Multifield Coupling

  • Chang Q SunEmail author
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 121)


Transiting the NaX/H2O solutions from liquid into ice VI (at PC1) and then into ice VII (PC2) phase at 298 K needs excessive pressures with respect to the same sequence of phase transition for pure water. PC1 and PC2 vary simultaneously with the solute type in the Hofmeister series order: I > Br > Cl > F ~ 0. However, the PC1 grows faster than the PC2 with the increase of NaI/H2O concentration, following the (P, T) path upwardly along the Liquid-VI phase boundary. The PC1 and PC2 meet then at the Liquid-VI-VII triple-phase junction at 3.3 GPa and 350 K. Observations confirmed that compression recovers the electrification-elongated O:H–O bond first and then proceeds the phase transitions, which requires excessive energy for the same sequence of phase transitions. Heating enhances the effect of salting on bond relaxation but opposite on polarization that dictates the surface stress of the solution. It is also confirmed that molecular undercoordination disperses the quasisolid phase boundaries and the room-temperature ice-quasisolid phase transition needs excessive pressure. Polarization by salt solvation and skin undercoordination and boundary reflection transit the phonon abundance-lifetime-stiffness cooperatively. An extension of the HB and anti-HB or super-HB clarifies the energetic storage and structural stability for the spontenous and constrained explosion of energetic carriers.


  1. 1.
    L.M. Levering, M.R. Sierra-Hernández, H.C. Allen, Observation of hydronium ions at the air–aqueous acid interface: vibrational spectroscopic studies of aqueous HCl, HBr, and HI. J. Phys. Chem. C 111(25), 8814–8826 (2007)CrossRefGoogle Scholar
  2. 2.
    L.M. Pegram, M.T. Record, Hofmeister salt effects on surface tension arise from partitioning of anions and cations between bulk water and the air-water interface. J. Phys. Chem. B 111(19), 5411–5417 (2007)PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    R.K. Ameta, M. Singh, Surface tension, viscosity, apparent molal volume, activation viscous flow energy and entropic changes of water + alkali metal phosphates at T = (298.15, 303.15, 308.15) K. J. Mol. Liq. 203: 29–38 (2015)CrossRefGoogle Scholar
  4. 4.
    P. Lo Nostro, B.W. Ninham, Hofmeister phenomena: an update on ion specificity in biology. Chem. Rev, 112(4): 2286–322 (2012)CrossRefGoogle Scholar
  5. 5.
    C.M. Johnson, S. Baldelli, Vibrational sum frequency spectroscopy studies of the influence of solutes and phospholipids at vapor/water interfaces relevant to biological and environmental systems. Chem. Rev. 114(17), 8416–8446 (2014)CrossRefGoogle Scholar
  6. 6.
    X.P. Li, K. Huang, J.Y. Lin, Y.Z. Xu, H.Z. Liu, Hofmeister ion series and its mechanism of action on affecting the behavior of macromolecular solutes in aqueous solution. Prog. Chem. 26(8), 1285–1291 (2014)Google Scholar
  7. 7.
    E.K. Wilson, Hofmeister Still Mystifies. C&EN Arch. 90(29), 42–43 (2012)CrossRefGoogle Scholar
  8. 8.
    Y.R. Xu, L. Li, P.J. Zheng, Y.C. Lam, X. Hu, Controllable gelation of methylcellulose by a salt mixture. Langmuir 20(15), 6134–6138 (2004)PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    M. van der Linden, B.O. Conchúir, E. Spigone, A. Niranjan, A. Zaccone, P. Cicuta, Microscopic origin of the Hofmeister effect in gelation kinetics of colloidal silica. J. Phys. Chem. Lett. 2881–2887 (2015)Google Scholar
  10. 10.
    F. Aliotta, M. Pochylski, R. Ponterio, F. Saija, G. Salvato, C. Vasi, Structure of bulk water from Raman measurements of supercooled pure liquid and LiCl solutions. Phys. Rev. B 86(13), 134301 (2012)CrossRefGoogle Scholar
  11. 11.
    W.-T. Zheng, C.Q. Sun, Underneath the fascinations of carbon nanotubes and graphene nanoribbons. Energy Environ. Sci. 4(3), 627–655 (2011)CrossRefGoogle Scholar
  12. 12.
