Advertisement

Organic Molecules: Dipolar Solutes

  • Chang Q SunEmail author
Chapter
  • 220 Downloads
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 121)

Abstract

The excessive number of H+ or “:” and their asymmetrical distribution determines the performance of their surrounding water molecules in a way different from that of ordinary water. The naked lone pairs and protons are equally capable of interacting with the solvent H2O molecules to form O:H vdW bond, O:⇔:O super–HB or H↔H anti-HB without charge sharing or new bond forming. Solvation examination of alcohols, aldehydes, formic acids, and sugars reveals that O:H–O formation enables the solubility and hydrophilicity of alcohol; the H↔H anti-HB formation and interface structure distortion disrupt the hydration network and surface stress. The O:H phonon redshift depresses the freezing point of sugar solution of anti-icing.

References

  1. 1.
    N. Hu, D. Wu, K. Cross, S. Burikov, T. Dolenko, S. Patsaeva, D.W. Schaefer, Structurability: a collective measure of the structural differences in vodkas. J. Agric. Food Chem. 58, 7394–7401 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    A. Nose, T. Hamasaki, M. Hojo, R. Kato, K. Uehara, and T. Ueda, Hydrogen bonding in alcoholic beverages (distilled spirits) and water-ethanol mixtures. J Agric Food Chem. 53, 7074–7081 (2005)PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    H.-Y. Hsu, Y.-C. Tsai, C.-C. Fu, J.S.-B. Wu, Degradation of ascorbic acid inethanolic solutions. J. Agri. Food Chem. 60(42), 10696–10701 (2012)CrossRefGoogle Scholar
  4. 4.
    R. Zhang, Q. Wu, Y. Xu, Lichenysin, a cyclooctapeptide occurring in Chinese liquor Jiannanchun reduced the headspace concentration of phenolic off-flavors via hydrogen-bond interactions. J. Agric. Food Chem. 62(33), 8302–8307 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    The 2015 Nobel Prize in Physiology or Medicine—Press Release. 2016; Available from: http://www.nobelprize.org/nobel_prizes/medicine/laureates/2015/press.html
  6. 6.
    T.A. Dolenko, S.A. Burikov, S.A. Dolenko, A.O. Efitorov, I.V. Plastinin, V.I. Yuzhakov, S.V. Patsaeva, Raman spectroscopy of water-ethanol solutions: the estimation of hydrogen bonding energy and the appearance of clathrate-like structures in solutions. J. Phys. Chem. A 119(44), 10806–10815 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    M. Premont-Schwarz, S. Schreck, M. Iannuzzi, E.T.J. Nibbering, M. Odelius, P. Wernet, Correlating Infrared and x-ray absorption energies for molecular-level insight into hdyrogen bond makingand breaking in solution. J. Phys. Chem. B 119, 8115–8124 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    G. Ma, H.C. Allen, Surface studies of aqueous methanol solutions by vibrational broad bandwidth sum frequency generation spectroscopy. J. Phys. Chem. B 107, 6343–6349 (2003)CrossRefGoogle Scholar
  9. 9.
    L. Juurinen, T. Pylkkanen, C.J. Sahle, L. Simonelli, J. Hamalainen, S. Huotari, M. Hakala, Effect of the hydrophobic alcohol chain length on the hydrogen-bond network of water. J. Phys. Chem. B 118, 8750–8755 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    L. Xu, V. Molinero, Is there a liquid-liquid transition in confined water? J. Phys. Chem. B 115(48), 14210–14216 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    J.G. Davis, B.M. Rankin, K.P. Gierszal, D. Ben-Amotz, On the cooperative formation of non-hydrogen-bonded water at molecular hydrophobic interfaces. Nat. Chem. 5, 796–802 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    J.G. Davis, K.P. Gierszal, P. Wang, D. Ben-Amotz, Water strutural transformation at molecular hydrophobic interfaces. Nature 494, 582–585 (2012)CrossRefGoogle Scholar
  13. 13.
    M. Ahmed, A.K. Singh, J.A. Mondal, Hydrogen-bonidng and vibrational coupling of water in hydrophobic hydration shell as observed by Raman-MCR and isotopic dilution spectroscopy. Phys. Chem. Chem. Phys. 18, 2767–2775 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    L. Comez, L. Lupi, M. Paolantoni, F. Picchio, D. Fioretto, hydration properties of small hydrophobic molecules by brillouin light scattering. J. Chem. Phys. 137(11), 114509 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    D.T. Bowron, J.L. Finney, Anion bridges drive salting out of a simple amphiphile from aqueous solution. Phys. Rev. Lett. 89, 215508 (2002)PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    K. NIshikawa, H. Hayashi, T. Iijima, Temperature-dependence of the concentration fluctuation, the kirkwood-buff parameters, and the correlation length of tert-butyl alcohol and water mixtures studied by small-angle X-Ray-scattering. J. Phys. Chem. B 93, 6559–6595 (1989)CrossRefGoogle Scholar
  17. 17.
    O. Gereben, L. Pusztai, Investigation of the structure of ethanol-water mixtures by molecular dynamics simulation I: analyses concerning the hydrogen-bonded pairs. J. Phys. Chem. B 119, 3070–3084 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    T. Ishihara, T. Ishiyama, A. Morita, Surface structure of methanol/water solutions via sum frequency orientational analysis and molecular dynamics simulation. J. Phys. Chem. C 119, 9879–9889 (2015)CrossRefGoogle Scholar
  19. 19.
