• Chang Q SunEmail author
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 121)


Overwhelming contributions have been made since two-century-long ago to understanding the solvation dynamics, solute-solute and solute-solvent molecular interactions, and solution properties from various perspectives. Limited knowledge about the solvent water structure and hydrogen bond cooperativity (O:H–O or HB with “:” being the nonbonding electron lone pairs pertained to oxygen upon sp3-orbital hybridization) hindered the progress. Amplification of the phonon spectroscopy to spectrometrics and of the perspective of molecular motion to hydration bonding dynamics would be necessary towards the solute capabilities of transiting the ordinary O:H–O bond to the hydrating states and their impact to the performance of solutions.


  1. 1.
    C.Q. Sun, Aqueous charge injection: solvation bonding dynamics, molecular nonbond interactions, and extraordinary solute capabilities. Int. Rev. Phys. Chem. 37(3–4), 363–558 (2018)CrossRefGoogle Scholar
  2. 2.
    P. Jungwirth, P.S. Cremer, Beyond Hofmeister. Nat. Chem. 6(4), 261–263 (2014)PubMedCrossRefGoogle Scholar
  3. 3.
    C.M. Johnson, S. Baldelli, Vibrational sum frequency spectroscopy studies of the influence of solutes and phospholipids at vapor/water interfaces relevant to biological and environmental systems. Chem. Rev. 114(17), 8416–8446 (2014)PubMedCrossRefGoogle Scholar
  4. 4.
    P. Lo Nostro, B.W. Ninham, Hofmeister phenomena: an update on ion specificity in biology. Chem. Rev. 112(4), 2286–2322 (2012)PubMedCrossRefGoogle Scholar
  5. 5.
    J. Ostmeyer, S. Chakrapani, A.C. Pan, E. Perozo, B. Roux, Recovery from slow inactivation in K channels is controlled by water molecules. Nature 501(7465), 121–124 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    J. Kim, D. Won, B. Sung, W. Jhe, Observation of universal solidification in the elongated water nanomeniscus. J. Phys. Chem. Lett., 737–742 (2014)PubMedCrossRefGoogle Scholar
  7. 7.
    M. van der Linden, B.O. Conchúir, E. Spigone, A. Niranjan, A. Zaccone, P. Cicuta, Microscopic origin of the Hofmeister effect in gelation kinetics of colloidal silica. J. Phys. Chem. Lett., 2881–2887 (2015)Google Scholar
  8. 8.
    W.J. Xie, Y.Q. Gao, A simple theory for the Hofmeister series. J. Phys. Chem. Lett., 4247–4252 (2013)PubMedCrossRefGoogle Scholar
  9. 9.
    F. Hofmeister, Zur Lehre von der Wirkung der Salze. Archiv f experiment Pathol u Pharmakol 25(1), 1–30 (1888)CrossRefGoogle Scholar
  10. 10.
    F. Hofmeister, Concerning regularities in the protein-precipitating effects of salts and the relationship of these effects to the physiological behaviour of salts. Arch. Exp. Pathol. Pharmacol. 24, 247–260 (1888)CrossRefGoogle Scholar
  11. 11.
    S. Arrhenius, Development of the Theory of Electrolytic Dissociation. Nobel Lecture (1903)Google Scholar
  12. 12.
    J. Brönsted, Part III. Neutral salt and activity effects. The theory of acid and basic catalysis. Trans. Faraday Soc. 24, 630–640 (1928)CrossRefGoogle Scholar
  13. 13.
    T.M. Lowry, I.J. Faulkner, CCCXCIX.—Studies of dynamic isomerism. Part XX. Amphoteric solvents as catalysts for the mutarotation of the sugars. J. Chem. Soc. Trans. 127, 2883–2887 (1925)CrossRefGoogle Scholar
  14. 14.
    G.N. Lewis, Acids and bases. J. Franklin Inst. 226(3), 293–313 (1938)CrossRefGoogle Scholar
  15. 15.
    D. Chandler, From 50 years ago, the birth of modern liquid-state science. Annu. Rev. Phys. Chem. 68, 19–38 (2017)PubMedCrossRefGoogle Scholar
  16. 16.
    J. Li, Inelastic neutron scattering studies of hydrogen bonding in ices. J. Chem. Phys. 105(16), 6733–6755 (1996)CrossRefGoogle Scholar
  17. 17.
    I. Michalarias, I. Beta, R. Ford, S. Ruffle, J.C. Li, Inelastic neutron scattering studies of water in DNA. Appl. Phys. A Mater. Sci. Process. 74, s1242–s1244 (2002)CrossRefGoogle Scholar
  18. 18.
