Glaucoma pp 107-114 | Cite as

What’s New in Alternative Therapies for Glaucoma

  • Alicia Menezes
  • M. Reza Razeghinejad
Part of the Current Practices in Ophthalmology book series (CUPROP)


The interest in complementary and alternative treatment modalities for glaucoma has essentially been driven by the subset of patients who continue to progress despite rigorous IOP control. As a result, considerable attention has been directed towards the effects of blood flow, neuroprotection and oxidative stress on glaucoma progression. This chapter reviews what is new in the literature regarding complementary and alternative glaucoma treatments.


Antioxidants Alternative therapy Complementary therapy Flavonoids Neuroprotection 


  1. 1.
    Wan MJ, Daniel S, Kassam F, et al. Survey of complementary and alternative medicine use in glaucoma patients. J Glaucoma. 2012;21(2):79–82.PubMedGoogle Scholar
  2. 2.
    Marcocci L, Maguire JJ, Droy-Lefaix MT, Packer L. The nitric oxide-scavenging properties of Ginkgo biloba extract EGb 761. Biochem Biophys Res Commun. 1994;201(2):748–55.PubMedGoogle Scholar
  3. 3.
    Chung HS, Harris A, Kristinsson JK, Ciulla TA, Kagemann C, Ritch R. Ginkgo biloba extract increases ocular blood flow velocity. J Ocul Pharmacol Ther. 1999;15(3):233–40.PubMedGoogle Scholar
  4. 4.
    Hirooka K, Tokuda M, Miyamoto O, Itano T, Baba T, Shiraga F. The Ginkgo biloba extract (EGb 761) provides a neuroprotective effect on retinal ganglion cells in a rat model of chronic glaucoma. Curr Eye Res. 2004;28(3):153–7.PubMedGoogle Scholar
  5. 5.
    Eckert A, Keil U, Kressmann S, et al. Effects of EGb 761 Ginkgo biloba extract on mitochondrial function and oxidative stress. Pharmacopsychiatry. 2003;36(Suppl 1):S15–23.PubMedGoogle Scholar
  6. 6.
    Park JW, Kwon HJ, Chung WS, Kim CY, Seong GJ. Short-term effects of Ginkgo biloba extract on peripapillary retinal blood flow in normal tension glaucoma. Korean J Ophthalmol. 2011;25(5):323–8.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Lee J, Sohn SW, Kee C. Effect of Ginkgo biloba extract on visual field progression in normal tension glaucoma. J Glaucoma. 2013;22(9):780–4.PubMedGoogle Scholar
  8. 8.
    Quaranta L, Bettelli S, Uva MG, Semeraro F, Turano R, Gandolfo E. Effect of Ginkgo biloba extract on preexisting visual field damage in normal tension glaucoma. Ophthalmology. 2003;110(2):359–62; discussion 362–54.PubMedGoogle Scholar
  9. 9.
    Guo X, Kong X, Huang R, et al. Effect of Ginkgo biloba on visual field and contrast sensitivity in Chinese patients with normal tension glaucoma: a randomized, crossover clinical trial. Invest Ophthalmol Vis Sci. 2014;55(1):110–6.PubMedGoogle Scholar
  10. 10.
    Rhee DJ, Katz LJ, Spaeth GL, Myers JS. Complementary and alternative medicine for glaucoma. Surv Ophthalmol. 2001;46(1):43–55.PubMedGoogle Scholar
  11. 11.
    Rosenblatt M, Mindel J. Spontaneous hyphema associated with ingestion of Ginkgo biloba extract. N Engl J Med. 1997;336(15):1108.PubMedGoogle Scholar
  12. 12.
    Matthews MK Jr. Association of Ginkgo biloba with intracerebral hemorrhage. Neurology. 1998;50(6):1933–4.PubMedGoogle Scholar
  13. 13.
    Tan MS, Yu JT, Tan CC, et al. Efficacy and adverse effects of ginkgo biloba for cognitive impairment and dementia: a systematic review and meta-analysis. J Alzheimers Dis. 2015;43(2):589–603.PubMedGoogle Scholar
  14. 14.
