Advertisement

Lewis Acidic Solutions: H↔H Fragilization

  • Chang Q SunEmail author
Chapter
  • 219 Downloads
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 121)

Abstract

Solvation dissolves the HX into an H+ and an X. The H+ bonds to a H2O to form a firm H3O+ and a H↔H anti − HB point breaker. The H–O bond due H3O+ is 3% shorter and the associated O:H nonbond is 60% longer than normal. The H↔H compression shortens its nearest O:H nonbond by 11% and lengthens the H–O by 4%. The X point polarizer shortens the H–O bond and stiffens its phonon but relax the O:H nonbond oppositely in the supersolid hydration shell. The X solute capability of bond transition follows the I > Br > Cl order in the form of fx(C) ∝ 1 − exp(−C/C0) towards saturation because of the involvement of the X↔X interaction that weakens the hydration-shell electric field at higher concentrations. However, the H+ neither hops or tunnels freely nor polarize its neighbors, fH(C) = 0. The H↔H has the same effect of heating on the surface stress and solution viscosity disruption.

References

  1. 1.
    S. Arrhenius, Development of the theory of electrolytic Dissociation. Nobel Lecture, (1903)Google Scholar
  2. 2.
    J. Brönsted, Part III. Neutral salt and activity effects. The theory of acid and basic catalysis. Trans. Faraday Soc. 24, 630–640 (1928)CrossRefGoogle Scholar
  3. 3.
    T.M. Lowry, I.J. Faulkner, CCCXCIX.—Studies of dynamic isomerism. Part XX. Amphoteric solvents as catalysts for the mutarotation of the sugars. J. Chem. Soc. Trans. 127, 2883–2887 (1925)CrossRefGoogle Scholar
  4. 4.
    G.N. Lewis, Acids and bases. J. Franklin Inst. 226(3), 293–313 (1938)CrossRefGoogle Scholar
  5. 5.
    C.D. Cappa, J.D. Smith, K.R. Wilson, B.M. Messer, M.K. Gilles, R.C. Cohen, R.J. Saykally, Effects of alkali metal halide salts on the hydrogen bond network of liquid water. J. Phys. Chem. B 109(15), 7046–7052 (2005)PubMedCrossRefGoogle Scholar
  6. 6.
    W.J. Glover, B.J. Schwartz, Short-range electron correlation stabilizes noncavity solvation of the hydrated electron. J. Chem. Theory Comput. 12(10), 5117–5131 (2016)PubMedCrossRefGoogle Scholar
  7. 7.
    T. Iitaka, T. Ebisuzaki, Methane hydrate under high pressure. Phys. Rev. B 68(17), 172105 (2003)CrossRefGoogle Scholar
  8. 8.
    D. Liu, G. Ma, L.M. Levering, H.C. Allen, Vibrational spectroscopy of aqueous sodium halide solutions and air–liquid interfaces: observation of increased interfacial depth. J. Phys. Chem. B 108(7), 2252–2260 (2004)CrossRefGoogle Scholar
  9. 9.
    Y. Marcus, Effect of ions on the structure of water: structure making and breaking. Chem. Rev. 109(3), 1346–1370 (2009)PubMedCrossRefGoogle Scholar
  10. 10.
    J.D. Smith, R.J. Saykally, P.L. Geissler, The effects of dissolved halide anions on hydrogen bonding in liquid water. J. Am. Chem. Soc. 129(45), 13847–13856 (2007)PubMedCrossRefGoogle Scholar
  11. 11.
    J. Zhang, J.-L. Kuo, T. Iitaka, First principles molecular dynamics study of filled ice hydrogen hydrate. J. Chem. Phys. 137(8), 084505 (2012)PubMedCrossRefGoogle Scholar
  12. 12.
    B.L. Bhargava, Y. Yasaka, M.L. Klein, Computational studies of room temperature ionic liquid-water mixtures. Chem. Commun. 47(22), 6228–6241 (2011)CrossRefGoogle Scholar
  13. 13.
    S. Saita, Y. Kohno, N. Nakamura, H. Ohno, Ionic liquids showing phase separation with water prepared by mixing hydrophilic and polar amino acid ionic liquids. Chem. Commun. 49(79), 8988–8990 (2013)CrossRefGoogle Scholar
  14. 14.