    R.A. Livingstone, Y. Nagata, M. Bonn, E.H.G. Backus, Two types of water at the water-surfactant interface revealed by time-resolved vibrational spectroscopy. J. Am. Chem. Soc. 137, 14912–14919 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    S. Roy, S.M. Gruenbaum, J.L. Skinner, Theoretical vibrational sum-frequency generation spectroscopy of water near lipid and surfactant monolayer interfaces. J. Chem. Phys. 141, 18C502 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    H. Chen, W. Gan, B.-h. Wu, D. Wu, Y. Guo, H.-F. Wang, Determination of structure and energetics for Gibbs surface adsorption layers of binary liquid mixture 1. Acetone+ water. J. Phys. Chem. B 109(16), 8053–8063 (2005)CrossRefGoogle Scholar
  22. 22.
    R. Li, C. D’Agostino, J. McGregor, M.D. Mantle, J.A. Zeitler, L.F. Gladden, Mesoscopic structuring and dyanmics of alcohol/water solutions probed by terahertz time-domain spectroscopy and pulsed field gradient nuclear magnetic resonance. J. Phys. Chem. B 118, 10156–10166 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    C. Totland, R.T. Lewis, W. Nerdal, Long-range surface-induced water structures and the effect of 1-butanol studied by 1H nuclear magnetic resonance. Langmuir 29, 11055–11061 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    O. Carrier, E.H.G. Backus, N. Shahidzadeh, J. Franz, M. Wagner, Y. Nagata, M. Bonn, D. Bonn, Oppositely charged ions at water-air and water-oil interfaces: contrasting the molecular picture with thermodynamics. J. Phys. Chem. Lett. 7, 825–830PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    C. Carmelo, J. Spooren, C. Branca, N. Leone, M. Broccio, C. Kim, S.-H. Chen, H.E. Stanley, F. Mallamace, Clustering dynamics in water/methanol mixtures: a nuclear magnetic resonance study at 205 K < T < 295 K. J. Phys. Chem. B 112, 10449–10454 (2008)CrossRefGoogle Scholar
  26. 26.
    C.M. Phan, C.V. Nguyen, T.T. Pham, Molecular arrangement and surface tension of alcohol solutions. J. Phys. Chem. B 120, 3914–3919 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Y. Nagata, S. Mukamel, Vibrational sum-frequency generation spectroscopy at the water/lipid interface: molecular dynamics simulation study. J. Am. Chem. Soc. 132, 6434–6442 (2010)PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    B.M. Rankin, D. Ben-Amotz, S.T.V.D. Post, H.J. Bakker, Contacts between alcohols in water are random rather than hydrophobic. J. Phys. Chem. Lett. 6, 688–692 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    D. Banik, A. Roy, N. Kundu, N. Sarkar, Picosecond solvation and rotational dynamics: an attempt to reinvestigate the mystery of alcohol-water binary mixtures. J. Phys. Chem. B 119, 9905–9919 (2016)CrossRefGoogle Scholar
  30. 30.
    D. Gonzalez-Salgado, I. Nezbeda, Excess properties of aqueous mixtures of methanol: simulation versus experiment. Fluid Phase Equilib. 240(2), 161–166 (2006)CrossRefGoogle Scholar
  31. 31.
    P. Petong, R. Pottel, U. Kaatze, Water-ethanol mixtures at different compositions and temperatures. A dielectric relaxation study. J. Phys. Chem. A 104(32), 7420–7428 (2000)CrossRefGoogle Scholar
  32. 32.
    X. Zhang, Y. Zhou, Y. Gong, Y. Huang, C. Sun, Resolving H(Cl, Br, I) capabilities of transforming solution hydrogen-bond and surface-stress. Chem. Phys. Lett. 678, 233–240 (2017)CrossRefGoogle Scholar
  33. 33.
    X. Zhang, Y. Xu, Y. Zhou, Y. Gong, Y. Huang, and C.Q. Sun, HCl, KCl and koh solvation resolved solute-solvent interactions and solution surface stress. Appl. Surf. Sci. 422, 475–481 (2017)CrossRefGoogle Scholar
  34. 34.
    Y. Zhou, Y. Gong, Y. Huang, Z. Ma, X. Zhang, C.Q. Sun, Fraction and stiffness transition from the H-O vibrational mode of ordinary water to the HI, NaI, and NaOH hydration states. J. Mol. Liquids 244, 415–421 (2017)CrossRefGoogle Scholar
  35. 35.
    K.R. Wilson, R.D. Schaller, D.T. Co, R.J. Saykally, B.S. Rude, T. Catalano, J.D. Bozek, Surface relaxation in liquid water and methanol studied by X-ray absorption spectroscopy. J. Chem. Phys. 117(16), 7738–7744 (2002)CrossRefGoogle Scholar
  36. 36.
    Y. Huang, X. Zhang, Z. Ma, Y. Zhou, J. Zhou, W. Zheng, C.Q. Sun, Size, separation, structure order, and mass density of molecules packing in water and ice. Sci. Rep. 3, 3005 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Y.L. Huang, X. Zhang, Z.S. Ma, Y.C. Zhou, W.T. Zheng, J. Zhou, C.Q. Sun, Hydrogen-bond relaxation dynamics: resolving mysteries of water ice. Coord. Chem. Rev. 285, 109–165 (2015)CrossRefGoogle Scholar
  38. 38.
    Y. Zhou, Y. Huang, Z. Ma, Y. Gong, X. Zhang, Y. Sun, C.Q. Sun, Water molecular structure-order in the NaX hydration shells (X=F, Cl, Br, I). J. Mol. Liq. 221, 788–797 (2016)CrossRefGoogle Scholar
  39. 39.
    Y. Gong, Y. Xu, Y. Zhou, C. Li, X. Liu, L. Niu, Y. Huang, X. Zhang, C.Q. Sun, Hydrogen bond network relaxation resolved by alcohol hydration (methanol, ethanol, and glycerol). J. Raman Spectrosc. 48(3), 393–398 (2017)CrossRefGoogle Scholar
  40. 40.
