Role of Chemical Exposure in Oxidant-Mediated Lung Diseases

  • Satabdi Banerjee
  • Suman K. Nandy
  • Sajal Chakraborti


The population-based epidemiological studies indicate a clear and close association between exposure to oxidant pollutants and commencement of cardiopulmonary diseases. The inhaled oxidants induce an avalanche of free radical production that affects several pathophysiological processes characterized by decrease in respiratory capacity, airway inflammation, etc. The pollutant exposure response shows variation in an age-dependent individualistic way. This review addresses different sources of pollutants, their contribution to reactive oxygen species (ROS) production, the cell- and tissue-specific effects of ROS, modulation of signalling cascades and onset of lung diseases.



SKN is thankful to the Department of Biotechnology, Ministry of Science and Technology, Government of India, for funding, and the Bioinformatics Centre (BIF), NEHU, Tura Campus, for providing the infrastructure.


  1. Aldridge RE, Chan T, van Dalen CJ et al (2002) Eosinophil peroxidase produces hypobromous acid in the airways of stable asthmatics. Free Radic Biol Med 33:847–856PubMedCrossRefGoogle Scholar
  2. Ambrose JA, Barua RS (2004) The pathophysiology of cigarette smoking and cardiovascular disease. An update. J Am Coll Cardiol 43:1731–1737PubMedCrossRefGoogle Scholar
  3. Anderson HR, Atkinson RW, Bremner SA et al (2003) Particulate air pollution and hospital admissions for cardiorespiratory diseases: are the elderly at greater risk? Eur Respir J 21:39s–46sCrossRefGoogle Scholar
  4. Anttila S, Raunio H, Hakkola J (2011) Cytochrome P450-mediated pulmonary metabolism of carcinogens: regulation and cross-talk in lung carcinogenesis. Am J Respir Cell Mol Biol 44:583–590PubMedCrossRefGoogle Scholar
  5. Arndt PG, Young SK, Lieber JG et al (2005) Inhibition of c-Jun N-terminal kinase limits lipopolysaccharide induced pulmonary neutrophil influx. Am J Respir Crit Care Med 171:978–986PubMedCrossRefGoogle Scholar
  6. Asami S, Manabe H, Miyake J et al (1997) Cigarette smoking induces anincrease in oxidative DNA damage, 8-hydroxydeoxyguanosine, in a central site of human lung. Carcinogenesis 18:1763–1766PubMedCrossRefGoogle Scholar
  7. Ballinger CA, Cueto R, Squadrito G et al (2005) Antioxidant-mediated augmentation of ozone-induced membrane oxidation. Free Radic Biol Med 38:515–526PubMedCrossRefGoogle Scholar
  8. Band P, Feldstein M, Saccomanno G et al (1980) Potentiation of cigarette smoking and radiation. Evidence from a sputum cytology survey among uranium miners and controls. Cancer 45:1273–1277PubMedCrossRefGoogle Scholar
  9. Baulig A, Garlatti M, Bonvallot V et al (2003) Involvement of reactive oxygen species in the metabolic pathways triggered by diesel exhaust particles in human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 285:L671–L679PubMedCrossRefGoogle Scholar
  10. Beckman JS, Crow JP (1993) Pathological implications of nitric oxide, superoxide and peroxynitrite formation. Biochem Soc Trans 21:330–334PubMedCrossRefGoogle Scholar
  11. Bermudez E, Stone K, Carter KM et al (1994) Environmental tobacco smoke is just as damaging to DNA as mainstream smoke. Environ Health Perspect 102:870–874PubMedPubMedCentralGoogle Scholar
  12. Bridges JP, Davis HW, Damodarasamy M et al (2000) Pulmonary surfactant proteins A and D are potent endogenous inhibitors of lipid peroxidation and oxidative cellular injury. J Biol Chem 275:38848–38855PubMedCrossRefGoogle Scholar
  13. Cardoso WV (2004) Lung morphogenesis, role of growth factors and transcription factors. In: Pinkerton K, Harding R (eds) The lung: development, aging and the environment. Elsevier Academic Press, London, pp 3–11CrossRefGoogle Scholar