    J.C. Li, A.I. Kolesnikov, Neutron spectroscopic investigation of dynamics of water ice. J. Mol. Liq. 100(1), 1–39 (2002)CrossRefGoogle Scholar
  19. 19.
    Q. Zeng, T. Yan, K. Wang, Y. Gong, Y. Zhou, Y. Huang, C.Q. Sun, B. Zou, Compression icing of room-temperature NaX solutions (X = F, Cl, Br, I). Phys. Chem. Chem. Phys. 18(20), 14046–14054 (2016)PubMedCrossRefGoogle Scholar
  20. 20.
    X. Zhang, Y. Zhou, Y. Gong, Y. Huang, C. Sun, Resolving H(Cl, Br, I) capabilities of transforming solution hydrogen-bond and surface-stress. Chem. Phys. Lett. 678, 233–240 (2017)CrossRefGoogle Scholar
  21. 21.
    Y. Zhou, D. Wu, Y. Gong, Z. Ma, Y. Huang, X. Zhang, C.Q. Sun, Base-hydration-resolved hydrogen-bond networking dynamics: quantum point compression. J. Mol. Liq. 223, 1277–1283 (2016)CrossRefGoogle Scholar
  22. 22.
    J. Chen, C. Yao, X. Liu, X. Zhang, C.Q. Sun, Y. Huang, H2O2 and HO- solvation dynamics: solute capabilities and solute-solvent molecular interactions. Chem. Select 2(27), 8517–8523 (2017)Google Scholar
  23. 23.
    Y. Zhou, Y. Gong, Y. Huang, Z. Ma, X. Zhang, C.Q. Sun, Fraction and stiffness transition from the H-O vibrational mode of ordinary water to the HI, NaI, and NaOH hydration states. J. Mol. Liq. 244, 415–421 (2017)CrossRefGoogle Scholar
  24. 24.
    Y.L. Huang, X. Zhang, Z.S. Ma, Y.C. Zhou, W.T. Zheng, J. Zhou, C.Q. Sun, Hydrogen-bond relaxation dynamics: resolving mysteries of water ice. Coord. Chem. Rev. 285, 109–165 (2015)CrossRefGoogle Scholar
  25. 25.
    Y. Zhou, Y. Huang, Z. Ma, Y. Gong, X. Zhang, Y. Sun, C.Q. Sun, Water molecular structure-order in the NaX hydration shells (X = F, Cl, Br, I). J. Mol. Liq. 221, 788–797 (2016)CrossRefGoogle Scholar
  26. 26.
    Y. Gong, Y. Zhou, H. Wu, D. Wu, Y. Huang, C.Q. Sun, Raman spectroscopy of alkali halide hydration: hydrogen bond relaxation and polarization. J. Raman Spectrosc. 47(11), 1351–1359 (2016)CrossRefGoogle Scholar
  27. 27.
    S. Dixit, J. Crain, W. Poon, J. Finney, A. Soper, Molecular segregation observed in a concentrated alcohol–water solution. Nature 416(6883), 829 (2002)PubMedCrossRefGoogle Scholar
  28. 28.
    A. Mandal, K. Ramasesha, L. De Marco, A. Tokmakoff, Collective vibrations of water-solvated hydroxide ions investigated with broadband 2DIR spectroscopy. J. Chem. Phys. 140(20), 204508 (2014)PubMedCrossRefGoogle Scholar
  29. 29.
    S.T. Roberts, P.B. Petersen, K. Ramasesha, A. Tokmakoff, I.S. Ufimtsev, T.J. Martinez, Observation of a Zundel-like transition state during proton transfer in aqueous hydroxide solutions. Proc. Natl. Acad. Sci. 106(36), 15154–15159 (2009)PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    M. Thämer, L. De Marco, K. Ramasesha, A. Mandal, A. Tokmakoff, Ultrafast 2D IR spectroscopy of the excess proton in liquid water. Science 350(6256), 78–82 (2015)PubMedCrossRefGoogle Scholar
  31. 31.
    S. Park, M.D. Fayer, Hydrogen bond dynamics in aqueous NaBr solutions. Proc. Natl. Acad. Sci. U.S.A. 104(43), 16731–16738 (2007)PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    M.E. Tuckerman, D. Marx, M. Parrinello, The nature and transport mechanism of hydrated hydroxide ions in aqueous solution. Nature 417(6892), 925–929 (2002)PubMedCrossRefGoogle Scholar
  33. 33.