    Q. Zeng, T. Yan, K. Wang, Y. Gong, Y. Zhou, Y. Huang, C.Q. Sun, B. Zou, Compression icing of room-temperature NaX solutions (X= F, Cl, Br, I). Phys. Chem. Chem. Physics 18(20), 14046–14054 (2016)CrossRefGoogle Scholar
  41. 41.
    X. Zhang, T. Yan, Y. Huang, Z. Ma, X. Liu, B. Zou, C.Q. Sun, Mediating relaxation and polarization of hydrogen-bonds in water by NaCl salting and heating. Phys. Chem. Chem. Phys. 16(45), 24666–24671 (2014)CrossRefGoogle Scholar
  42. 42.
    Y. Gong, Y. Zhou, H. Wu, D. Wu, Y. Huang, C.Q. Sun, Raman spectroscopy of alkali halide hydration: hydrogen bond relaxation and polarization. J. Raman Spectrosc. 47(11), 1351–1359 (2016)CrossRefGoogle Scholar
  43. 43.
    N. Abe and M.I. to, Effects of hydrogen bonding on the Raman intensities of methanol, ethanol and water. J. Raman Spectrosc. 7(3), 161–167 (1978)CrossRefGoogle Scholar
  44. 44.
    L. Chen, W. Zhu, K. Lin, N. Hu, Y. Yu, X. Zhou, L.-F. Yuan, S.-M. Hu, Y. Luo, Identification of alcohol conformers by Raman spectra in the C-H stretching region. J. Phys. Chem. A 119(13), 3209–3217 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Y. Yu, Y. Wang, N. Hu, K. Lin, X. Zhou, S. Liu, Overlapping spectral features and new assignment of 2-propanol in the C-H stretching region. J. Raman Spectrosc. 45, 259–265 (2014)CrossRefGoogle Scholar
  46. 46.
    G.E. Walrafen, Raman spectral studies of water structure. J. Chem. Phys 40, 3249–3256 (1964)CrossRefGoogle Scholar
  47. 47.
    J. Chen, C. Yao, X. Liu, X. Zhang, C.Q. Sun, Y. Huang, H2O2 and HO- solvation dynamics: solute capabilities and solute-solvent molecular interactions. Chem. Select 2(27), 8517–8523 (2017)Google Scholar
  48. 48.
    B. Milorey, S. Farrell, S.T. Toal, R. Schweitzer-Stenner, Demixing of water and ethanol causes conformational redistribution and gelation of the cationic GAG tripeptide. Chem. Commun. 51, 16498–16501 (2015)CrossRefGoogle Scholar
  49. 49.
    S.K. Allison, J.P. Fox, R. Hargreaves, S. Bates, Clustering and microimmiscibility in alcohol-water mixtures: evidence from molecular-dynamics simulations. Phys. Rev. B 71, 024201 (2005)CrossRefGoogle Scholar
  50. 50.
    S. Banerjee, R. Ghosh, B. Bagchi, Structural transformations, compositioin anomalies and a dramatic collapse of linear polymer chains in dilute ethanol-water mixtures. J. Phys. Chem. B 116, 3713–3722 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    F. Franks, D.J.G. Ives, The structural properties of alcohol-water mixtures. Quart. Rev. Chem. Soc. 20, 1–44 (1966)CrossRefGoogle Scholar
  52. 52.
    J.-H. Guo, Y. Luo, A. Augustsson, S. Kashtanov, J.-E. Rubensson, D.K. Shuh, H. Agren, J. Nordgren, Molecular structure of alcohol-water mixtures. Phys. Rev. Lett. 91, 157401 (2003)PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    I. Lee, K. Park, J. Lee, Precision density and volume contraction measurements of ethanol-water binary mixtures using suspended microchannel resonators. Sens. Actuators A 194, 62–66 (2013)CrossRefGoogle Scholar
  54. 54.
    K. Mizuno, Y. Miyashita, Y. Shindo, H. Ogawa, NMR and FT-IR studies of hydrogen bonds in ethanol-water mixtures. J. Phys. Chem. 99, 3225–3228 (1995)CrossRefGoogle Scholar
  55. 55.
    M.J. Costigan, L.J. Hodges, K.N. Marsh, R.H. Stokes, C.W. Tuxford, The isothermal displacement calorimeter: design modifications for measuring exothermic enthalpies of mixing. Austr. J. Chem. 33(10), 2103–2119 (1980)CrossRefGoogle Scholar
  56. 56.
    J.E. Hallsworth, Y. Nomura, A simple method to determine the water activity of ethanol-containing samples. Biotechnol. Bioeng. 62, 242–245 (1999)PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    K. Koga, H. Yoshizumi, Differential scanning calorimetry (DSC) studies on the freezing processes of water-ethanol mixtures and distilled spirits. J. Food Sci. 44, 1386–1389 (1979)CrossRefGoogle Scholar
  58. 58.
    C.R. Lerici, M. Piva, M.D. Rosa, Water activity and freezing point depression of aqueous solutions and liquid foods. Food Sci. 48, 1667–1669 (2006)CrossRefGoogle Scholar
  59. 59.
    C.Q. Sun, X. Zhang, X. Fu, W. Zheng, J.-L. Kuo, Y. Zhou, Z. Shen, J. Zhou, Density and phonon-stiffness anomalies of water and ice in the full temperature range. J. Phys. Chem. Lett. 4, 3238–3244 (2013)CrossRefGoogle Scholar
  60. 60.
    K. Dong, X. Rao, X. Yang, J. Lin, P. Zhang, Raman spectroscopy of aldehyde molecules. Opt. Spectrosc. Spectrosc. Anal. 31(12), 3277–3280 (2011). (Chinese)Google Scholar
  61. 61.
    X. Xi, S. Dai, Y. Sun, DNA-aldehyde molecular interaction. Envron. Sci. 22(1), 19–22 (2001)Google Scholar
  62. 62.