    Mozaffarieh M, Grieshaber MC, Orgul S, Flammer J. The potential value of natural antioxidative treatment in glaucoma. Surv Ophthalmol. 2008;53(5):479–505.PubMedGoogle Scholar
  15. 15.
    Kang JH, Ivey KL, Boumenna T, Rosner B, Wiggs JL, Pasquale LR. Prospective study of flavonoid intake and risk of primary open-angle glaucoma. Acta Ophthalmol. 2018;96:e692.PubMedGoogle Scholar
  16. 16.
    Al Owaifeer AM, Al Taisan AA. The role of diet in glaucoma: a review of the current evidence. Ophthalmol Therapy. 2018;7:19.Google Scholar
  17. 17.
    Jiwani AZ, Rhee DJ, Brauner SC, et al. Effects of caffeinated coffee consumption on intraocular pressure, ocular perfusion pressure, and ocular pulse amplitude: a randomized controlled trial. Eye. 2012;26(8):1122–30.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Kang JH, Willett WC, Rosner BA, Hankinson SE, Pasquale LR. Caffeine consumption and the risk of primary open-angle glaucoma: a prospective cohort study. Invest Ophthalmol Vis Sci. 2008;49(5):1924–31.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Pasquale LR, Wiggs JL, Willett WC, Kang JH. The Relationship between caffeine and coffee consumption and exfoliation glaucoma or glaucoma suspect: a prospective study in two cohorts. Invest Ophthalmol Vis Sci. 2012;53(10):6427–33.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Terai N, Gedenk A, Spoerl E, Pillunat LE, Stodtmeister R. The short-term effect of flavonoid-rich dark chocolate on retinal vessel diameter in glaucoma patients and age-matched controls. Acta Ophthalmol. 2014;92(5):e341–5.PubMedGoogle Scholar
  21. 21.
    Kang JH, Pasquale LR, Willett W, et al. Antioxidant intake and primary open-angle glaucoma: a prospective study. Am J Epidemiol. 2003;158(4):337–46.PubMedGoogle Scholar
  22. 22.
    Ramdas WD, Schouten J, Webers CAB. The effect of vitamins on glaucoma: a systematic review and meta-analysis. Nutrients. 2018;10(3):E359.PubMedGoogle Scholar
  23. 23.
    Jung KI, Kim YC, Park CK. Dietary niacin and open-angle glaucoma: the Korean national health and nutrition examination survey. Nutrients. 2018;10(4):E387.PubMedGoogle Scholar
  24. 24.
    Fioravanti M, Yanagi M. Cytidinediphosphocholine (CDP-choline) for cognitive and behavioural disturbances associated with chronic cerebral disorders in the elderly. Cochrane Database Syst Rev. 2005;(2):CD000269.Google Scholar
  25. 25.
    Schuettauf F, Rejdak R, Thaler S, et al. Citicoline and lithium rescue retinal ganglion cells following partial optic nerve crush in the rat. Exp Eye Res. 2006;83(5):1128–34.PubMedGoogle Scholar
  26. 26.
    Parisi V, Manni G, Colacino G, Bucci MG. Cytidine-5′-diphosphocholine (citicoline) improves retinal and cortical responses in patients with glaucoma. Ophthalmology. 1999;106(6):1126–34.PubMedGoogle Scholar
  27. 27.
    Parisi V. Electrophysiological assessment of glaucomatous visual dysfunction during treatment with cytidine-5′-diphosphocholine (citicoline): a study of 8 years of follow-up. Documenta ophthalmologica. Adv Ophthalmol. 2005;110(1):91–102.Google Scholar
  28. 28.
    Parisi V, Coppola G, Centofanti M, et al. Evidence of the neuroprotective role of citicoline in glaucoma patients. Prog Brain Res. 2008;173:541–54.PubMedGoogle Scholar
  29. 29.
    Ottobelli L, Manni GL, Centofanti M, Iester M, Allevena F, Rossetti L. Citicoline oral solution in glaucoma: is there a role in slowing disease progression? Ophthalmologica. 2013;229(4):219–26.PubMedGoogle Scholar
  30. 30.