    S.T. van der Post, C.S. Hsieh, M. Okuno, Y. Nagata, H.J. Bakker, M. Bonn, J. Hunger, Strong frequency dependence of vibrational relaxation in bulk and surface water reveals sub-picosecond structural heterogeneity. Nat. Commun. 6, 8384 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    D. Laage, T. Elsaesser, J.T. Hynes, Water dynamics in the hydration shells of biomolecules. Chem. Rev. 117(16), 10694–10725 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Y.R. Shen, V. Ostroverkhov, Sum-frequency vibrational spectroscopy on water interfaces: polar orientation of water molecules at interfaces. Chem. Rev. 106(4), 1140–1154 (2006)CrossRefGoogle Scholar
  36. 36.
    H. Chen, W. Gan, B.-H. Wu, D. Wu, Y. Guo, and H.-F. Wang, Determination of structure and energetics for Gibbs surface adsorption layers of binary liquid mixture 1. Acetone + water. J. Phys. Chem. B 109(16), 8053–8063 (2005)PubMedCrossRefGoogle Scholar
  37. 37.
    S. Nihonyanagi, S. Yamaguchi, T. Tahara, Ultrafast dynamics at water interfaces studied by vibrational sum frequency generation spectroscopy. Chem. Rev. 117(16), 10665–10693 (2017)PubMedCrossRefGoogle Scholar
  38. 38.
    N. Ji, V. Ostroverkhov, C. Tian, Y. Shen, Characterization of vibrational resonances of water-vapor interfaces by phase-sensitive sum-frequency spectroscopy. Phys. Rev. Lett. 100(9), 096102 (2008)PubMedCrossRefGoogle Scholar
  39. 39.
    S. Nihonyanagi, S. Yamaguchi, T. Tahara, Direct evidence for orientational flip-flop of water molecules at charged interfaces: A heterodyne-detected vibrational sum frequency generation study. J. Chem. Phys. 130(20), 204704 (2009)Google Scholar
  40. 40.
    Y.R. Shen, Basic theory of surface sum-frequency generation. J. Phys. Chem. C 116, 15505–15509 (2012)CrossRefGoogle Scholar
  41. 41.
    J.A. Fournier, W.B. Carpenter, N.H.C. Lewis, A. Tokmakoff, Broadband 2D IR spectroscopy reveals dominant asymmetric H5O2 + proton hydration structures in acid solutions. Nat. Chem. 10, 932–937 (2018)PubMedCrossRefGoogle Scholar
  42. 42.
    C.Q. Sun, X. Zhang, J. Zhou, Y. Huang, Y. Zhou, W. Zheng, Density, elasticity, and stability anomalies of water molecules with fewer than four neighbors. J. Phys. Chem. Lett. 4, 2565–2570 (2013)PubMedCrossRefGoogle Scholar
  43. 43.
    X. Zhang, T. Yan, Y. Huang, Z. Ma, X. Liu, B. Zou, C.Q. Sun, Mediating relaxation and polarization of hydrogen-bonds in water by NaCl salting and heating. Phys. Chem. Chem. Phys. 16(45), 24666–24671 (2014)PubMedCrossRefGoogle Scholar
  44. 44.
    Y. Gavrilov, J.D. Leuchter, Y. Levy, On the coupling between the dynamics of protein and water. Phys. Chem. Chem. Phys. 19(12), 8243–8257 (2017)PubMedCrossRefGoogle Scholar
  45. 45.
    C.Q. Sun, X. Zhang, X. Fu, W. Zheng, J.-L. Kuo, Y. Zhou, Z. Shen, J. Zhou, Density and phonon-stiffness anomalies of water and ice in the full temperature range. J. Phys. Chem. Lett. 4, 3238–3244 (2013)PubMedCrossRefGoogle Scholar
  46. 46.
    F. Li, Z. Li, S. Wang, S. Li, Z. Men, S. Ouyang, C. Sun, Structure of water molecules from Raman measurements of cooling different concentrations of NaOH solutions. Spectrochim. Acta A 183, 425–430 (2017)CrossRefGoogle Scholar
  47. 47.
    C.D. Cappa, J.D. Smith, K.R. Wilson, B.M. Messer, M.K. Gilles, R.C. Cohen, R.J. Saykally, Effects of alkali metal halide salts on the hydrogen bond network of liquid water. J. Phys. Chem. B 109(15), 7046–7052 (2005)PubMedCrossRefGoogle Scholar
  48. 48.