    E.S. Stoyanov, I.V. Stoyanova, C.A. Reed, The unique nature of H+ in water. Chem. Sci. 2(3), 462–472 (2011)CrossRefGoogle Scholar
  15. 15.
    S. Heiles, R.J. Cooper, M.J. DiTucci, E.R. Williams, Hydration of guanidinium depends on its local environment. Chem. Sci. 6(6), 3420–3429 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Y.R. Shen, V. Ostroverkhov, Sum-frequency vibrational spectroscopy on water interfaces: Polar orientation of water molecules at interfaces. Chem. Rev. 106(4), 1140–1154 (2006)CrossRefGoogle Scholar
  17. 17.
    H. Chen, W. Gan, B.H. Wu, D. Wu, Y. Guo, H.F. Wang, Determination of structure and energetics for Gibbs surface adsorption layers of binary liquid mixture 1. Acetone + water. J. Phy. Chem. B 109(16), 8053–8063 (2005)CrossRefGoogle Scholar
  18. 18.
    M.E. Tuckerman, D. Marx, M. Parrinello, The nature and transport mechanism of hydrated hydroxide ions in aqueous solution. Nature 417(6892), 925–929 (2002)PubMedCrossRefGoogle Scholar
  19. 19.
    S.T. van der Post, C.S. Hsieh, M. Okuno, Y. Nagata, H.J. Bakker, M. Bonn, J. Hunger, Strong frequency dependence of vibrational relaxation in bulk and surface water reveals sub-picosecond structural heterogeneity. Nat. Commun. 6, 8384 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    M. Thämer, L. De Marco, K. Ramasesha, A. Mandal, A. Tokmakoff, Ultrafast 2D IR spectroscopy of the excess proton in liquid water. Science 350(6256), 78–82 (2015)PubMedCrossRefGoogle Scholar
  21. 21.
    F. Dahms, R. Costard, E. Pines, B.P. Fingerhut, E.T. Nibbering, T. Elsaesser, The hydrated excess proton in the zundel cation H5 O2 (+): The role of ultrafast solvent fluctuations. Angew. Chem. Int. Ed. Engl. 55(36), 10600–10605 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    J.C. Li, A.I. Kolesnikov, Neutron spectroscopic investigation of dynamics of water ice. J. Mol. Liq. 100(1), 1–39 (2002)CrossRefGoogle Scholar
  23. 23.
    I. Michalarias, I. Beta, R. Ford, S. Ruffle, J.C. Li, Inelastic neutron scattering studies of water in DNA. Appl. Phys. A Mater. Sci. Process. 74, s1242–s1244 (2002)CrossRefGoogle Scholar
  24. 24.
    P.M. Kiefer, J.T. Hynes, Theoretical aspects of tunneling proton transfer reactions in a polar environment. J. Phys. Org. Chem. 23(7), 632–646 (2010)CrossRefGoogle Scholar
  25. 25.
    S. Daschakraborty, P.M. Kiefer, Y. Miller, Y. Motro, D. Pines, E. Pines, J.T. Hynes, Reaction mechanism for direct proton transfer from carbonic acid to a strong base in aqueous solution I: Acid and base coordinate and charge dynamics. J. Phys. Chem. B 120(9), 2271–2280 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    N.B.-M. Kalish, E. Shandalov, V. Kharlanov, D. Pines, E. Pines, Apparent stoichiometry of water in proton hydration and proton dehydration reactions in CH3CN/H2O solutions. J. Phys. Chem. A 115(16), 4063–4075 (2011)PubMedCrossRefGoogle Scholar
  27. 27.
    D. Borgis, G. Tarjus, H. Azzouz, An adiabatic dynamical simulation study of the Zundel polarization of strongly H-bonded complexes in solution. J. Chem. Phys. 97(2), 1390–1400 (1992)CrossRefGoogle Scholar
  28. 28.
    R. Vuilleumier, D. Borgis, Quantum dynamics of an excess proton in water using an extended empirical valence-bond Hamiltonian. J. Phys. Chem. B 102(22), 4261–4264 (1998)CrossRefGoogle Scholar
  29. 29.
    R. Vuilleumier, D. Borgis, Transport and spectroscopy of the hydrated proton: a molecular dynamics study. J. Chem. Phys. 111(9), 4251–4266 (1999)CrossRefGoogle Scholar
  30. 30.