    Z. Xi, F. Tao, D. Yang, Y. Sun, G. Li, H. Zhang, W. Zhang, Y. Yang, H. Liu, DNA damaged by aldehyde. J. Environ. Sci. 24(4), 719–722 (2004). (Chinese)Google Scholar
  63. 63.
    R. Li, Z. Lu, Y. Qiao, H. Yao, F. Yu, X. Yang, DNA damage by aldehyde adsorption. Bull. Experim. Biol. 37(4), 262–268 (2004). (in Chinese)Google Scholar
  64. 64.
    Y.N. Jo, I.C. Um, Effects of solvent on the solution properties, structural characteristics and properties of silk sericin. Int. J. Biol. Macromol. 78, 287 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    F. Greif, O. Kaplan, Acid ingestion: another cause of disseminated intravascular coagulopathy. Crit. Care Med. 14(11), 990–1 (1986)PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    K. Yoshitomi, Y. Matayoshi, H. Tamura, S. Shibasaki, M. Uchida, Y. Haranishi, K. Nakamura, H. Oka, A case of acetic acid poisoning. J. Jap. Soc. Intensive Care Med. 11, 217–221 (2009)CrossRefGoogle Scholar
  67. 67.
    G.M. Tong, S.K. Mak, P.N. Wong, L.O. Kin-Yee, S.O. Sheung-On, C.L. Watt, A.K. Wong, Successful treatment of oral acetic acid poisoning with plasmapheresis. Hong Kong J. Nephrol. 2(2), 110–112 (2000)CrossRefGoogle Scholar
  68. 68.
    S. Kumar, B. Babu. A brief review on propionic acid: a renewal energy source, in Proceedings of the National Conference on environmental conservation (NCEC-2006) (2006)Google Scholar
  69. 69.
    S. Suwannakham, S.T. Yang, Enhanced propionic acid fermentation by Propionibacterium acidipropionici mutant obtained by adaptation in a fibrous-bed bioreactor. Biotechnol. Bioeng. 91(3), 325 (2005)PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    J. Chen, C. Yao, X. Zhang, C.Q. Sun, Y. Huang, Hydrogen bond and surface stress relaxation by aldehydic and formic acidic molecular solvation. J. Mol. Liq. 249, 494–500 (2018)CrossRefGoogle Scholar
  71. 71.
    Y. Zhou, D. Wu, Y. Gong, Z. Ma, Y. Huang, X. Zhang, C.Q. Sun, Base-hydration-resolved hydrogen-bond networking dynamics: quantum point compression. J. Mol. Liq. 223, 1277–1283 (2016)CrossRefGoogle Scholar
  72. 72.
    P.H. Yancey, M.E. Clark, S.C. Hand, R.D. Bowlus, G.N. Somero, Living with water stress: evolution of osmolyte systems. Science 217(4566), 1214–22 (1982)PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    P.H. Yancey, Compatible and counteracting solutes: protecting cells from the Dead Sea to the deep sea. Sci. Prog. 87(1), 1–24 (2004)PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    B. Kempf, E. Bremer, Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch. Microbiol. 170(5), 319 (1998)PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    G.N. Somero, Protons, osmolytes, and fitness of internal milieu for protein function. Am. J. Physiol. 251(2), 197–213 (1986)CrossRefGoogle Scholar
  76. 76.
    J.A. Raymond, A.L. Devries, Elevated concentrations and synthetic pathways of trimethylamine oxide and urea in some teleost fishes of McMurdo Sound, Antarctica. Fish Physiol. Biochem. 18(4), 387–398 (1998)CrossRefGoogle Scholar
  77. 77.
    N.P. Davies, M. Wilson, K. Natarajan, Y. Sun, L. Macpherson, M.A. Brundler, T.N. Arvanitis, R.G. Grundy, A.C. Peet, non-invasive detection of glycine as a biomarker of malignancy in childhood brain tumours using in-vivo 1H MRS at 1.5 tesla confirmed by ex-vivo high-resolution magic-angle spinning NMR. NMR in Biomed. 23(1), 80–87 (2010)Google Scholar
  78. 78.
    T. Bessaire, A. Tarres, R.H. Stadler, T. Delatour, Role of choline and glycine betaine in the formation of N, N-dimethylpiperidinium (mepiquat) under Maillard reaction conditions. Food Additives Contam. Part A Chem. Anal. Control Exposure Risk Assess. 31(12), 1949–1958 (2014)CrossRefGoogle Scholar
  79. 79.
    S. Chaum, C. Kirdmanee, Effect of glycinebetaine on proline, water use, and photosynthetic efficiencies, and growth of rice seedlings under salt stress. Turk. J. Agric. Forestry 34(6), 455–479 (2010)Google Scholar
  80. 80.
    R.D. Mountain, D. Thirumalai, Molecular dynamics simulations of end-to-end contact formation in hydrocarbon chains in water and aqueous urea solution. J. Am. Chem. Soc. 125(7), 1950–7 (2003)PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    S.N. Timasheff, The control of protein stability and association by weak interactions with water: how do solvents affect these processes? Annu. Rev. Biophys. Biomol. Struct. 22(22), 67–97 (1993)PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    A. Gómezzavaglia, R. Fausto, Low-temperature solid-state FTIR study of glycine, sarcosine and N, N-dimethylglycine: observation of neutral forms of simple α-amino acids in the solid state. Phys. Chem. Chem. Phys. 5(15), 268–270 (2003)Google Scholar
  83. 83.
    S. Kumar, A.K. Rai, V.B. Singh, S.B. Rai, Vibrational spectrum of glycine molecule. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 61(11–12), 2741–2746 (2005)CrossRefGoogle Scholar
  84. 84.
    N. Derbel, B. Hernández, F. Pflüger, J. Liquier, F. Geinguenaud, N. Jaïdane, Z.B. Lakhdar, M. Ghomi, Vibrational Analysis of amino acids and short peptides in hydrated media. I.l-glycine and l-leucine. J. Phys. Chem. B 111(6), 1470–1477 (2007)PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    G. Zhu, X. Zhu, Q. Fan, X. Wan, Raman spectra of amino acids and their aqueous solutions. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 78(3), 1187 (2011)CrossRefGoogle Scholar
  86. 86.