    M. Benoit, D. Marx, M. Parrinello, Tunnelling and zero-point motion in high-pressure ice. Nature 392(6673), 258–261 (1998)CrossRefGoogle Scholar
  13. 13.
    D. Kang, J. Dai, Y. Hou, J. Yuan, Structure and vibrational spectra of small water clusters from first principles simulations. J. Chem. Phys. 133(1), 014302 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    C.Q. Sun, X. Zhang, W.T. Zheng, Hidden force opposing ice compression. Chem Sci 3, 1455–1460 (2012)CrossRefGoogle Scholar
  15. 15.
    S. Chen, Z. Xu, J. Li, The observation of oxygen-oxygen interactions in ice. New J. Phys. 18(2), 023052 (2016)CrossRefGoogle Scholar
  16. 16.
    Y. Huang, X. Zhang, Z. Ma, Y. Zhou, G. Zhou, C.Q. Sun, Hydrogen-bond asymmetric local potentials in compressed ice. J. Phys. Chem. B 117(43), 13639–13645 (2013)CrossRefGoogle Scholar
  17. 17.
    X. Zhang, S. Chen, J. Li, Hydrogen-bond potential for ice VIII-X phase transition. Sci Rep 6, 37161 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Y. Yoshimura, S.T. Stewart, M. Somayazulu, H. Mao, R.J. Hemley, High-pressure x-ray diffraction and Raman spectroscopy of ice VIII. J. Chem. Phys. 124(2), 024502 (2006)PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    P. Pruzan, J.C. Chervin, E. Wolanin, B. Canny, M. Gauthier, M. Hanfland, Phase diagram of ice in the VII-VIII-X domain. Vibrational and structural data for strongly compressed ice VIII. J. Raman Spectrosc. 34(7–8): 591-610 (2003)CrossRefGoogle Scholar
  20. 20.
    M. Song, H. Yamawaki, H. Fujihisa, M. Sakashita, K. Aoki, Infrared absorption study of Fermi resonance and hydrogen-bond symmetrization of ice up to 141 GPa. Phys. Rev. B 60(18), 12644 (1999)CrossRefGoogle Scholar
  21. 21.
    Y. Yoshimura, S.T. Stewart, M. Somayazulu, H.K. Mao, R.J. Hemley, Convergent Raman features in high density amorphous ice, ice VII, and Ice VIII under Pressure. J. Phys. Chem. B 115(14), 3756–3760 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Y. Yoshimura, S.T. Stewart, H.K. Mao, R.J. Hemley, In situ Raman spectroscopy of low-temperature/high-pressure transformations of H2O. J. Chem. Phys. 126(17), 174505 (2007)PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    N. Mishchuk, V. Goncharuk, On the nature of physical properties of water. J. Water Chem. Technol. 39(3), 125–131 (2017)CrossRefGoogle Scholar
  24. 24.
    Y.L. Huang, X. Zhang, Z.S. Ma, Y.C. Zhou, W.T. Zheng, J. Zhou, C.Q. Sun, Hydrogen-bond relaxation dynamics: resolving mysteries of water ice. Coord. Chem. Rev. 285, 109–165 (2015)CrossRefGoogle Scholar
  25. 25.
    Q. Zeng, T. Yan, K. Wang, Y. Gong, Y. Zhou, Y. Huang, C.Q. Sun, B. Zou, Compression icing of room-temperature NaX solutions (X = F, Cl, Br, I). Phys. Chem. Chem. Phys. 18(20), 14046–14054 (2016)CrossRefGoogle Scholar
  26. 26.
    G.N. Ruiz, L.E. Bove, H.R. Corti, T. Loerting, Pressure-induced transformations in LiCl–H2O at 77 K. Phys. Chem. Chem. Phys. 16(34), 18553–18562 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    S. Klotz, L.E. Bove, T. Strässle, T.C. Hansen, A.M. Saitta, The preparation and structure of salty ice VII under pressure. Nat. Mater. 8(5), 405–409 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    L.E. Bove, R. Gaal, Z. Raza, A.A. Ludl, S. Klotz, A.M. Saitta, A.F. Goncharov, P. Gillet, Effect of salt on the H-bond symmetrization in ice. Proc Natl Acad Sci U S A 112(27), 8216–8220 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Y. Bronstein, P. Depondt, L.E. Bove, R. Gaal, A.M. Saitta, F. Finocchi, Quantum versus classical protons in pure and salty ice under pressure. Phy. Rev. B 93(2), 024104 (2016)CrossRefGoogle Scholar
  30. 30.