  14. Charrier JG, Anastasio C (2011) Impacts of antioxidants on hydroxyl radical production from individual and mixed transition metals in a surrogate lung fluid. Atmos Environ 45:7555–7562PubMedCentralCrossRefPubMedGoogle Scholar
  15. Charrier JG, McFall AS, Richards-Henderson NK et al (2014) Hydrogen peroxide formation in a surrogate lung fluid by transition metals and quinones present in particulate matter. Environ Sci Technol 48:7010–7017PubMedPubMedCentralCrossRefGoogle Scholar
  16. Chen YW, Yang YT, Hung DZ et al (2012) Paraquat induces lung alveolar epithelial cell apoptosis via Nrf-2-regulated mitochondrial dysfunction and ER stress. Arch Toxicol 86:1547–1558PubMedCrossRefGoogle Scholar
  17. Churg A, Xie C, Wang X et al (2005) Air pollution particles activate NF-kappaB on contact with airway epithelial cell surfaces. Toxicol Appl Pharmacol 208:37–45PubMedCrossRefGoogle Scholar
  18. Ciencewicki J, Gowdy K, Krantz QT et al (2007) Diesel exhaust enhanced susceptibility to influenza infection is associated with decreased surfactant protein expression. Inhal Toxicol 19:1121–1133PubMedCrossRefGoogle Scholar
  19. Connor LM, Ballinger CA, Albrecht TB (2004) Interfacial phospholipids inhibit ozone reactive absorption-mediated cytotoxicity in vitro. Am J Phys Lung Cell Mol Phys 286:L1169–L1178Google Scholar
  20. Corradi M, Rubinstein I, Andreoli R et al (2003) Aldehydes in exhaled breath condensate of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 15:1380–1386CrossRefGoogle Scholar
  21. Costa D, Guignard J, Pezerat H et al (1989) Production of free radicals arising from the surface activity of minerals and oxygen. Part II. Arsenites, sulfides, and sulfoarsenites of iron, nickel and copper. Toxicol Ind Health 5:1079–1097PubMedCrossRefGoogle Scholar
  22. Cross CE, Traber M, Eiserich J et al (1999) Micronutrient antioxidants and smoking. Br Med Bull 55:691–704CrossRefGoogle Scholar
  23. Cuzzocrea S, Zingarelli B, Caputi AP (1998) Peroxynitrate-mediated DNA strand breakage activates poly(ADP-ribose) synthetase and causes cellular energy depletion in a nonseptic shock model induced by zymosan in the rat. Shock 9:336–340PubMedCrossRefGoogle Scholar
  24. Dagher Z, Garcon G, Billet S et al (2007) Role of nuclear factor-kappa B activation in the adverse effects induced by air pollution particulate matter (PM2.5) in human epithelial lung cells (L132) in culture. J Appl Toxicol 27:284–290PubMedCrossRefGoogle Scholar
  25. Dalal NS, Newman J, Rack D et al (1995) Hydroxyl radical generation by coal mine dust: possible implications to coal worker’s pneumoconiosis. Free Radic Biol Med 18:11–20PubMedCrossRefGoogle Scholar
  26. Damber L, Larsson LG (1982) Combined effects of mining and smoking in the causation of lung carcinoma: a case-control study in northern Sweden. Acta Radiol Oncol 21:305–313PubMedCrossRefGoogle Scholar
  27. de Burbure CY, Heilier JF, Neve J et al (2007) Lung permeability, antioxidant status, and NO2 inhalation: a selenium supplementation study in rats. J Toxicol Environ Health A 70:284–294PubMedCrossRefGoogle Scholar
  28. Dellinger B, Pryor WA, Cueto R et al (2001) Role of free radicals in the toxicity of airborne fine particulate matter. Chem Res Toxicol 14:1371–1377PubMedCrossRefGoogle Scholar
  29. Dominici F, Peng RD, Bell ML et al (2006) Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. JAMA 295:1127–1134PubMedPubMedCentralCrossRefGoogle Scholar
  30. Downey GP, Butler JR, Tapper H et al (1998) Importance of MEK in neutrophil microbicidal responsiveness. J Immunol 160:434–443PubMedPubMedCentralGoogle Scholar
  31. Downs CA, Trac DQ, Kreiner LH et al (2013) Ethanol alters alveolar fluid balance via Nadph oxidase (NOX) signaling to epithelial sodium channels (ENaC) in the lung. PLoS One 8:e54750PubMedPubMedCentralCrossRefGoogle Scholar