    W.J. Glover, B.J. Schwartz, Short-range electron correlation stabilizes noncavity solvation of the hydrated electron. J. Chem. Theor. Comput. 12(10), 5117–5131 (2016)CrossRefGoogle Scholar
  49. 49.
    T. Iitaka, T. Ebisuzaki, Methane hydrate under high pressure. Phys. Rev. B 68(17), 172105 (2003)CrossRefGoogle Scholar
  50. 50.
    Y. Marcus, Effect of ions on the structure of water: structure making and breaking. Chem. Rev. 109(3), 1346–1370 (2009)PubMedCrossRefGoogle Scholar
  51. 51.
    J.D. Smith, R.J. Saykally, P.L. Geissler, The effects of dissolved halide anions on hydrogen bonding in liquid water. J. Am. Chem. Soc. 129(45), 13847–13856 (2007)PubMedCrossRefGoogle Scholar
  52. 52.
    K. Wark, Generalized Thermodynamic Relationships in the Thermodynamics, 5th edn. (McGraw-Hill, Inc., New York., 1988Google Scholar
  53. 53.
    O. Alduchov, R. Eskridge, Improved Magnus’ Form Approximation of Saturation Vapor Pressure, in Department of Commerce (Asheville, NC (United States), 1997)CrossRefGoogle Scholar
  54. 54.
    G. Jones, M. Dole, The viscosity of aqueous solutions of strong electrolytes with special reference to barium chloride. J. Am. Chem. Soc. 51(10), 2950–2964 (1929)CrossRefGoogle Scholar
  55. 55.
    K. Wynne, The Mayonnaise effect. J. Phys. Chem. Lett. 8(24), 6189–6192 (2017)PubMedCrossRefGoogle Scholar
  56. 56.
    J.C. Araque, S.K. Yadav, M. Shadeck, M. Maroncelli, C.J. Margulis, How is diffusion of neutral and charged tracers related to the structure and dynamics of a room-temperature ionic liquid? Large deviations from Stokes-Einstein behavior explained. J. Phys. Chem. B 119(23), 7015–7029 (2015)PubMedCrossRefGoogle Scholar
  57. 57.
    K. Amann-Winkel, R. Böhmer, F. Fujara, C. Gainaru, B. Geil, T. Loerting, Colloquiu: water’s controversial glass transitions. Rev. Modern Phys. 88(1), 011002 (2016)CrossRefGoogle Scholar
  58. 58.
    C. Branca, S. Magazu, G. Maisano, P. Migliardo, E. Tettamanti, Anomalous translational diffusive processes in hydrogen-bonded systems investigated by ultrasonic technique, Raman scattering and NMR. Phys. B 291(1), 180–189 (2000)CrossRefGoogle Scholar
  59. 59.
    J.A. Sellberg, C. Huang, T.A. McQueen, N.D. Loh, H. Laksmono, D. Schlesinger, R.G. Sierra, D. Nordlund, C.Y. Hampton, D. Starodub, D.P. DePonte, M. Beye, C. Chen, A.V. Martin, A. Barty, K.T. Wikfeldt, T.M. Weiss, C. Caronna, J. Feldkamp, L.B. Skinner, M.M. Seibert, M. Messerschmidt, G.J. Williams, S. Boutet, L.G. Pettersson, M.J. Bogan, A. Nilsson, Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature. Nature 510(7505), 381–384 (2014)PubMedCrossRefGoogle Scholar
  60. 60.
    Z. Ren, A.S. Ivanova, D. Couchot-Vore, S. Garrett-Roe, Ultrafast structure and dynamics in ionic liquids: 2D-IR spectroscopy probes the molecular origin of viscosity. J. Phys. Chem. Lett. 5(9), 1541–1546 (2014)PubMedCrossRefGoogle Scholar
  61. 61.
    S. Park, M. Odelius, K.J. Gaffney, Ultrafast dynamics of hydrogen bond exchange in aqueous ionic solutions. J. Phys. Chem. B 113(22), 7825–7835 (2009)PubMedCrossRefGoogle Scholar
  62. 62.
    J. Guo, X.-Z. Li, J. Peng, E.-G. Wang, Y. Jiang, Atomic-scale investigation of nuclear quantum effects of surface water: experiments and theory. Prog. Surf. Sci. 92(4), 203–239 (2017)CrossRefGoogle Scholar
  63. 63.
    J. Peng, J. Guo, R. Ma, X. Meng, Y. Jiang, Atomic-scale imaging of the dissolution of NaCl islands by water at low temperature. J. Phys.: Condens. Matter 29(10), 104001 (2017)Google Scholar
  64. 64.