    Y. Xu, C. Wang, K.C. Tam, L. Li, Salt-assisted and salt-suppressed sol-gel transitions of methylcellulose in water. Langmuir 20(3), 646–652 (2004)PubMedCrossRefGoogle Scholar
  31. 31.
    X. Zhang, T. Yan, Y. Huang, Z. Ma, X. Liu, B. Zou, C.Q. Sun, Mediating relaxation and polarization of hydrogen-bonds in water by NaCl salting and heating. Phys. Chem. Chem. Phys. 16(45), 24666–24671 (2014)CrossRefGoogle Scholar
  32. 32.
    Q. Zeng, C. Yao, K. Wang, C.Q. Sun, B. Zou, Room-Temperature NaI/H2O Compression Icing: solute–solute interactions. PCCP 19, 26645–26650 (2017)CrossRefGoogle Scholar
  33. 33.
    C.Q. Sun, J. Chen, Y. Gong, X. Zhang, Y. Huang, (H, Li)Br and LiOH solvation bonding dynamics: molecular nonbond interactions and solute extraordinary capabilities. J. Phys. Chem. B 122(3), 1228–1238 (2018)CrossRefGoogle Scholar
  34. 34.
    X. Zhang, P. Sun, Y. Huang, T. Yan, Z. Ma, X. Liu, B. Zou, J. Zhou, W. Zheng, C.Q. Sun, Water’s phase diagram: from the notion of thermodynamics to hydrogen-bond cooperativity. Prog. Solid State Chem. 43, 71–81 (2015)CrossRefGoogle Scholar
  35. 35.
    A.F. Goncharov, V.V. Struzhkin, M.S. Somayazulu, R.J. Hemley, H.K. Mao, Compression of Ice to 210 Gigapascals: Infrared Evidence for a Symmetric Hydrogen-Bonded Phase. Science 273(5272), 218–220 (1996)PubMedCrossRefGoogle Scholar
  36. 36.
    A.F. Goncharov, V.V. Struzhkin, H.-K. Mao, R.J. Hemley, Raman spectroscopy of dense H2O and the transition to symmetric hydrogen bonds. Phys. Rev. Lett. 83(10), 1998 (1999)CrossRefGoogle Scholar
  37. 37.
    J. Niehaus, W. Cantrell, Contact Freezing of Water by Salts. J. Phys. Chem. Lett. 6(17), 3490–3495 (2015)PubMedCrossRefGoogle Scholar
  38. 38.
    N.R. Gokhale, J.D. Spengler, Freezing of freely suspended, supercooled water drops by contact nucleation. J. Appl. Meteorol. 11(1), 157–160 (1972)CrossRefGoogle Scholar
  39. 39.
    W.A. Cooper, A possible mechanism for contact nucleation. J. Atmos. Sci. 31(7), 1832–1837 (1974)CrossRefGoogle Scholar
  40. 40.
    N. Fukuta, A study of the mechanism of contact ice nucleation. J. Atmos. Sci. 32(8), 1597–1603 (1975)CrossRefGoogle Scholar
  41. 41.
    C. Gurganus, A.B. Kostinski, R.A. Shaw, Fast imaging of freezing drops: no preference for nucleation at the contact line. The J. Phys. Chem. Letters 2(12), 1449–1454 (2011)CrossRefGoogle Scholar
  42. 42.
    R.A. Shaw, A.J. Durant, Y. Mi, Heterogeneous surface crystallization observed in undercooled water. J. Phys. Chem. B 109(20), 9865–9868 (2005)PubMedCrossRefGoogle Scholar
  43. 43.
    R.G. Knollenberg, A laboratory study of the local cooling resulting from the dissolution of soluble ice nuclei having endothermic heats of solution. J. Atmos. Sci. 26(1), 115–124 (1969)CrossRefGoogle Scholar
  44. 44.
    X. Zhang, Y. Huang, Z. Ma, Y. Zhou, W. Zheng, J. Zhou, C.Q. Sun, A common supersolid skin covering both water and ice. Phys. Chem. Chem. Phys. 16(42), 22987–22994 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    T.F. Kahan, J.P. Reid, D.J. Donaldson, Spectroscopic probes of the quasi-liquid layer on ice. J. Phys. Chem. A 111(43), 11006–11012 (2007)CrossRefGoogle Scholar
  46. 46.