    A. Oren, B.R. Elevi, N. Kandel, Z. Aizenshtat, J. Jehlička, Glycine betaine is the main organic osmotic solute in a stratified microbial community in a hypersaline evaporitic gypsum crust. Extremophiles 17(3), 445–451 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Y. Hayashi, Y. Katsumoto, I. Oshige, S. Omori, A. Yasuda, Comparative study of urea and betaine solutions by dielectric spectroscopy: liquid structures of a protein denaturant and stabilizer. J. Phys. Chem. B 111(40), 11858–63 (2007)PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    J.Y. Kim, S. Im, B. Kim, C. Desfrançois, S. Lee, Structures and energetics of Gly–(H2O) 5: thermodynamic and kinetic stabilities. Chem. Phys. Lett. 451(4–6), 198–203 (2008)CrossRefGoogle Scholar
  89. 89.
    A. Chaudhari, P.K. Sahu, S.L. Lee, Hydrogen bonding interaction in sarcosine–water complex using ab initio and DFT method. Int. J. Quantum Chem. 101(1), 97–103 (2005)CrossRefGoogle Scholar
  90. 90.
    M. Civera, A. Fornili, M. Sironi, S.L. Fornili, Molecular dynamics simulation of aqueous solutions of glycine betaine. Chem. Phys. Lett. 367(1–2), 238–244 (2003)CrossRefGoogle Scholar
  91. 91.
    T. Takayanagi, T. Yoshikawa, A. Kakizaki, M. Shiga, M. Tachikawa, Molecular dynamics simulations of small glycine–(H2O)n (n = 2–7) clusters on semiempirical PM6 potential energy surfaces. J. Mol. Struct. (Thoechem) 869(1), 29–36 (2008)CrossRefGoogle Scholar
  92. 92.
    A. Mukaiyama, Y. Koga, K. Takano, S. Kanaya, Osmolyte effect on the stability and folding of a hyperthermophilic protein. Proteins Structure Funct. Bioinform. 71(1), 110–118 (2008)CrossRefGoogle Scholar
  93. 93.
    A. Panuszko, P. Bruździak, E. Kaczkowska, J. Stangret, General mechanism of osmolytes’ influence on protein stability irrespective of the type of osmolyte cosolvent. J. Phys. Chem. B 120(43), 11159–11169 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Y.L. Rezus, H.J. Bakker, Destabilization of the hydrogen-bond structure of water by the osmolyte trimethylamine N-oxide. J. Phys. Chem. B 113(13), 4038–44 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    P. Bruździak, A. Panuszko, J. Stangret, Influence of osmolytes on protein and water structure: a step to understanding the mechanism of protein stabilization. J. Phys. Chem. B 117(39), 11502–11508 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    A. Panuszko, M. Śmiechowski, J. Stangret, Fourier transform infrared spectroscopic and theoretical study of water interactions with glycine and its N-methylated derivatives. J. Chem. Phys. 134(11), 115104 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    A. Kuffel, J. Zielkiewicz, The hydrogen bond network structure within the hydration shell around simple osmolytes: urea, tetramethylurea, and trimethylamine-N-oxide, investigated using both a fixed charge and a polarizable water model. J. Chem. Phys. 133(3), 07B605 (2010)CrossRefGoogle Scholar
  98. 98.
    A. Di Michele, M. Freda, G. Onori, M. Paolantoni, A. Santucci, P. Sassi, Modulation of hydrophobic effect by cosolutes. J. Phys. Chem. B 110(42), 21077–21085 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    K.J. Tielrooij, J. Hunger, R. Buchner, M. Bonn, H.J. Bakker, Influence of concentration and temperature on the dynamics of water in the hydrophobic hydration shell of tetramethylurea. J. Am. Chem. Soc. 132(44), 15671–8 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    P. Chettiyankandy, Effects of co-solutes on the hydrogen bonding structure and dynamics in aqueous N-methylacetamide solution: a molecular dynamics simulations study. Mol. Phys. 112(22), 2906–2919 (2014)CrossRefGoogle Scholar
  101. 101.
    H. Lee, J.H. Choi, P.K. Verma, M. Cho, Spectral graph analyses of water hydrogen-bonding network and osmolyte aggregate structures in osmolyte-water solutions. J. Phys. Chem. B 119(45), 14402–14412 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    K. Tielrooij, N. Garcia-Araez, M. Bonn, H. Bakker, Cooperativity in ion hydration. Science 328(5981), 1006–1009 (2010)CrossRefGoogle Scholar
  103. 103.
    J. Hunger, K.J. Tielrooij, R. Buchner, M. Bonn, H.J. Bakker, Complex formation in aqueous trimethylamine-N-oxide (TMAO) solutions. J. Phys. Chem. B 116(16), 4783–95 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    A.A. Bakulin, M.S. Pshenichnikov, H.J. Bakker, C. Petersen, Hydrophobic molecules slow down the hydrogen-bond dynamics of water. J. Phys. Chem. A 115(10), 1821–9 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    H. Fang, X. Liu, C.Q. Sun, Y. Huang, Phonon spectrometric evaluation of the solute-solvent interface in solutions of glycine and its N-methylated derivatives. J. Phys. Chem. B 122(29), 7403–7408 (2018)PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Y. Zhou, Y. Zhong, Y. Gong, X. Zhang, Z. Ma, Y. Huang, C.Q. Sun, Unprecedented thermal stability of water supersolid skin. J. Mol. Liq. 220, 865–869 (2016)CrossRefGoogle Scholar
  107. 107.