    J. Peng, J. Guo, P. Hapala, D. Cao, R. Ma, B. Cheng, L. Xu, M. Ondráček, P. Jelínek, E. Wang, Y. Jiang, Weakly perturbative imaging of interfacial water with submolecular resolution by atomic force microscopy. Nat. Commun. 9(1), 122 (2018)PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    C.Q. Sun, Y. Sun, The attribute of water: single notion, multiple myths. Springer Ser. Chem. Phys., vol. 113 (Springer, Heidelberg, 2016), 494ppGoogle Scholar
  66. 66.
    Y.L. Huang, X. Zhang, Z.S. Ma, G.H. Zhou, Y.Y. Gong, C.Q. Sun, Potential paths for the hydrogen-bond relaxing with (H2O)(N) cluster size. J. Phys. Chem. C 119(29), 16962–16971 (2015)CrossRefGoogle Scholar
  67. 67.
    Y. Huang, X. Zhang, Z. Ma, Y. Zhou, G. Zhou, C.Q. Sun, Hydrogen-bond asymmetric local potentials in compressed ice. J. Phys. Chem. B 117(43), 13639–13645 (2013)PubMedCrossRefGoogle Scholar
  68. 68.
    X.J. Liu, M.L. Bo, X. Zhang, L. Li, Y.G. Nie, H. TIan, Y. Sun, S. Xu, Y. Wang, W. Zheng, C.Q. Sun, Coordination-resolved electron spectrometrics. Chem. Rev. 115(14), 6746–6810 (2015)PubMedCrossRefGoogle Scholar
  69. 69.
    C.Q. Sun, Atomic Scale Purification of Electron Spectroscopic Information (US 2017 patent No. 9,625,397B2). United States (2017)Google Scholar
  70. 70.
    Y. Gong, Y. Zhou, C. Sun, Phonon Spectrometrics of the Hydrogen Bond (O:H–O) Segmental Length and Energy Relaxation Under Excitation, B.o. intelligence, Editor. China (2018)Google Scholar
  71. 71.
    C.Q. Sun, Size dependence of nanostructures: impact of bond order deficiency. Prog. Solid State Chem. 35(1), 1–159 (2007)CrossRefGoogle Scholar
  72. 72.
    Y. Zhou, Yuan Zhong, X. Liu, Y. Huang, X. Zhang, C.Q. Sun, NaX solvation bonding dynamics: hydrogen bond and surface stress transition (X = HSO4, NO3, ClO4, SCN). J. Mol. Liq. 248(432–438) (2017)Google Scholar
  73. 73.
    Y. Gong, Y. Xu, Y. Zhou, C. Li, X. Liu, L. Niu, Y. Huang, X. Zhang, C.Q. Sun, Hydrogen bond network relaxation resolved by alcohol hydration (methanol, ethanol, and glycerol). J. Raman Spectrosc. 48(3), 393–398 (2017)CrossRefGoogle Scholar
  74. 74.
    C. Ni, Y. Gong, X. Liu, C.Q. Sun, Z. Zhou, The anti-frozen attribute of sugar solutions. J. Mol. Liq. 247, 337–344 (2017)CrossRefGoogle Scholar
  75. 75.
    J. Chen, C. Yao, X. Zhang, C.Q. Sun, Y. Huang, Hydrogen bond and surface stress relaxation by aldehydic and formic acidic molecular solvation. J. Mol. Liq. 249, 494–500 (2018)CrossRefGoogle Scholar
  76. 76.
    Q. Zeng, C. Yao, K. Wang, C.Q. Sun, B. Zou, Room-temperature NaI/H2O compression icing: solute–solute interactions. PCCP 19, 26645–26650 (2017)PubMedCrossRefGoogle Scholar
  77. 77.
    C.Q. Sun, J. Chen, X. Liu, X. Zhang, Y. Huang, (Li, Na, K)OH hydration bonding thermodynamics: solution self-heating. Chem. Phys. Lett. 696, 139–143 (2018)CrossRefGoogle Scholar
  78. 78.
    C.Q. Sun, J. Chen, Y. Gong, X. Zhang, Y. Huang, (H, Li)Br and LiOH solvation bonding dynamics: molecular nonbond interactions and solute extraordinary capabilities. J. Phys. Chem. B 122(3), 1228–1238 (2018)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Electrical and Electronic EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.Yangtze Normal UniversityChongqingChina

Personalised recommendations