholar
  56. Lücking R (1998) ‘Plasticolous’ lichens in a tropical rain forest at La Selva Biological Station, Costa Pica. Lichenologist 30:287–290CrossRefGoogle Scholar
  57. Lücking R, Lawrey JD, Sikaroodi M, Gillevet PM, Chaves JL, Sipman HJ, Bungartz F (2009) Do lichens domesticate photobionts like farmers domesticate crops? Evidence from a previously unrecognized lineage of filamentous cyanobacteria. Am J Bot 96:1409–1418CrossRefPubMedGoogle Scholar
  58. Lumbsch H, Huhndorf S (2010) Myconet Volume 14. Part one. Outline of Ascomycota 2009. Part Two. Notes on Ascomycete Systematics. Nos. 4751–5113. Fieldiana Life and Earth Sciences 1: 1–64CrossRefGoogle Scholar
  59. Lutzoni F, Vilgalys R (1995) Omphalina (Basidiomycota, Agaricales) as a model system for the study of coevolution in lichens. Cryptogam Bot 5:71–81Google Scholar
  60. Lutzoni F, Kauff F, Cox CJ, McLaughlin D, Celio G, Dentinger B et al (2004) Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. Am J Bot 91:1446–1480CrossRefPubMedGoogle Scholar
  61. Melkonian M, Peveling E (1988) Zoospore ultrastructure in species of Trebouxia and Pseudotrebouxia (Chlorophyta). Plant Syst Evol 158:183–210CrossRefGoogle Scholar
  62. Miadlikowska J, Kauff F, Högnabba F, Oliver J, Molnár K, Fraker E et al (2014) Multigene phylogenetic synthesis for 1307 fungi representing 1139 infrageneric taxa, 312 genera and 66 families of the class Lecanoromycetes (Ascomycota). Mol Phylogenet Evol 79:132–168CrossRefPubMedGoogle Scholar
  63. Moore D, Robson GD, Trinci AP (2011) 21st century guidebook to fungi with CD. Cambridge University Press, New York, pp 1–15CrossRefGoogle Scholar
  64. Moya P, Škaloud P, Chiva S, García-Breijo FJ, Reig-Arminana J, Vančurová L, Barreno E (2015) Molecular phylogeny and ultrastructure of the lichen microalga Asterochloris mediterranea sp. nov. from Mediterranean and Canary Islands ecosystems. Int J Syst Evol Microbiol 65:1838–1854CrossRefPubMedGoogle Scholar
  65. Muggia L, Grube M, Tretiach M (2008) Genetic diversity and photobiont associations in selected taxa of the Tephromela atra group (Lecanorales, lichenised Ascomycota). Mycol Prog 7:147–160CrossRefGoogle Scholar
  66. Muggia L, Nelson P, Wheeler T, Yakovchenko LS, Tønsberg T, Spribille T (2011) Convergent evolution of a symbiotic duet: the case of the lichen genus Polychidium (Peltigerales, Ascomycota). Am J Bot 98:647–1656CrossRefGoogle Scholar
  67. Myllys L, Stenroos S, Thell A, Kuusinen M (2007) High cyanobiont selectivity of epiphytic lichens in old growth boreal forest of Finland. New Phytol 173:621–629CrossRefPubMedGoogle Scholar
  68. Nash III, T. H. (2008). Lichen sensitivity to air pollution. Lichen Biology 2, Cambridge University Press, New York, pp. 9–26Google Scholar
  69. Nayaka S (2014) Methods and techniques in collection, preservation and identification of lichens. Plant Taxonomy and Biosystematics-Classical and Modern Methods. New India Publishing Agency, New Delhi, pp 101–128Google Scholar
  70. Nelsen MP, Gargas A (2008) Dissociation and horizontal transmission of codispersing lichen symbionts in the genus Lepraria (Lecanorales: Stereocaulaceae). New Phytol 177:264–275PubMedGoogle Scholar
  71. Nelsen MP, Gargas A (2009) Symbiont flexibility in Thamnolia vermicularis (Pertusariales: Icmadophilaceae). Bryologist 112:404–417CrossRefGoogle Scholar
  72. Nelsen MP, Plata ER, Andrew CJ, Lücking R, Lumbsch HT (2011) Phylogenetic diversity of trentepohlialean algae associated with lichen-forming fungi. J Phycol 47:282–290CrossRefPubMedGoogle Scholar
  73. Nienburg W (1917) Über die Beziehungen zwischen den Algen und Hyphen im FlechtenthallusGoogle Scholar
  74. Nübel U, Garcia-Pichel F, Muyzer G (1997) PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl Environ Microbiol 63:3327–3332PubMedPubMedCentralGoogle Scholar
  75. Nyati S, Beck A, Honegger R (2007) Fine structure and phylogeny of green algal photobionts in the microfilamentous genus Psoroglaena (Verrucariaceae, lichen-forming ascomycetes). Plant Biol 9:390–399CrossRefPubMedGoogle Scholar
  76. Nyati S, Scherrer S, Werth S, Honegger R (2014) Green-algal photobiont diversity (Trebouxia spp.) in representatives of Teloschistaceae (Lecanoromycetes, lichen-forming ascomycetes). Lichenologist 46:189–212CrossRefGoogle Scholar