    Q. Sun, Raman spectroscopic study of the effects of dissolved NaCl on water structure. Vib. Spectrosc. 62, 110–114 (2012)CrossRefGoogle Scholar
  47. 47.
    M. Baumgartner, R.J. Bakker, Raman spectroscopy of pure H2O and NaCl-H2O containing synthetic fluid inclusions in quartz—a study of polarization effects. Mineral. Petrol. 95(1–2), 1–15 (2008)Google Scholar
  48. 48.
    Y. Zhou, Y. Zhong, Y. Gong, X. Zhang, Z. Ma, Y. Huang, C.Q. Sun, Unprecedented thermal stability of water supersolid skin. J. Mol. Liq. 220, 865–869 (2016)CrossRefGoogle Scholar
  49. 49.
    C.Q. Sun, X. Zhang, X. Fu, W. Zheng, J.-L. Kuo, Y. Zhou, Z. Shen, J. Zhou, Density and phonon-stiffness anomalies of water and ice in the full temperature range. J. Phys. Chem. Letters 4, 3238–3244 (2013)CrossRefGoogle Scholar
  50. 50.
    C.Q. Sun, Y. Sun, The attribute of water: single notion, multiple myths. Springer Ser. Chem. Phys. 113, 494 pp (2016)Google Scholar
  51. 51.
    C.Q. Sun, X. Zhang, J. Zhou, Y. Huang, Y. Zhou, W. Zheng, Density, elasticity, and stability anomalies of water molecules with fewer than four neighbors. J. Phys. Chem. Letters 4, 2565–2570 (2013)CrossRefGoogle Scholar
  52. 52.
    J. Chen, K. Nagashima, K.-I. Murata, G. Sazaki, Quasi-liquid layers can exist on polycrystalline ice thin films at a temperature significantly lower than on ice single crystals. Cryst. Growth Des. 19, 116–124 (2018)CrossRefGoogle Scholar
  53. 53.
    D.M. Murphy, T. Koop, Review of the vapour pressures of ice and supercooled water for atmospheric applications. Q. J. Royal Meteorol. Soc.: J. Atmos. Sci. Appl. Meteorol. Phys. Oceanogr. 131(608), 1539–1565 (2005)CrossRefGoogle Scholar
  54. 54.
    D. Sonntag, Import new values of the physical constants of 1986, vapour pressure formulations based on the ITS-90, and psychrometer formulae. Z. Meterol. 70, 340 (1990)Google Scholar
  55. 55.
    X. Zhang, Y. Huang, P. Sun, X. Liu, Z. Ma, Y. Zhou, J. Zhou, W. Zheng, C.Q. Sun, Ice regelation: hydrogen-bond extraordinary recoverability and water quasisolid-phase-boundary dispersivity. Sci Rep 5, 13655 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    C.Q. Sun, Perspective: Supersolidity of Undercoordinated and Hydrating Water. Phys. Chem. Chem. Phys. 20, 30104–30119 (2018)PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    C.Q. Sun, Aqueous charge injection: solvation bonding dynamics, molecular nonbond interactions, and extraordinary solute capabilities. Int. Rev. Phys. Chem. 37(3–4), 363–558 (2018)CrossRefGoogle Scholar
  58. 58.
    K. Sotthewes, P. Bampoulis, H.J. Zandvliet, D. Lohse, B. Poelsema, Pressure induced melting of confined ice. ACS Nano 11(12), 12723–12731 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    X. Zhang, P. Sun, Y. Huang, Z. Ma, X. Liu, J. Zhou, W. Zheng, C.Q. Sun, Water nanodroplet thermodynamics: quasi-solid phase-boundary dispersivity. J. Phys. Chem. B 119(16), 5265–5269 (2015)CrossRefGoogle Scholar
  60. 60.
    K.V. Agrawal, S. Shimizu, L.W. Drahushuk, D. Kilcoyne, M.S. Strano, Observation of extreme phase transition temperatures of water confined inside isolated carbon nanotubes. Nat. Nanotechnol. 12(3), 267 (2017)PubMedCrossRefGoogle Scholar
  61. 61.