    X.J. Liu, M.L. Bo, X. Zhang, L. Li, Y.G. Nie, H. TIan, Y. Sun, S. Xu, Y. Wang, W. Zheng, C.Q. Sun, Coordination-resolved electron spectrometrics. Chem. Rev. 115(14), 6746–6810 (2015)CrossRefGoogle Scholar
  108. 108.
    C.Q. Sun, J. Chen, Y. Gong, X. Zhang, Y. Huang, (H, Li)Br and LiOH solvation bonding dynamics: molecular nonbond interactions and solute extraordinary capabilities. J. Phys. Chem. B 122(3), 1228–1238 (2018)CrossRefGoogle Scholar
  109. 109.
    E. Agabiti-Rosei, From macro- to microcirculation: Benefits in hypertension and diabetes. J. Hypertens. Suppl. Off. J. Int. Soc. Hypertens. 26(3), 15–9 (2008)Google Scholar
  110. 110.
    B.P. Murphy, T. Stanton, F.G. Dunn, Hypertension and myocardial ischemia. Med. Clin. North Am. 93(3), 681–695 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    K.K. Gaddam, A. Verma, M. Thompson, R. Amin, H. Ventura, Hypertension and cardiac failure in its various forms. Med. Clin. North Am. 93(3), 665–680 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    E. Reisin, A.V. Jack, Obesity and hypertension: mechanisms, cardio-renal consequences, and therapeutic approaches. Med. Clin. North Am. 93(3), 733–51 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    W.B. White, Defining the problem of treating the patient with hypertension and arthritis pain. Am. J. Med. 122(5 Suppl), 3–9 (2009)CrossRefGoogle Scholar
  114. 114.
    L.D. Truong, S.S. Shen, M.H. Park, B. Krishnan, Diagnosing nonneoplastic lesions in nephrectomy specimens. Arch. Pathol. Lab. Med. 133(2), 189–200 (2009)PubMedPubMedCentralGoogle Scholar
  115. 115.
    R.E. Tracy, S. White, A method for quantifying adrenocortical nodular hyperplasia at autopsy: some use of the method in illuminating hypertension and atherosclerosis. Ann. Diagnostic Pathol. 6(1), 20–9 (2002)CrossRefGoogle Scholar
  116. 116.
    S. Mendis, P. Puska, B. Norrving, S. Mendis, P. Puska, B. Norrving, Global atlas on cardiovascular disease prevention and control (Geneva World Health Organization, Geneva, 2011)Google Scholar
  117. 117.
    A. Chockalingam, Impact of World Hypertension Day. Can. J. Cardiol. 23(7), 517 (2007)PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    W.H. Organization, A global brief on hypertension: silent killer, global public health crisis: World Health Day 2013 (2013)Google Scholar
  119. 119.
    W.G. Members, E.J. Benjamin, M.J. Blaha, S.E. Chiuve, M. Cushman, S.R. Das, R. Deo, S.D.D. Ferranti, J. Floyd, M. Fornage, Heart disease and stroke statistics—2017 update: a report from the American Heart Association. Circulation 121(7), e46 (2010)Google Scholar
  120. 120.
    B. Williams, N.R. Poulter, M.J. Brown, M. Davis, G.T. Mcinnes, J.F. Potter, P.S. Sever, T.S. Mcg, Guidelines for management of hypertension: report of the fourth working party of the British Hypertension Society, 2004-BHS IV. J. Hum. Hypertens. 18(3), 139 (2004)PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    P.K. Whelton, J. He, L.J. Appel, J.A. Cutler, S. Havas, T.A. Kotchen, E.J. Roccella, R. Stout, C. Vallbona, M.C. Winston, Primary prevention of hypertension: clinical and public health advisory from the national high blood pressure education program. JAMA 288(15), 1882–1888 (2002)PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    K. Kurihara, Glutamate: from discovery as a food flavor to role as a basic taste (umami). Am. J. Clin. Nutr. 90(3), 719S–722S (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    L. Baad-Hansen, B.E. Cairns, M. Ernberg, P. Svensson, Effect of systemic monosodium glutamate (MSG) on headache and pericranial muscle sensitivity. Cephalalgia 30(1), 68–76 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Z. Shi, B. Yuan, A.W. Taylor, Y. Dai, X. Pan, T.K. Gill, G.A. Wittert, Monosodium glutamate is related to a higher increase in blood pressure over 5 years: findings from the Jiangsu Nutrition Study of Chinese adults. J. Hypertens. 29(5), 846–853 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    S. Mascoli, R. Grimm, C. Launer, Sodium chloride raises blood pressure in normotensive subjects. Hypertension, 17(Suppl I) (1991)Google Scholar
  126. 126.
    S.N. Orlov, A.A. Mongin, Salt-sensing mechanisms in blood pressure regulation and hypertension. Am. J. Physiol. Heart Circ. Physiol. 293(4), H2039–H2053 (2007)PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    G.R. Meneely, L.K. Dahl, Electrolytes in hypertension: the effects of sodium chloride. The evidence from animal and human studies. Med. Clinics North Am. 45(2), 271 (1961)PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    R. Kwok, Chinese-restaurant syndrome. New England J. Med. 278(14), 796 (1968)Google Scholar
  129. 129.
    T.R. Du, Y. Volsteedt, Z. Apostolides, Comparison of the antioxidant content of fruits, vegetables and teas measured as vitamin C equivalents. Toxicology 166(1–2), 63–69 (2001)Google Scholar
  130. 130.
    S. Duffy, N. Gokce, M. Holbrook, A. Huang, B. Frei, J.F. Keaney, J.A. Vita, Treatment of hypertension with ascorbic acid. The Lancet 354(9195), 2048–2049 (1999)CrossRefGoogle Scholar
  131. 131.