  77. O’Brien HE, Miadlikowska J, Lutzoni F (2005) Assessing host specialization in symbiotic cyanobacteria associated with four closely related species of the lichen fungus Peltigera. Eur J Phycol 40:363–378CrossRefGoogle Scholar
  78. Oksanen I, Lohtander K, Paulsrud P, Rikkinen J (2002) A molecular approach to cyanobacterial diversity in a rock-pool community involving gelatinous lichens and free-living Nostoc colonies. Paper presented at the Annales Botanici Fennici 39:93–99Google Scholar
  79. Park CH, Kim KM, Elvebakk A, Kim OS, Jeong G, Hong SG (2015) Algal and fungal diversity in Antarctic lichens. J Eukaryot Microbiol 62:196–205CrossRefPubMedGoogle Scholar
  80. Paul F, Otte J, Schmitt I, Dal Grande F (2018) Comparing Sanger sequencing and high-throughput metabarcoding for inferring photobiont diversity in lichens. Sci Rep 8:8624CrossRefPubMedPubMedCentralGoogle Scholar
  81. Peksa O, Skaloud P (2008) Changes in chloroplast structure in lichenized algae. Symbiosis(Rehovot) 46:153–160Google Scholar
  82. Peksa O, Škaloud P (2011) Do photobionts influence the ecology of lichens? A case study of environmental preferences in symbiotic green alga Asterochloris (Trebouxiophyceae). Mol Ecol 20:3936–3948CrossRefPubMedGoogle Scholar
  83. Piercey-Normore MD (2006) The lichen-forming ascomycete Evernia mesomorpha associates with multiple genotypes of Trebouxia jamesii. New Phytol 169:331–344CrossRefPubMedGoogle Scholar
  84. Piercey-Normore MD, DePriest PT (2001) Algal switching among lichen symbioses. Am J Bot 88:1490–1498CrossRefPubMedGoogle Scholar
  85. Plata ER, Lücking R, Lumbsch HT (2012) A new classification for the family Graphidaceae (Ascomycota: Lecanoromycetes: Ostropales). Fungal Divers 52:107–121CrossRefGoogle Scholar
  86. Printzen C (2010) Lichen systematics: the role of morphological and molecular data to reconstruct phylogenetic relationships Progress in Botany, Springer 71, pp 233–275Google Scholar
  87. Rai AN, Bergman B, Rasmussen U (2002) Cyanobacteria in symbiosis. Springer, DordrechtCrossRefGoogle Scholar
  88. Reinke J (1872) Ueber die anatomischen Verhältnisse einiger Arten von Gunnera L. Nachrichten von der Königl. Gesellschaft der Wissenschaften und der Georg-Augusts-Universität zu Göttingen 1872: 100–108Google Scholar
  89. Řídká T, Peksa O, Rai H, Upreti DK, Škaloud P (2014) Photobiont diversity in Indian Cladonia lichens, with special emphasis on the geographical patterns. In: Terricolous lichens in India, Springer pp., pp 53–71CrossRefGoogle Scholar
  90. Rikkinen J (2007) Relations between cyanobacterial symbionts in lichens and plants. Prokaryotic symbionts in plants, Springer, pp 265–270Google Scholar
  91. Rikkinen J (2013) Molecular studies on cyanobacterial diversity in lichen symbioses. MycoKeys 6:3–32CrossRefGoogle Scholar
  92. Rikkinen J, Oksanen I, Lohtander K (2002) Lichen guilds share related cyanobacterial symbionts. Science 297:357–357CrossRefPubMedGoogle Scholar
  93. Sadowska-Deś AD, Dal Grande F, Lumbsch HT, Beck A, Otte J, Hur J-S et al (2014) Integrating coalescent and phylogenetic approaches to delimit species in the lichen photobiont Trebouxia. Mol Phylogenet Evol 76:202–210CrossRefPubMedGoogle Scholar
  94. Sánchez FJ, Meeßen J, del Carmen Ruiz M, Leopoldo G, Ott S, Vílchez C et al (2014) UV-C tolerance of symbiotic Trebouxia sp. in the space-tested lichen species Rhizocarpon geographicum and Circinaria gyrosa: role of the hydration state and cortex/screening substances. Int J Astrobiol 13:1–18CrossRefGoogle Scholar
  95. Sanders WB, Pérez-Ortega S, Nelsen MP, Lücking R, de los Ríos A (2016) Heveochlorella (Trebouxiophyceae): a little-known genus of unicellular green algae outside the Trebouxiales emerges unexpectedly as a major clade of lichen photobionts in foliicolous communities. J Phycol 52:840–853CrossRefPubMedGoogle Scholar
  96. Sassaki GL, Gorin PA, Reis RA, Serrato RV, Elífio SL, Iacomini M (2005) Carbohydrate, glycolipid, and lipid components from the photobiont (Scytonema sp.) of the lichen, Dictyomema glabratum. Carbohydr Res 340:1808–1817CrossRefPubMedGoogle Scholar