  32. Elsayed NM, Gorbunov NV, Mayorga MA et al (2002) Significant pulmonary response to a brief high-level, nose-only nitrogen dioxide exposure: an interspecies dosimetry perspective. Toxicol Appl Pharmacol 184:1–10PubMedCrossRefPubMedCentralGoogle Scholar
  33. Elwood JM, Pearson JCG, Skippen DH et al (1984) Alcohol, smoking, social and occupational factors in the aetiology of cancer of the oral cavity, pharynx and larynx. Int J Cancer 34:603–612PubMedCrossRefPubMedCentralGoogle Scholar
  34. Emelyanov A, Fedoseev G, Abulimity A et al (2001) Elevated concentrations of exhaled hydrogen peroxide in asthmatic patients. Chest 120:1136–1139PubMedCrossRefPubMedCentralGoogle Scholar
  35. Ergonul Z, Erdem A, Balkanci ZD et al (2007) Vitamin E protects against lipid peroxidation due to old-SO2 coexposure in mouse lung. Inhal Toxicol 19:161–168PubMedCrossRefPubMedCentralGoogle Scholar
  36. Franceschi S, Levi F, La Vecchia C et al (1999) Comparison of the effect of smoking and alcohol drinking between oral and pharyngeal cancer. Int J Cancer 83:1–4PubMedCrossRefPubMedCentralGoogle Scholar
  37. Frei B, Forte TM, Ames BN et al (1991) Gas phase oxidants of cigarette smoke induce lipid peroxidation and changes in lipoprotein properties in human blood plasma. Biochem J 277:133–138PubMedPubMedCentralCrossRefGoogle Scholar
  38. Gray JP, Mishin V, Heck DE et al (2010) Inhibition of NADPH cytochrome P450 reductase by the model sulfur mustard vesicant 2-chloroethyl ethyl sulfide is associated with increased production of reactive oxygen species. Toxicol Appl Pharmacol 247:76–82PubMedPubMedCentralCrossRefGoogle Scholar
  39. Gurgueira SA, Lawrence J, Coull B et al (2002) Rapid increases in the steady-state concentration of reactive oxygen species in the lungs and heart after particulate air pollution inhalation. Environ Health Perspect 110:749–755PubMedPubMedCentralCrossRefGoogle Scholar
  40. Hamilton RF Jr, Hazbun ME, Jumper CA et al (1996) 4-Hydroxynonenal mimics ozone-induced modulation of macrophage function ex vivo. Am J Respir Cell Mol Biol 15:275–282PubMedCrossRefGoogle Scholar
  41. Hanta I, Kocabas A, Canacankatan N et al (2006) Oxidant-antioxidant balance in patients with COPD. Lung 184:51–55PubMedCrossRefPubMedCentralGoogle Scholar
  42. Haque R, Umstead TM, Ponnuru P et al (2007) Role of surfactant protein-A (SP-A) in lung injury in response to acute ozone exposure of SP-A deficient mice. Toxicol Appl Pharmacol 220:72–82PubMedCrossRefPubMedCentralGoogle Scholar
  43. Hecht SS (1999) Tobacco smoke carcinogens and lung cancer. J Natl Cancer Inst 91:1194–1210PubMedCrossRefPubMedCentralGoogle Scholar
  44. Hoffman D, Hoffmann I (1997) The changing cigarette, 1950–1995. J Toxicol Environ Health 50:307–364CrossRefGoogle Scholar
  45. Hoffmann D, Wynder EL (1986) Chemical constituents and bioactivity of tobacco smoke. IARC Sci Publ 74:145–165Google Scholar
  46. Hollingsworth JW, Maruoka S, Li Z et al (2007) Ambient ozone primes pulmonary innate immunity in mice. J Immunol 179:4367–4375PubMedCrossRefPubMedCentralGoogle Scholar
  47. Huang MF, Lin WL, Ma YC (2005) A study of reactive oxygen species in mainstream of cigarette. Indoor Air 15:135–140CrossRefGoogle Scholar
  48. Ischiropoulos H, Zhu L, Chen J et al (1992) Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Arch Biochem Biophys 298:431–437PubMedCrossRefPubMedCentralGoogle Scholar
  49. Ito K, Inoue S, Hiraku Y et al (2005) Mechanism of site-specific DNA damage induced by ozone. Mutat Res 585:60–70PubMedCrossRefPubMedCentralGoogle Scholar
  50. Jackson JH, Schraufstatter IU, Hyslop PA et al (1987) Role of oxidants in DNA damage: hydroxyl radical mediates the synergistic DNA damaging effects of asbestos and cigarette smoke. J Clin Invest 80:1090–1095PubMedPubMedCentralCrossRefGoogle Scholar