    K. Ando, J.T. Hynes, Molecular mechanism of HCl acid ionization in water: Ab initio potential energy surfaces and Monte Carlo simulations. J. Phys. Chem. B 101(49), 10464–10478 (1997)CrossRefGoogle Scholar
  31. 31.
    K. Ando, J.T. Hynes, HF acid ionization in water: the first step. Faraday Discuss. 102, 435–441 (1995)CrossRefGoogle Scholar
  32. 32.
    D. Borgis, J.T. Hynes, Molecular-dynamics simulation for a model nonadiabatic proton transfer reaction in solution. J. Chem. Phys. 94(5), 3619–3628 (1991)CrossRefGoogle Scholar
  33. 33.
    M.I. Bernal-Uruchurtu, R. Hernández-Lamoneda, K.C. Janda, On the unusual properties of halogen bonds: A detailed ab initio study of X2 − (H2O) 1–5 clusters (X = Cl and Br). J. Phys. Chem. A 113(19), 5496–5505 (2009)PubMedCrossRefGoogle Scholar
  34. 34.
    H. Saint-Martin, J. Hernández-Cobos, M.I. Bernal-Uruchurtu, I. Ortega-Blake, H.J. Berendsen, A mobile charge densities in harmonic oscillators (MCDHO) molecular model for numerical simulations: the water–water interaction. J. Chem. Phys. 113(24), 10899–10912 (2000)CrossRefGoogle Scholar
  35. 35.
    C. de Grotthuss, Sur la Décomposition de l’eau et des Corps Qu’elle Tient en Dissolution à l’aide de l’électricité. Galvanique Ann Chim, LVIII: 54–74, (1806)Google Scholar
  36. 36.
    A. Hassanali, F. Giberti, J. Cuny, T.D. Kuhne, M. Parrinello, Proton transfer through the water gossamer. Proc. Natl. Acad. Sci. U.S.A. 110(34), 13723–13728 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    A.E. Stearn, H. Eyring, The deduction of reaction mechanisms from the theory of absolute rates. J. Chem. Phys. 5(2), 113–124 (1937)CrossRefGoogle Scholar
  38. 38.
    M.L. Huggins, Hydrogen bridges in ice and liquid water. J. Phys. Chem. 40(6), 723–731 (1936)CrossRefGoogle Scholar
  39. 39.
    G. Wannier, Die Beweglichkeit des Wasserstoff-und Hydroxylions in wäßriger Lösung. I. Annalen der Physik 416(6), 545–568 (1935)CrossRefGoogle Scholar
  40. 40.
    N. Agmon, The grotthuss mechanism. Chem. Phys. Lett. 244(5), 456–462 (1995)CrossRefGoogle Scholar
  41. 41.
    M. Eigen, Proton transfer, acid–base catalysis, and enzymatic hydrolysis. Part I: Elementary processes. Angew. Chem. Int. Ed. Engl. 3(1), 1–19 (1964)CrossRefGoogle Scholar
  42. 42.
    G. Zundel, P. Schuster, G. Zundel, C. Sandorfy, The Hydrogen Bond. Recent developments in theory and experiments, vol. 2, 1976Google Scholar
  43. 43.
    J.A. Fournier, W.B. Carpenter, N.H.C. Lewis, A. Tokmakoff, Broadband 2D IR spectroscopy reveals dominant asymmetric H5O2+ proton hydration structures in acid solutions. Nat. Chem. 10, 932–937 (2018)PubMedCrossRefGoogle Scholar
  44. 44.
    X. Zhang, Y. Zhou, Y. Gong, Y. Huang, C. Sun, Resolving H(Cl, Br, I) capabilities of transforming solution hydrogen-bond and surface-stress. Chem. Phys. Lett. 678, 233–240 (2017)CrossRefGoogle Scholar
  45. 45.
    C.Q. Sun, J. Chen, X. Liu, X. Zhang, Y. Huang, (Li, Na, K)OH hydration bonding thermodynamics: Solution self-heating. Chem. Phys. Lett. 696, 139–143 (2018)CrossRefGoogle Scholar
  46. 46.
    C.Q. Sun, Y. Sun, The Attribute of Water: Single Notion, Multiple Myths. Springer Ser. Chem. Phys. vol. 113. (Springer, Heidelberg, 2016), 494ppGoogle Scholar
  47. 47.