    B.A. Mullan, I.S. Young, H. Fee, D.R. McCance, Ascorbic acid reduces blood pressure and arterial stiffness in type 2 diabetes. Hypertension 40(6), 804–809 (2002)PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    J.P. Moran, L. Cohen, J.M. Greene, G. Xu, E.B. Feldman, C.G. Hames, D.S. Feldman, Plasma ascorbic acid concentrations relate inversely to blood pressure in human subjects. Am. J. Clin. Nutr. 57(2), 213–217 (1993)PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    S.P. Juraschek, E. Guallar, L.J. Appel, M.E. Rd, Effects of vitamin C supplementation on blood pressure: a meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 95(5), 1079–1088 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    S. Kondo, K. Tayama, Y. Tsukamoto, K. Ikeda, Y. Yamori, Antihypertensive effects of acetic acid and vinegar on spontaneously hypertensive rats. Biosci. Biotechnol. Biochem. 65(12), 2690–2694 (2001)PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Y. Zhou, Y. Huang, Z. Ma, Y. Gong, X. Zhang, Y. Sun, C.Q. Sun, Water molecular structure-order in the NaX hydration shells (X = F, Cl, Br, I). J. Mol. Liq. 221, 788–797 (2016)CrossRefGoogle Scholar
  136. 136.
    C.Q. Sun, Y. Sun, The Attribute of Water: Single Notion, Multiple Myths. Springer Series in Chemical Physics, vol. 113 (SpringerVerlag, Heidelberg, 2016), 494ppGoogle Scholar
  137. 137.
    N. Peica, C. Lehene, N. Leopold, S. Schlücker, W. Kiefer, Monosodium glutamate in its anhydrous and monohydrate form: differentiation by Raman spectroscopies and density functional calculations. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 66(3), 604–15 (2007)CrossRefGoogle Scholar
  138. 138.
    T. Nakabayashi, K. Kosugi, N. Nishi, Liquid structure of acetic acid studied by Raman spectroscopy and Ab initio molecular orbital calculations. J. Phys. Chem. A 103(43), 8595–8603 (1999)CrossRefGoogle Scholar
  139. 139.
    P.C. Yohannan, V.H. Tresa, D. Philip, FT-IR, FT-Raman and SERS spectra of vitamin C. Spectrochim Acta A Mol. Biomol. Spectrosc. 65(3–4), 802–804 (2006)CrossRefGoogle Scholar
  140. 140.
    C. Ni, C. Sun, Z. Zhou, Y. Huang, X. Liu, Surface tension mediation by Na-based ionic polarization and acidic fragmentation: inference of hypertension. J. Mol. Liq. 259, 1–6 (2018)CrossRefGoogle Scholar
  141. 141.
    L.M. Burke, R.S. Read, Dietary supplements in sport. Sports Med. 15(1), 43–65 (1993)PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    M. Baghbanbashi, G. Pazuki, A new hydrogen bonding local composition based model in obtaining phase behavior of aqueous solutions of sugars. J. Mol. Liq. 195(4), 47–53 (2014)CrossRefGoogle Scholar
  143. 143.
    B.L. Cantarel, P.M. Coutinho, C. Rancurel, T. Bernard, V. Lombard, B. Henrissat, The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 37(1), D233–D238 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    F. Franks, M. Jones, Biophysics and biochemistry at low temperatures. FEBS Lett. 220(2), 391–391 (1986)CrossRefGoogle Scholar
  145. 145.
    C.A. Oksanen, G. Zografi, The relationship between the glass transition temperature and water vapor absorption by poly (vinylpyrrolidone). Pharm. Res. Dordr 7(6), 654–657 (1990)CrossRefGoogle Scholar
  146. 146.
    A. Magno, P. Gallo, Understanding the mechanisms of bioprotection: a comparative study of aqueous solutions of trehalose and maltose upon supercooling. J. Phys. Chem. Lett. 2(9), 977–982 (2011)CrossRefGoogle Scholar
  147. 147.
    B.J. Sinclair, J.R. Stinziano, C.M. Williams, H.A. Macmillan, K.E. Marshall, K.B. Storey, Real-time measurement of metabolic rate during freezing and thawing of the wood frog, Rana sylvatica: implications for overwinter energy use. J. Exp. Biol. 216(Pt 2), 292–302 (2013)CrossRefGoogle Scholar
  148. 148.
    R.E.L. Jr, Insect cold-hardiness: to freeze or not to freeze. Bioscience 39(5), 308–313 (1989)CrossRefGoogle Scholar
  149. 149.
    S.N. Thompson, Trehalose-the insect ‘blood’ sugar. Adv. Insect Physiol. 31(3), 205–285 (2003)CrossRefGoogle Scholar
  150. 150.
    J.P. Costanzo, R.E. Lee, P.H. Lortz, Glucose concentration regulates freeze tolerance in the wood frog Rana sylvatica. J. Exp. Biol. 181(1), 245–255 (1993)PubMedPubMedCentralGoogle Scholar
  151. 151.
    J. Costanzo, R. Lee, M.F. Wright, Glucose loading prevents freezing injury in rapidly cooled wood frogs. Am. J. Physiol. 261(6), R1549–R1553 (1991)PubMedPubMedCentralGoogle Scholar
  152. 152.
    J.P. Costanzo, R.E. Lee Jr., M.F. Wright, Effect of cooling rate on the survival of frozen wood frogs, Rana sylvatica. J. Comp. Physiol. B 161(3), 225–229 (1991)PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    J.P. Costanzo, R.E. Lee, M.F. Wright, Cooling rate influences cryoprotectant distribution and organ dehydration in freezing wood frogs. J. Exp. Zool. 261(4), 373–378 (1992)PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    H. Kanno, M. Soga, K. Kajiwara, Linear relation between TH (homogeneous ice nucleation temperature) and Tm (melting temperature) for aqueous solutions of sucrose, trehalose, and maltose. Chem. Phys. Lett. 443(4–6), 280–283 (2007)CrossRefGoogle Scholar
  155. 155.