  51. Jung M, Davis WP, Taatjes DJ et al (2000) Asbestos and cigarette smoke cause increased DNA strand breaks and neutrophils in bronchial epithelial cells in vivo. Free Radic Biol Med 28:1295–1299PubMedCrossRefGoogle Scholar
  52. Kafoury RM, Pryor WA, Squadrito GL et al (1998) Lipid ozonation products activate phospholipases A2, C, and D. Toxicol Appl Pharmacol 150:338–349PubMedCrossRefGoogle Scholar
  53. Kafoury RM, Pryor WA, Squadrito GL et al (1999) Induction of inflammatory mediators in human airway epithelial cells by lipid ozonation products. Am J Respir Crit Care Med 160:1934–1942PubMedCrossRefGoogle Scholar
  54. Kaiser J (2000) Evidence mounts that tiny particles can kill. Science 289:22–23PubMedCrossRefGoogle Scholar
  55. Kamp DW, Graceffa P, Pryor WA et al (1992) The role of free radicals in asbestos induced disease. Free Radic Biol Med 12:293–315PubMedCrossRefGoogle Scholar
  56. Kassmann M, Hansel A, Leipold E et al (2008) Oxidation of multiple methionine residues impairs rapid sodium channel inactivation. Pflugers Arch 456:1085–1095PubMedPubMedCentralCrossRefGoogle Scholar
  57. Kelly FJ (2005) Vitamins and respiratory disease: antioxidant micronutrients in pulmonary health and disease. Proc Nutr Soc 64:510–526PubMedCrossRefGoogle Scholar
  58. Kelly FJ, Mudway IS (2003) Protein oxidation at the air-lung interface. Amino Acids 25:375–396PubMedCrossRefGoogle Scholar
  59. Kensler TW, Wakabayashi N, Biswal S (2007) Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 47:89–116PubMedCrossRefGoogle Scholar
  60. Kierstein S, Poulain FR, Cao Y et al (2006) Susceptibility to ozone induced airway inflammation is associated with decreased levels of surfactant protein D. Respir Res 7:85PubMedPubMedCentralCrossRefGoogle Scholar
  61. Kierstein S, Krytska K, Sharma S et al (2008) Ozone inhalation induces exacerbation of eosinophilic airway inflammation and hyperresponsiveness in allergen sensitized mice. Allergy 63:438–446PubMedCrossRefGoogle Scholar
  62. Kirichenko A, Li L, Morandi MT et al (1996) 4-hydroxy-2-nonenal-protein adducts and apoptosis in murine lung cells after acute ozone exposure. Toxicol Appl Pharmacol 141:416–424PubMedCrossRefGoogle Scholar
  63. Kobayashi S, Kuwata K, Sugimoto T et al (2012) Enhanced expression of cystine/glutamate transporter in the lung caused by the oxidative-stress-inducing agent paraquat. Free Radic Biol Med 53:2197–2203PubMedCrossRefGoogle Scholar
  64. Kumagai Y, Shinkai Y, Miura T et al (2012) The chemical biology of naphthoquinones and its environmental implications. Annu Rev Pharmacol Toxicol 52:221–247PubMedCrossRefGoogle Scholar
  65. Lakey PS, Berkemeier T, Tong H et al (2016) Chemical exposure-response relationship between air pollutants and reactive oxygen species in the human respiratory tract. Sci Rep 6:32916PubMedPubMedCentralCrossRefGoogle Scholar
  66. Landolph JR (1999) Role of free radicals in metal-induced carcinogenesis. Met Ion Biol Syst 36:445–483Google Scholar
  67. Lapenna D, de Gioia S, Mezzeti A et al (1995) Cigarette smoke, ferritin, and lipid peroxidation. Am J Respir Crit Care Med 151:431–435PubMedCrossRefGoogle Scholar
  68. Leaderson P, Tagesson C (1990) Cigarette smoke-induced DNA damage in cultured human cells: role of hydroquinone and catechol in the formation of oxidative DNA-adduct, hydroxydeoxyguanosine. Chem Biol Interact 75:71–81CrossRefGoogle Scholar
  69. Leikauf GD, Zhao Q, Zhou S et al (1993) Ozonolysis products of membrane fatty acids activate eicosanoid metabolism in human airway epithelial cells. Am J Respir Cell Mol Biol 9:594–602PubMedCrossRefGoogle Scholar
  70. Lelieveld J, Evans JS, Fnais M et al (2015) The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525:367PubMedCrossRefGoogle Scholar