    H. Qiu, W. Guo, Electromelting of confined monolayer ice. Phys. Rev. Lett. 110(19), 195701 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    M. Erko, D. Wallacher, A. Hoell, T. Hauss, I. Zizak, O. Paris, Density minimum of confined water at low temperatures: a combined study by small-angle scattering of X-rays and neutrons. PCCP 14(11), 3852–3858 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    F. Mallamace, C. Branca, M. Broccio, C. Corsaro, C.Y. Mou, S.H. Chen, The anomalous behavior of the density of water in the range 30 K < T < 373 K. Proc. Natl. Acad. Sci. U.S.A. 104(47), 18387–18391 (2007)PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    F.G. Alabarse, J. Haines, O. Cambon, C. Levelut, D. Bourgogne, A. Haidoux, D. Granier, B. Coasne, Freezing of water confined at the nanoscale. Phys. Rev. Lett. 109(3), 035701 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    R. Moro, R. Rabinovitch, C. Xia, V.V. Kresin, Electric dipole moments of water clusters from a beam deflection measurement. Phys. Rev. Lett. 97(12), 123401 (2006)PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    A. Späh, H. Pathak, K.H. Kim, F. Perakis, D. Mariedahl, K. Amann-Winkel, J.A. Sellberg, J.H. Lee, S. Kim, J. Park, K.H. Nam, T. Katayama, A. Nilsson, Apparent power-law behavior of water’s isothermal compressibility and correlation length upon supercooling. Phys. Chem. Chem. Phys. 21, 26–31 (2019)CrossRefGoogle Scholar
  67. 67.
    J.A. Sellberg, C. Huang, T.A. McQueen, N.D. Loh, H. Laksmono, D. Schlesinger, R.G. Sierra, D. Nordlund, C.Y. Hampton, D. Starodub, D.P. DePonte, M. Beye, C. Chen, A.V. Martin, A. Barty, K.T. Wikfeldt, T.M. Weiss, C. Caronna, J. Feldkamp, L.B. Skinner, M.M. Seibert, M. Messerschmidt, G.J. Williams, S. Boutet, L.G. Pettersson, M.J. Bogan, A. Nilsson, Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature. Nature 510(7505), 381–384 (2014)CrossRefGoogle Scholar
  68. 68.
    C. Goy, M.A. Potenza, S. Dedera, M. Tomut, E. Guillerm, A. Kalinin, K.-O. Voss, A. Schottelius, N. Petridis, A. Prosvetov, Shrinking of rapidly evaporating water microdroplets reveals their extreme supercooling. Phys. Rev. Lett. 120(1), 015501 (2018)PubMedCrossRefGoogle Scholar
  69. 69.
    K. Ando, M. Arakawa, A. Terasaki, Freezing of micrometer-sized liquid droplets of pure water evaporatively cooled in a vacuum. Phys. Chem. Chem. Phys. 20(45), 28435–28444 (2018)PubMedCrossRefGoogle Scholar
  70. 70.
    S. Park, D.E. Moilanen, M.D. Fayer, Water dynamics: the effects of ions and nanoconfinement. J. Phys. Chem. B 112(17), 5279–5290 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    D.E. Moilanen, N.E. Levinger, D.B. Spry, M.D. Fayer, Confinement or the nature of the interface? Dynamics of nanoscopic water. J. Am. Chem. Soc. 129(46), 14311–14318 (2007)PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    M.D. Fayer, Dynamics of water interacting with interfaces, molecules, and ions. Acc. Chem. Res. 45(1), 3–14 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    A.A. Bakulin, D. Cringus, P.A. Pieniazek, J.L. Skinner, T.L. Jansen, M.S. Pshenichnikov, Dynamics of water confined in reversed micelles: multidimensional vibrational spectroscopy study. J. Phys. Chem. B 117(49), 15545–15558 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    P.A. Pieniazek, Y.-S. Lin, J. Chowdhary, B.M. Ladanyi, J. Skinner, Vibrational spectroscopy and dynamics of water confined inside reverse micelles. J. Phys. Chem. B 113(45), 15017–15028 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    L. Pauling, The Nature of the Chemical Bond. 3rd ed. (Cornell University press, Ithaca, NY, 1960)Google Scholar
  76. 76.