    H.S. Frank, W.Y. Wen, Ion-solvent interaction. Structural aspects of ion-solvent interaction in aqueous solutions: a suggested picture of water structure. Discuss Faraday Soc. 24, 133–140 (1957)CrossRefGoogle Scholar
  48. 48.
    L. Pauling, The structure and entropy of ice and of other crystals with some randomness of atomic arrangement. J. Am. Chem. Soc. 57, 2680–2684 (1935)CrossRefGoogle Scholar
  49. 49.
    S.A. Harich, D.W.H. Hwang, X. Yang, J.J. Lin, X. Yang, R.N. Dixon, Photodissociation of H2O at 121.6 nm: A state-to-state dynamical picture. J. Chem. phys. 113(22), 10073–10090 (2000)CrossRefGoogle Scholar
  50. 50.
    S.A. Harich, X. Yang, D.W. Hwang, J.J. Lin, X. Yang, R.N. Dixon, Photodissociation of D2O at 121.6 nm: A state-to-state dynamical picture. J. Chem. Phys. 114(18), 7830–7837 (2001)CrossRefGoogle Scholar
  51. 51.
    Q. Zeng, T. Yan, K. Wang, Y. Gong, Y. Zhou, Y. Huang, C.Q. Sun, B. Zou, Compression icing of room-temperature NaX solutions (X = F, Cl, Br, I). Phys. Chem. Chem. Phys. 18(20), 14046–14054 (2016)PubMedCrossRefGoogle Scholar
  52. 52.
    D. Marx, M.E. Tuckerman, J. Hutter, M. Parrinello, The nature of the hydrated excess proton in water. Nature 397(6720), 601–604 (1999)CrossRefGoogle Scholar
  53. 53.
    C. Drechsel-Grau, D. Marx, Collective proton transfer in ordinary ice: local environments, temperature dependence and deuteration effects. Phys. Chem. Chem. Phys. 19(4), 2623–2635 (2017)PubMedCrossRefGoogle Scholar
  54. 54.
    J.M. Heuft, E.J. Meijer, Density functional theory based molecular-dynamics study of aqueous chloride solvation. J. Chem. Phys. 119(22), 11788–11791 (2003)CrossRefGoogle Scholar
  55. 55.
    J.M. Heuft, E.J. Meijer, A density functional theory based study of the microscopic structure and dynamics of aqueous HCl solutions. Phys. Chem. Chem. Phys. 8(26), 3116–3123 (2006)PubMedCrossRefGoogle Scholar
  56. 56.
    S. Raugei, M.L. Klein, An ab initio study of water molecules in the bromide ion solvation shell. J. Chem. Phys. 116(1), 196–202 (2002)CrossRefGoogle Scholar
  57. 57.
    M. Tuckerman, K. Laasonen, M. Sprik, M. Parrinello, Ab initio molecular dynamics simulation of the solvation and transport of hydronium and hydroxyl ions in water. J. Chem. Phys. 103(1), 150–161 (1995)CrossRefGoogle Scholar
  58. 58.
    D. Hollas, O. Svoboda, P. Slavíček, Fragmentation of HCl–water clusters upon ionization: Non-adiabatic ab initio dynamics study. Chem. Phys. Lett. 622, 80–85 (2015)CrossRefGoogle Scholar
  59. 59.
    R. Shi, K. Li, Y. Su, L. Tang, X. Huang, L. Sai, J. Zhao, Revisit the landscape of protonated water clusters H + (H2O) n with n = 10–17: An ab initio global search. J. Chem. Phys. 148(17), 174305 (2018)PubMedCrossRefGoogle Scholar
  60. 60.
    C.T. Wolke, J.A. Fournier, L.C. Dzugan, M.R. Fagiani, T.T. Odbadrakh, H. Knorke, K.D. Jordan, A.B. McCoy, K.R. Asmis, M.A. Johnson, Spectroscopic snapshots of the proton-transfer mechanism in water. Science 354(6316), 1131–1135 (2016)PubMedCrossRefGoogle Scholar
  61. 61.
    O. Teschke, J. Roberto de Castro, J.F. Valente Filho, D.M. Soares, Hydrated excess proton raman spectral densities probed in floating water bridges. ACS Omega. 3(10), 13977–13983 (2018)PubMedCrossRefGoogle Scholar
  62. 62.