  71. Li L, Hamilton RF Jr, Kirichenko A et al (1996) 4-Hydroxynonenal-induced cell death in murine alveolar macrophages. Toxicol Appl Pharmacol 139:135–143PubMedCrossRefGoogle Scholar
  72. Liu X, Meng Z (2005) Effects of airborne fine particulate matter on antioxidant capacity and lipid peroxidation in multiple organs of rats. Inhal Toxicol 17:467–473PubMedCrossRefGoogle Scholar
  73. Liu X, Lu J, Liu S (1999) Synergistic induction of hydroxyl radical-induced DNA single-strand breaks by chromium(VI) compounds and cigarette smoke solution. Mutat Res 440:109–117PubMedCrossRefGoogle Scholar
  74. Monteseirin J, Bonilla I, Camacho J et al (2001) Elevated secretion of myeloperoxidase by neutrophils from asthmatic patients: the effect of immunotherapy. J Allergy Clin Immunol 1007:623–626CrossRefGoogle Scholar
  75. Moreno JJ, Foroozesh M, Church DF et al (1992) Release of iron from ferritin by aqueous extracts of cigarette smoke. Chem Res Toxicol 5:116–123PubMedCrossRefGoogle Scholar
  76. Morrow JD, Roberts LJ (1997) The isoprostanes: unique bioactive products of lipid peroxidation. Prog Lipid Res 36:1–21PubMedCrossRefGoogle Scholar
  77. Nakayama T, Church DF, Pryor WA (1989) Quantitative analysis of hydrogen peroxide formed in aqueous cigarette tar extracts. Free Radic Biol Med 7:9–15PubMedCrossRefGoogle Scholar
  78. Neufeld G, Cohen T, Gengrinovitch S et al (1999) Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 13:9–22PubMedCrossRefGoogle Scholar
  79. Nick JA, Avdi NJ, Young SK et al (1999) Selective activation and functional significance of p38alpha mitogen-activated protein kinase in lipopolysaccharide stimulated neutrophils. J Clin Invest 103:851–858PubMedPubMedCentralCrossRefGoogle Scholar
  80. Nowak D, Kasielski M, Antczak A et al (1999) Increased content of thiobarbituric acid-reactive substances and hydrogen peroxide in the expired breath condensate of patients with stable chronic obstructive pulmonary disease: no significant effect of cigarette smoking. Respir Med 93:389–396PubMedCrossRefGoogle Scholar
  81. Panta K, Chattopadyay R, Chattopadyay DJ et al (2000) Vitamin C prevents cigarette smoke-induced oxidative damage in vivo. Free Radic Biol Med 29:115–124CrossRefGoogle Scholar
  82. Peden DB (2002) Pollutants and asthma: role of air toxics. Environ Health Perspect 110(suppl 4):565–568PubMedPubMedCentralCrossRefGoogle Scholar
  83. Pershagen G, Walls S, Taube A et al (1981) On the interaction between occupational arsenic exposure and smoking and its relationship to cancer. Scand J Work Environ Health 7:302–307PubMedCrossRefGoogle Scholar
  84. Pinkerton KE, Joad JP (2006) Influence of air pollution on respiratory health during perinatal development. Clin Exp Pharmacol Physiol 33:269–272PubMedCrossRefGoogle Scholar
  85. Pöschl U, Shiraiwa M (2015) Multiphase chemistry at the atmosphere–biosphere interface influencing climate and public health in the anthropocene. Chem Rev 115:4440–4475PubMedCrossRefGoogle Scholar
  86. Prahalad AK, Inmon J, Dailey LA et al (2001) Air pollution particles mediated oxidative DNA base damage in a cell free system and in human airway epithelial cells in relation to particulate metal content and bioreactivity. Chem Res Toxicol 14:879–887PubMedCrossRefGoogle Scholar
  87. Pryor WA (1992) Biological effects of cigarette smoke, wood smoke, and the smoke from plastics: the use of Electron spin resonance. Free Radic Biol Med 13:659–676PubMedCrossRefGoogle Scholar
  88. Pryor WA, Hales BJ, Premovic PI et al (1983) The radicals in cigarette tar: their nature and suggested physiological implications. Science 220:425–427PubMedCrossRefGoogle Scholar
  89. Pryor WA, Squadrito GL, Friedman M (1995) The cascade mechanism to explain ozone toxicity: the role of lipid ozonation products. Free Radic Biol Med 19:935–941PubMedCrossRefGoogle Scholar