  97. Schoch CL, Sung G-H, López-Giráldez F, Townsend JP, Miadlikowska J, Hofstetter V et al (2009a) The Ascomycota tree of life: a phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. Syst Biol 58:224–239CrossRefPubMedGoogle Scholar
  98. Schoch CL, Wang Z, Townsend J, Spatafora J (2009b) Geoglossomycetes cl. Nov., Geoglossales Ord. Nov. and taxa above class rank in the Ascomycota tree of life. Persoonia 22:129–138CrossRefPubMedPubMedCentralGoogle Scholar
  99. Schwendener S (1867) Über die wahre Natur der Flechtengonidien. Verh schweiz naturforsch Ges, pp 9–11Google Scholar
  100. Singh RS, Walia AK (2014) Characteristics of lichen lectins and their role in symbiosis. Symbiosis 62:123–134CrossRefGoogle Scholar
  101. Singh G, Dal Grande F, Divakar PK, Otte J, Crespo A, Schmitt I (2017) Fungal–algal association patterns in lichen symbiosis linked to macroclimate. New Phytol 214:317–329CrossRefPubMedGoogle Scholar
  102. Skaloud P, Peksa O (2010) Evolutionary inferences based on ITS rDNA and actin sequences reveal extensive diversity of the common lichen alga Asterochloris (Trebouxiophyceae, Chlorophyta). Mol Phylogenet Evol 54:36–46CrossRefPubMedGoogle Scholar
  103. Spatafora JW, Sung G-H, Johnson D, Hesse C, O’Rourke B, Serdani M et al (2006) A five-gene phylogeny of Pezizomycotina. Mycologia 98:1018–1028CrossRefPubMedGoogle Scholar
  104. Spribille T, Tuovinen V, Resl P, Vanderpool D, Wolinski H, Aime MC et al (2016) Basidiomycete yeasts in the cortex of ascomycete macrolichens. Science 353:488–492CrossRefPubMedPubMedCentralGoogle Scholar
  105. Stenroos S, Hyvönen J, Myllys L, Thell A, Ahti T (2002) Phylogeny of the genus Cladonia s. lat. (Cladoniaceae, Ascomycetes) inferred from molecular, morphological, and chemical data. Cladistics 18:237–278CrossRefGoogle Scholar
  106. Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbett DS, Fisher MC (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol 3:21–32CrossRefGoogle Scholar
  107. Thompson JN (2005) The geographic mosaic of coevolution. University of Chicago Press, pp 3–34Google Scholar
  108. Thüs H, Muggia L, Pérez-Ortega S, Favero-Longo SE, Joneson S, O’Brien H et al (2011) Revisiting photobiont diversity in the lichen family Verrucariaceae (Ascomycota). Eur J Phycol 46:399–415CrossRefGoogle Scholar
  109. Tretiach M, Brown D (1995) Morphological and physiological differences between epilithic and epiphytic populations of the lichen Parmelia pastillifera. Ann Bot 75:627–632CrossRefGoogle Scholar
  110. Tschermak-Woess E (1988) New and known taxa of Chlorella (Chlorophyceae): Occurrence as lichen phycobionts and observations on living dictyosomes. Plant Syst Evol 159:123–139CrossRefGoogle Scholar
  111. Tunjić M, Korač P (2013) Vertical and horizontal gene transfer in lichens. Periodicum Biologiorum 115:321–329Google Scholar
  112. Vančurová L, Muggia L, Peksa O, Řídká T, Škaloud P (2018) The complexity of symbiotic interactions influences the ecological amplitude of the host: a case study in Stereocaulon (lichenized Ascomycota). Mol Ecol 27:3016–3033CrossRefPubMedGoogle Scholar
  113. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications 18: 315–322Google Scholar
  114. Williams L, Colesie C, Ullmann A, Westberg M, Wedin M, Büdel B (2017) Lichen acclimation to changing environments: Photobiont switching vs. climate-specific uniqueness in Psora decipiens. Ecol Evol 7:2560–2574CrossRefPubMedPubMedCentralGoogle Scholar
  115. Will-Wolf S, Esseen P-A, Neitlich P (2002) Monitoring biodiversity and ecosystem function: forests Monitoring with lichens—Monitoring lichens. Springer, Dordrecht, pp 203–222CrossRefGoogle Scholar
  116. Wornik S, Grube M (2010) Joint dispersal does not imply maintenance of partnerships in lichen symbioses. Microb Ecol 59:150–157CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Khem Chand Saini
    • 1
  • Sanjeeva Nayaka
    • 2
  • Felix Bast
    • 3
  1. 1.Centre for BiosciencesCentral University of PunjabBathindaIndia
  2. 2.Lichenology Laboratory, CSIR – National Botanical Research InstituteLucknowIndia
  3. 3.Department of Plant SciencesCentral University of PunjabBathindaIndia

Personalised recommendations