    E. Codorniu-Hernández, P.G. Kusalik, Probing the mechanisms of proton transfer in liquid water. Proc. Natl. Acad. Sci. 110(34), 13697–13698 (2013)PubMedCrossRefGoogle Scholar
  63. 63.
    X. Kong, A. Waldner, F. Orlando, L. Artiglia, T. Huthwelker, M. Ammann, T. Bartels-Rausch, Coexistence of physisorbed and solvated HCl at warm ice surfaces. J. Phys. Chem. Lett. 8(19), 4757–4762 (2017)PubMedCrossRefGoogle Scholar
  64. 64.
    T. Lewis, B. Winter, A.C. Stern, M.D. Baer, C.J. Mundy, D.J. Tobias, J.C. Hemminger, Does nitric acid dissociate at the aqueous solution surface? J. Phys. Chem. C 115(43), 21183–21190 (2011)CrossRefGoogle Scholar
  65. 65.
    K. Dong, S. Zhang, Hydrogen bonds: a structural insight into ionic liquids. Chem. A Eur. J. 18(10), 2748–2761 (2012)CrossRefGoogle Scholar
  66. 66.
    K. Dong, S. Zhang, Q. Wang, A new class of ion-ion interaction: Z-bond. Sci. China Chem. 58(3), 495–500 (2015)CrossRefGoogle Scholar
  67. 67.
    D.B. Wong, C.H. Giammanco, E.E. Fenn, M.D. Fayer, Dynamics of isolated water molecules in a sea of ions in a room temperature ionic liquid. J. of Phys. Chem. B 117(2), 623–635 (2013)CrossRefGoogle Scholar
  68. 68.
    X. Zhang, Y. Xu, Y. Zhou, Y. Gong, Y. Huang, C.Q. Sun, HCl, KCl and KOH solvation resolved solute-solvent interactions and solution surface stress. Appl. Surf. Sci. 422, 475–481 (2017)CrossRefGoogle Scholar
  69. 69.
    X. Zhang, T. Yan, Y. Huang, Z. Ma, X. Liu, B. Zou, C.Q. Sun, Mediating relaxation and polarization of hydrogen-bonds in water by NaCl salting and heating. Phys. Chem. Chem. Phys. 16(45), 24666–24671 (2014)PubMedCrossRefGoogle Scholar
  70. 70.
    Y. Gong, Y. Zhou, H. Wu, D. Wu, Y. Huang, C.Q. Sun, Raman spectroscopy of alkali halide hydration: hydrogen bond relaxation and polarization. J. Raman Spectrosc. 47(11), 1351–1359 (2016)CrossRefGoogle Scholar
  71. 71.
    Y. Zhou, D. Wu, Y. Gong, Z. Ma, Y. Huang, X. Zhang, C.Q. Sun, Base-hydration-resolved hydrogen-bond networking dynamics: Quantum point compression. J. Mol. Liq. 223, 1277–1283 (2016)CrossRefGoogle Scholar
  72. 72.
    M. Druchok, M. Holovko, Structural changes in water exposed to electric fields: A molecular dynamics study. J. Mol. Liq. 212, 969–975 (2015)CrossRefGoogle Scholar
  73. 73.
    C.Q. Sun, Perspective:Unprecedented O:⇔: O compression and H↔H fragilization in Lewis solutions. Phys. Chem. Chem. Phys. 21, 2234–2250 (2019)PubMedCrossRefGoogle Scholar
  74. 74.
    Y. Zhou, Y. Huang, Y. Gong, C.Q. Sun, O:H–O bond electrification in the aqueous YI solutions (Y = Na, K, Rb, Cs). Communicated, (2016)Google Scholar
  75. 75.
    J.P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron-gas correlation-energy. Phy. Rev. B 45(23), 13244–13249 (1992)CrossRefGoogle Scholar
  76. 76.
    F. Ortmann, F. Bechstedt, W.G. Schmidt, Semiempirical van der Waals correction to the density functional description of solids and molecular structures. Phys. Rev. B 73(20), 205101 (2006)CrossRefGoogle Scholar
  77. 77.
    E.B. Wilson, J.C. Decius, P.C. Cross, Molecular Vibrations (Dover, New York, 1980)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Electrical and Electronic EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.Yangtze Normal UniversityChongqingChina

Personalised recommendations