    C.Q. Sun, Relaxation of the chemical bond. Springer Ser. Chem. Phys. 108, 807 pp (2014)Google Scholar
  77. 77.
    Q. Zeng, J. Li, H. Huang, X. Wang, M. Yang, Polarization response of clathrate hydrates capsulated with guest molecules. J. Chem. Phys. 144(20), 204308 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    F. Yang, X. Wang, M. Yang, A. Krishtal, C. Van Alsenoy, P. Delarue, P. Senet, Effect of hydrogen bonds on polarizability of a water molecule in (H2O) N (N = 6, 10, 20) isomers. Phys. Chem. Chem. Phys. 12(32), 9239–9248 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    X. Zhang, Y. Xu, Y. Zhou, Y. Gong, Y. Huang, C.Q. Sun, HCl, KCl and KOH solvation resolved solute-solvent interactions and solution surface stress. Appl. Surf. Sci. 422, 475–481 (2017)CrossRefGoogle Scholar
  80. 80.
    X. Zhang, X. Liu, Y. Zhong, Z. Zhou, Y. Huang, C.Q. Sun, Nanobubble skin supersolidity. Langmuir 32(43), 11321–11327 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    X. Zhang, Y. Zhou, Y. Gong, Y. Huang, C. Sun, Resolving H(Cl, Br, I) capabilities of transforming solution hydrogen-bond and surface-stress. Chem. Phys. Lett. 678, 233–240 (2017)CrossRefGoogle Scholar
  82. 82.
    Y. Zhou, Y. Gong, Y. Huang, Z. Ma, X. Zhang, C.Q. Sun, Fraction and stiffness transition from the H–O vibrational mode of ordinary water to the HI NaI, and NaOH hydration states. J. Mol. Liq. 244, 415–421 (2017)CrossRefGoogle Scholar
  83. 83.
    C.Q. Sun, Size dependence of nanostructures: Impact of bond order deficiency. Prog. Solid State Chem. 35(1), 1–159 (2007)CrossRefGoogle Scholar
  84. 84.
    Y. Chen, H.I.I. Okur, C. Liang, S. Roke, Orientational ordering of water in extended hydration shells of cations is ion-specific and correlates directly with viscosity and hydration free energy. Phys. Chem. Chem. Phys. 19(36), 24678–24688 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    B. Wang, W. Jiang, Y. Gao, Z. Zhang, C. Sun, F. Liu, Z. Wang, Energetics competition in centrally four-coordinated water clusters and Raman spectroscopic signature for hydrogen bonding. RSC Adv. 7(19), 11680–11683 (2017)CrossRefGoogle Scholar
  86. 86.
    Y. Gong, Y. Zhou, C. Sun, Phonon spectrometrics of the hydrogen bond (O:H–O) segmental length and energy relaxation under excitation, B.o. intelligence, Editor. China (2018)Google Scholar
  87. 87.
    X.J. Liu, M.L. Bo, X. Zhang, L. Li, Y.G. Nie, H. TIan, Y. Sun, S. Xu, Y. Wang, W. Zheng, C.Q. Sun, Coordination-resolved electron spectrometrics. Chem. Rev. 115(14), 6746–6810 (2015)CrossRefGoogle Scholar
  88. 88.
    Y. Peng, Y. Yang, Y. Sun, Y. Huang, C.Q. Sun, Phonon abundance-stiffness-lifetime transition from the mode of heavy water to its confinement and hydration. J. Mol. Liq. 276, 688–693 (2019)CrossRefGoogle Scholar
  89. 89.
    E.E. Fenn, D.B. Wong, M. Fayer, Water dynamics at neutral and ionic interfaces. Proc. Natl. Acad. Sci. 106(36), 15243–15248 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    T.H. van der Loop, N. Ottosson, T. Vad, W.F. Sager, H.J. Bakker, S. Woutersen, Communication: slow proton-charge diffusion in nanoconfined water. J. Chem. Phys. 146(13), 131101 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    E.J. Hart, J. Boag, Absorption spectrum of the hydrated electron in water and in aqueous solutions. J. Am. Chem. Soc. 84(21), 4090–4095 (1962)CrossRefGoogle Scholar
  92. 92.
    W. Weyl, Ann. Phys. 197, 601 (1863)Google Scholar
  93. 93.