    M.E. Gallina, P. Sassi, M. Paolantoni, A. Morresi, and R.S. Cataliotti, Vibrational analysis of molecular interactions in aqueous glucose solutions. Temperature and concentration effects. J. Phys. Chem. B, 110(17), 8856–8864 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    C. Branca, S. Magazù, G. Maisano, S. Bennington, B. Fåk, Vibrational studies on disaccharide/H2O systems by inelastic neutron scattering, Raman, and IR spectroscopy. J. Phys. Chem. B 107(6), 1444–1451 (2003)CrossRefGoogle Scholar
  157. 157.
    C. Branca, S. Magazu, G. Maisanoa, A. Mangionea, S.M. Benningtonb, J. Taylorb, INS investigation of disaccharide/H2O mixtures. J. Mol. Struct. 700(1), 229–231 (2004)CrossRefGoogle Scholar
  158. 158.
    M. Paolantoni, P. Sassi, A. Morresi, S. Santini, Hydrogen bond dynamics and water structure in glucose-water solutions by depolarized Rayleigh scattering and low-frequency Raman spectroscopy. J. Chem. Phys. 127(2), 024504 (2007)PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    S. Di Fonzo, C. Masciovecchio, A. Gessini, F. Bencivenga, A. Cesàro, Water dynamics and structural relaxation in concentrated sugar solutions. Food Biophys. 8(3), 183–191 (2013)CrossRefGoogle Scholar
  160. 160.
    M. Heyden, E. Bründermann, U. Heugen, G. Niehues, D.M. Leitner, M. Havenith, Long-range influence of carbohydrates on the solvation dynamics of water-answers from terahertz absorption measurements and molecular modeling simulations. J. Am. Chem. Soc. 130(17), 5773–5779 (2008)PubMedCrossRefGoogle Scholar
  161. 161.
    C. Branca, S. Magazu, G. Maisano, P. Migliardo, E. Tettamanti, Anomalous translational diffusive processes in hydrogen-bonded systems investigated by ultrasonic technique. Raman scattering and NMR. Physica B 291(1), 180–189 (2000)Google Scholar
  162. 162.
    M.E. Elias, A.M. Elias, Trehalose + water fragile system: properties and glass transition. J. Mol. Liq. 83(1), 303–310 (1999)CrossRefGoogle Scholar
  163. 163.
    W. Yamamoto, K. Sasaki, R. Kita, S. Yagihara, N. Shinyashiki, Dielectric study on temperature-concentration superposition of liquid to glass in fructose-water mixtures. J. Mol. Liq. 206(1), 39–46 (2015)CrossRefGoogle Scholar
  164. 164.
    A. Lerbret, F. Affouard, P. Bordat, A. Hédoux, Y. Guinet, M. Descamps, Slowing down of water dynamics in disaccharide aqueous solutions. J. Non-Cryst. Solids 357(2), 695–699 (2010)CrossRefGoogle Scholar
  165. 165.
    K.N. Kirschner, R.J. Woods, Solvent interactions determine carbohydrate conformation. Proc. Natl. Acad. Sci. USA 98(19), 10541 (2001)PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    T. Steiner, W. Saenger, Geometry of carbon-hydrogen.cntdot..cntdot..cntdot.oxygen hydrogen bonds in carbohydrate crystal structures. Analysis of neutron diffraction data. J. Am. Chem. Soc. 114(26): 10146–10154, (1992)CrossRefGoogle Scholar
  167. 167.
    Y.L. Huang, X. Zhang, Z.S. Ma, G.H. Zhou, Y.Y. Gong, C.Q. Sun, Potential paths for the hydrogen-bond relaxing with (H2O)(N) Cluster Size. J. Phys. Chem. C 119(29), 16962–16971 (2015)CrossRefGoogle Scholar
  168. 168.
    C. Ni, Y. Gong, X. Liu, C.Q. Sun, Z. Zhou, The anti-frozen attribute of sugar solutions. J. Mol. Liq. 247, 337–344 (2017)CrossRefGoogle Scholar
  169. 169.
    X. Zhang, P. Sun, Y. Huang, Z. Ma, X. Liu, J. Zhou, W. Zheng, C.Q. Sun, Water nanodroplet thermodynamics: quasi-solid phase-boundary dispersivity. J. Phys. Chem. B 119(16), 5265–5269 (2015)CrossRefGoogle Scholar
  170. 170.
    M. Mathlouthi, C. Luu, A.M. Meffroy-Biget, V.L. Dang, Laser-Raman study of solute-solvent interactions in aqueous solutions of d-fructose, d-glucose, and sucrose. Carbohyd. Res. 81(2), 213–223 (1980)CrossRefGoogle Scholar
  171. 171.
    A.M. Gil, P.S. Belton, V. Felix, Spectroscopic studies of solid α-α trehalose. Spectrochim Acta A 52(12), 1649–1659 (1996)CrossRefGoogle Scholar
  172. 172.
    S. Söderholm, Y.H. Roos, N. Meinander, M. Hotokka, Raman spectra of fructose and glucose in the amorphous and crystalline states. J. Raman Spectrosc. 30(11), 1009–1018 (1999)CrossRefGoogle Scholar
  173. 173.
    S.N. Wren, D.J. Donaldson, Glancing-angle Raman study of nitrate and nitric acid at the air–aqueous interface. Chem. Phys. Lett. 522, 1–10 (2012)CrossRefGoogle Scholar
  174. 174.
    C.Q. Sun, X. Zhang, X. Fu, W. Zheng, J.-L. Kuo, Y. Zhou, Z. Shen, J. Zhou, Density and phonon-stiffness anomalies of water and ice in the full temperature range. J. Phys. Chem Lett. 4, 3238–3244 (2013)PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Electrical and Electronic EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.Yangtze Normal UniversityChongqingChina

Personalised recommendations