    Roberti G, Tanga L, Parisi V, Sampalmieri M, Centofanti M, Manni G. A preliminary study of the neuroprotective role of citicoline eye drops in glaucomatous optic neuropathy. Indian J Ophthalmol. 2014;62(5):549–53.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Novack GD. Cannabinoids for treatment of glaucoma. Curr Opin Ophthalmol. 2016;27(2):146–50.PubMedGoogle Scholar
  32. 32.
    Green K. Marijuana smoking vs cannabinoids for glaucoma therapy. Arch Ophthalmol. 1998;116(11):1433–7.PubMedGoogle Scholar
  33. 33.
    Gruber AJ, Pope HG, Hudson JI, Yurgelun-Todd D. Attributes of long-term heavy cannabis users: a case-control study. Psychol Med. 2003;33(8):1415–22.PubMedGoogle Scholar
  34. 34.
    Sun X, Xu CS, Chadha N, Chen A, Liu J. Marijuana for glaucoma: a recipe for disaster or treatment? Yale J Biol Med. 2015;88(3):265–9.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Cooler P, Gregg JM. Effect of delta-9-tetrahydrocannabinol on intraocular pressure in humans. South Med J. 1977;70(8):951–4.PubMedGoogle Scholar
  36. 36.
    Newell FW, Stark P, Jay WM, Schanzlin DJ. Nabilone: a pressure-reducing synthetic benzopyran in open-angle glaucoma. Ophthalmology. 1979;86(1):156–60.PubMedGoogle Scholar
  37. 37.
    Tiedeman JS, Shields MB, Weber PA, et al. Effect of synthetic cannabinoids on elevated intraocular pressure. Ophthalmology. 1981;88(3):270–7.PubMedGoogle Scholar
  38. 38.
    Jones RT, Benowitz NL, Herning RI. Clinical relevance of cannabis tolerance and dependence. J Clin Pharmacol. 1981;21(8–9 Suppl):143s–52s.PubMedGoogle Scholar
  39. 39.
    Flach AJ. Delta-9-tetrahydrocannabinol (THC) in the treatment of end-stage open-angle glaucoma. Trans Am Ophthalmol Soc. 2002;100:215–22; discussion 222–14.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Merritt JC, Perry DD, Russell DN, Jones BF. Topical delta 9-tetrahydrocannabinol and aqueous dynamics in glaucoma. J Clin Pharmacol. 1981;21(8-9 Suppl):467s–71s.PubMedGoogle Scholar
  41. 41.
    Chien FY, Wang RF, Mittag TW, Podos SM. Effect of WIN 55212-2, a cannabinoid receptor agonist, on aqueous humor dynamics in monkeys. Arch Ophthalmol. 2003;121(1):87–90.PubMedGoogle Scholar
  42. 42.
    Jampel H. American glaucoma society position statement: marijuana and the treatment of glaucoma. J Glaucoma. 2010;19(2):75–6.PubMedGoogle Scholar
  43. 43.
    Her JS, Liu PL, Cheng NC, et al. Intraocular pressure-lowering effect of auricular acupressure in patients with glaucoma: a prospective, single-blinded, randomized controlled trial. J Altern Complement Med. 2010;16(11):1177–84.PubMedGoogle Scholar
  44. 44.
    Law SK, Li T. Acupuncture for glaucoma. Cochrane Database Syst Rev. 2013;(5):CD006030.Google Scholar
  45. 45.
    Law SK, Lowe S, Law SM, Giaconi JA, Coleman AL, Caprioli J. Prospective evaluation of acupuncture as treatment for glaucoma. Am J Ophthalmol. 2015;160(2):256–65.PubMedGoogle Scholar
  46. 46.
    Kaluza G, Strempel I. Effects of self-relaxation methods and visual imagery on IOP in patients with open-angle glaucoma. Ophthalmologica. 1995;209(3):122–8.PubMedGoogle Scholar
  47. 47.
    Kaluza G, Strempel I, Maurer H. Stress reactivity of intraocular pressure after relaxation training in open-angle glaucoma patients. J Behav Med. 1996;19(6):587–98.PubMedGoogle Scholar
  48. 48.