    L. Kevan, Solvated electron structure in glassy matrixes. Acc. Chem. Res. 14(5), 138–145 (1981)CrossRefGoogle Scholar
  94. 94.
    M. Boero, M. Parrinello, K. Terakura, T. Ikeshoji, C.C. Liew, First-principles molecular-dynamics simulations of a hydrated electron in normal and supercritical water. Phys. Rev. Lett. 90(22), 226403 (2003)PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    K.R. Siefermann, B. Abel, The hydrated electron: a seemingly familiar chemical and biological transient. Angew. Chem. Int. Ed. 50(23), 5264–5272 (2011)CrossRefGoogle Scholar
  96. 96.
    A. Bragg, J. Verlet, A. Kammrath, O. Cheshnovsky, D. Neumark, Hydrated electron dynamics: from clusters to bulk. Science 306(5696), 669–671 (2004)CrossRefGoogle Scholar
  97. 97.
    J. Verlet, A. Bragg, A. Kammrath, O. Cheshnovsky, D. Neumark, Observation of large water-cluster anions with surface-bound excess electrons. Science 307(5706), 93–96 (2005)CrossRefGoogle Scholar
  98. 98.
    J.M. Herbert, M.P. Coons, The hydrated electron. Annu. Rev. Phys. Chem. 68, 447–472 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    D. Sagar, C.D. Bain, J.R. Verlet, Hydrated electrons at the water/air interface. J. Am. Chem. Soc. 132(20), 6917–6919 (2010)CrossRefGoogle Scholar
  100. 100.
    J. Kim, I. Becker, O. Cheshnovsky, M.A. Johnson, Photoelectron spectroscopy of the ‘missing’ hydrated electron clusters (H2O) n, n = 3, 5, 8 and 9: isomers and continuity with the dominant clusters n = 6, 7 and ≥11. Chem. Phys. Lett. 297(1–2), 90–96 (1998)CrossRefGoogle Scholar
  101. 101.
    J.V. Coe, S.M. Williams, K.H. Bowen, Photoelectron spectra of hydrated electron clusters vs. cluster size: connecting to bulk. Int. Rev. Phys. Chem. 27(1), 27–51 (2008)CrossRefGoogle Scholar
  102. 102.
    A. Kammrath, G. Griffin, D. Neumark, J.R.R. Verlet, Photoelectron spectroscopy of large (water)[sub n][sup −] (n = 50–200) clusters at 4.7 eV. J. Chem. Phys. 125(7), 076101 (2006)Google Scholar
  103. 103.
    J. Ceponkus, P. Uvdal, B. Nelander, Intermolecular vibrations of different isotopologs of the water dimer: experiments and density functional theory calculations. J. Chem. Phys. 129(19), 194306 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    J. Ceponkus, P. Uvdal, B. Nelander, On the structure of the matrix isolated water trimer. J. Chem. Phys. 134(6), 064309 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    J. Ceponkus, P. Uvdal, B. Nelander, Water tetramer, pentamer, and hexamer in inert matrices. J. Phys. Chem. A 116(20), 4842–4850 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    V. Buch, S. Bauerecker, J.P. Devlin, U. Buck, J.K. Kazimirski, Solid water clusters in the size range of tens-thousands of H2O: a combined computational/spectroscopic outlook. Int. Rev. Phys. Chem. 23(3), 375–433 (2004)CrossRefGoogle Scholar
  107. 107.
    U. Bovensiepen, C. Gahl, J. Stahler, M. Bockstedte, M. Meyer, F. Baletto, S. Scandolo, X.-Y. Zhu, A. Rubio, M. Wolf, A dynamic landscape from femtoseconds to minutes for excess electrons at ice–metal interfaces. J. Phys. Chem. C 113(3), 979–988 (2008)CrossRefGoogle Scholar
  108. 108.
    K.R. Siefermann, Y. Liu, E. Lugovoy, O. Link, M. Faubel, U. Buck, B. Winter, B. Abel, Binding energies, lifetimes and implications of bulk and interface solvated electrons in water. Nat. Chem. 2(4), 274 (2010)PubMedCrossRefGoogle Scholar
  109. 109.
    S.T. van der Post, C.S. Hsieh, M. Okuno, Y. Nagata, H.J. Bakker, M. Bonn, J. Hunger, Strong frequency dependence of vibrational relaxation in bulk and surface water reveals sub-picosecond structural heterogeneity. Nat. Commun. 6, 8384 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    M.M.A. Science, Sodium in Water Explosion—Chemical Reaction (2016)Google Scholar
  111. 111.
    P.E. Mason, F. Uhlig, V. Vaněk, T. Buttersack, S. Bauerecker, P. Jungwirth, Coulomb explosion during the early stages of the reaction of alkali metals with water. Nat. Chem. 7, 250 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    M. Schiemann, J. Bergthorson, P. Fischer, V. Scherer, D. Taroata, G. Schmid, A review on lithium combustion. Appl. Energy 162, 948–965 (2016)CrossRefGoogle Scholar
  113. 113.
    P.E. Mason, Pouring Molten Salt into Water—Explosion! (2017)Google Scholar
  114. 114.
    J.D. Bernardin, I. Mudawar, A cavity activation and bubble growth model of the Leidenfrost point. J. Heat Transfer 124(5), 864–874 (2002)CrossRefGoogle Scholar
  115. 115.
    D. Duft, T. Achtzehn, R. Müller, B.A. Huber, T. Leisner, Coulomb fission: Rayleigh jets from levitated microdroplets. Nature 421(6919), 128 (2003)PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    L. Rayleigh, XX. On the equilibrium of liquid conducting masses charged with electricity. Lond. Edinb. Dublin Philos. Mag. J. Sci. 14(87), 184–186 (1882)Google Scholar
  117. 117.
    C. Zhang, F. Jiao, L. Hongzhen, Crystal engineering for creating low sensitivity and highly energetic materials. Cryst. Growth Des. 18, 5713–5726 (2018)CrossRefGoogle Scholar
  118. 118.
    L. Zhang, C. Yao, S.-L. Jiang, Y. Yu, C.Q. Sun, J. Chen, Stabilization of the dual-aromatic pentazole cyclo-N5 anion by acidic entrapment. J Phys Chem Lett 10, 2378–2385 (2019)Google Scholar
  119. 119.
    C. Jiang, L. Zhang, C. Sun, C. Zhang, C. Yang, J. Chen, B. Hu, Response to comment on “Synthesis and characterization of the pentazolate anion cyclo-N5—in (N5)6(H3O)3(NH4)4Cl”. Science 359, 8953–8955 (2018)CrossRefGoogle Scholar
  120. 120.
    C. Zhang, C. Sun, B. Hu, C. Yu, M. Lu, Synthesis and characterization of the pentazolate anion cyclo-N5 in (N5)6(H3O)3(NH4)4Cl. Science 355(6323), 374 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    C. Zhang, C. Yang, B. Hu, C. Yu, Z. Zheng, and C. Sun, A Symmetric Co(N5)2(H2O)4.4 H2O High-Nitrogen Compound Formed by Cobalt(II) Cation Trapping of a Cyclo-N5 Anion. Angew Chem. Int. Ed. 56(16), 4512 (2017)Google Scholar
  122. 122.
    Y. Xu, Q. Wang, C. Shen, Q. Lin, P. Wang, M. Lu, A series of energetic metal pentazolate hydrates. Nature 549(7670), 78 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    W. Zhang, K. Wang, J. Li, Z. Lin, S. Song, S. Huang, Y. Liu, F. Nie, Q. Zhang, Stabilization of the pentazolate anion in a zeolitic architecture with Na20N60 and Na24N60 nanocages. Angew. Chem. Int. Ed. 57(10), 2592 (2018)CrossRefGoogle Scholar
  124. 124.
    C. Sun, C. Zhang, C. Jiang, C. Yang, Y. Du, Y. Zhao, B. Hu, Z. Zheng, K.O. Christe, Synthesis of AgN5 and its extended 3D energetic framework. Nat. Commun. 9(1), 1269 (2018)PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Y. Xu, Q. Lin, P. Wang, M. Lu, Stabilization of the pentazolate anion in three anhydrous and metal-free energetic salts. Chem. Asian J 13(8), 924 (2018)PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    P. Wang, Y. Xu, Q. Lin, M. Lu, Recent advances in the syntheses and properties of polynitrogen pentazolate anion cyclo-N5 and its derivatives. Chem. Soc. Rev. (2018)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Electrical and Electronic EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.Yangtze Normal UniversityChongqingChina

Personalised recommendations