    Zhu MM, Lai JSM, Choy BNK, et al. Physical exercise and glaucoma: a review on the roles of physical exercise on intraocular pressure control, ocular blood flow regulation, neuroprotection and glaucoma-related mental health. Acta Ophthalmol. 2018;96:e676.PubMedGoogle Scholar
  49. 49.
    Yang Y, Li Z, Wang N, et al. Intraocular pressure fluctuation in patients with primary open-angle glaucoma combined with high myopia. J Glaucoma. 2014;23(1):19–22.PubMedGoogle Scholar
  50. 50.
    Jasien JV, Jonas JB, de Moraes CG, Ritch R. Intraocular pressure rise in subjects with and without glaucoma during four common yoga positions. PLoS One. 2015;10(12):e0144505.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Bakke EF, Hisdal J, Semb SO. Intraocular pressure increases in parallel with systemic blood pressure during isometric exercise. Invest Ophthalmol Vis Sci. 2009;50(2):760–4.PubMedGoogle Scholar
  52. 52.
    Vieira GM, Oliveira HB, de Andrade DT, Bottaro M, Ritch R. Intraocular pressure variation during weight lifting. Arch Ophthalmol. 2006;124(9):1251–4.PubMedGoogle Scholar
  53. 53.
    Lasta M, Polak K, Luksch A, Garhofer G, Schmetterer L. Effect of NO synthase inhibition on retinal vessel reaction to isometric exercise in healthy humans. Acta Ophthalmol. 2012;90(4):362–8.PubMedGoogle Scholar
  54. 54.
    Morgan WH, Cunneen TS, Balaratnasingam C, Yu DY. Wearing swimming goggles can elevate intraocular pressure. Br J Ophthalmol. 2008;92(9):1218–21.PubMedGoogle Scholar
  55. 55.
    Paula AP, Paula JS, Silva MJ, Rocha EM, De Moraes CG, Rodrigues ML. Effects of swimming goggles wearing on intraocular pressure, ocular perfusion pressure, and ocular pulse amplitude. J Glaucoma. 2016;25(10):860–4.PubMedGoogle Scholar
  56. 56.
    Levin LA. Models of neural injury. J Glaucoma. 2001;10(5 Suppl 1):S19–21.PubMedGoogle Scholar
  57. 57.
    Morimoto T, Miyoshi T, Matsuda S, Tano Y, Fujikado T, Fukuda Y. Transcorneal electrical stimulation rescues axotomized retinal ganglion cells by activating endogenous retinal IGF-1 system. Invest Ophthalmol Vis Sci. 2005;46(6):2147–55.PubMedGoogle Scholar
  58. 58.
    Al-Majed AA, Brushart TM, Gordon T. Electrical stimulation accelerates and increases expression of BDNF and trkB mRNA in regenerating rat femoral motoneurons. Eur J Neurosci. 2000;12(12):4381–90.PubMedGoogle Scholar
  59. 59.
    Fujikado T, Morimoto T, Matsushita K, Shimojo H, Okawa Y, Tano Y. Effect of transcorneal electrical stimulation in patients with nonarteritic ischemic optic neuropathy or traumatic optic neuropathy. Jpn J Ophthalmol. 2006;50(3):266–73.PubMedGoogle Scholar
  60. 60.
    Inomata K, Shinoda K, Ohde H, et al. Transcorneal electrical stimulation of retina to treat longstanding retinal artery occlusion. Graefes Arch Clin Exp Ophthalmol. 2007;245(12):1773–80.PubMedGoogle Scholar
  61. 61.
    Schatz A, Pach J, Gosheva M, et al. Transcorneal electrical stimulation for patients with retinitis pigmentosa: a prospective, randomized, sham-controlled follow-up study over 1 year. Invest Ophthalmol Vis Sci. 2017;58(1):257–69.PubMedGoogle Scholar
  62. 62.
    Ota Y, Ozeki N, Yuki K, et al. The efficacy of transcorneal electrical stimulation for the treatment of primary open-angle glaucoma: a pilot study. Keio J Med. 2018;67:45.PubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Alicia Menezes
    • 1
  • M. Reza Razeghinejad
    • 1
  1. 1.Glaucoma ServiceWills Eye HospitalPhiladelphiaUSA

Personalised recommendations