  90. Qi M, Elion EA (2005) MAP kinase pathways. J Cell Sci 118:3569–3572PubMedCrossRefGoogle Scholar
  91. Rahman I, Morrison D, Donaldson K et al (1996) Systemic oxidative stress in asthma, COPD and smokers. Am J Respir Crit Care Med 159:1055–1060CrossRefGoogle Scholar
  92. Reif AE, Heeren T (1999) Consensus on synergism between cigarette smoke and other environmental carcinogens in the causation of lung cancer. Adv Cancer Res 76:161–186PubMedCrossRefGoogle Scholar
  93. Sahin U, Unlü M, Ozgüner F et al (2001) Lipid peroxidation and glutathione peroxidase activity in chronic obstructive pulmonary disease exacerbation: prognostic value of malondialdehyde. J Basic Clin Physiol Pharmacol 12:59–68PubMedCrossRefGoogle Scholar
  94. Saracci R (1987) The interaction of tobacco smoking and other agents in cancer etiology. Epidemiol Rev 9:175–193PubMedCrossRefGoogle Scholar
  95. Suc I, Meilhac O, Lajoie-Mazenc I et al (1998) Activation of EGF receptor by oxidized LDL. FASEB J 12:665–671PubMedCrossRefGoogle Scholar
  96. Taggart C, Cervantes-Laurean D, Kim G et al (2000) Oxidation of either methionine 351 or methionine 358 in alpha 1-antitrypsin causes loss of anti-neutrophil elastase activity. J Biol Chem 275:27258–27265PubMedGoogle Scholar
  97. Tokiwa H, Sera N, Nakanishi Y et al (1999) 8-Hydroxyguanosine formed in human lung tissues and the association with diesel exhaust particles. Free Radic Biol Med 27:1251–1258PubMedCrossRefGoogle Scholar
  98. Tomaki M, Sugiura H, Koarai A et al (2007) Decreased expression of antioxidant enzymes and increased expression of chemokines in COPD lung. Pulm Pharmacol Ther 20:596–605PubMedCrossRefGoogle Scholar
  99. Toygar M, Aydin I, Agilli M et al (2015) The relation between oxidative stress, inflammation, and neopterin in the paraquat-induced lung toxicity. Hum Exp Toxicol 34:198–204PubMedCrossRefGoogle Scholar
  100. Traber MG, van der Vliet A, Reznick AZ et al (2000) Tobacco-related diseases. Is there a role for antioxidant micronutrient supplementation? Clin Chest Med 21:173–187PubMedCrossRefGoogle Scholar
  101. Tsukagoshi H, Kawata T, Shimizu Y (2002) 4-Hydroxy-2-nonenal enhances fibronectin production by IMR-90 human lung fibroblasts partly via activation of epidermal growth factor receptor-linked extracellular signal-regulated kinase p44/42 pathway. Toxicol Appl Pharmacol 184:127–135PubMedCrossRefGoogle Scholar
  102. Uchida K, Shiraishi M, Naito Y et al (1999) Activation of stress signaling pathways by the end product of lipid peroxidation. 4-hydroxy-2-nonenal is a potential inducer of intracellular peroxide production. J Biol Chem 274:2234–2242PubMedCrossRefGoogle Scholar
  103. Valacchi G, Pagnin E, Corbacho AM et al (2004) In vivo ozone exposure induces antioxidant/stress-related responses in murine lung and skin. Free Radic Biol Med 36:673–681PubMedCrossRefGoogle Scholar
  104. Valko M, Leibfritz D, Moncol J et al (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84CrossRefGoogle Scholar
  105. Velsor LW, Postlethwait EM (1997) NO2-induced generation of extracellular reactive oxygen is mediated by epithelial lining layer antioxidants. Am J Phys 273:L1265–L1275Google Scholar
  106. Vineis P, Alavanja M, Buffler P et al (2004) Tobacco smoke and cancer: recent epidemiological evidence. J Natl Cancer Inst 96:99–105CrossRefGoogle Scholar
  107. Wang L, Pinkerton KE (2007) Air pollutant effects on fetal and early postnatal development. Birth Defects Res C 81:144–154CrossRefGoogle Scholar
  108. Ware LB (2006) Pathophysiology of acute lung injury and the acute respiratory distress syndrome. Semin Respir Crit Care Med 27:337–349PubMedCrossRefGoogle Scholar
  109. Williams AS, Issa R, Leung SY et al (2007) Attenuation of ozone induced airway inflammation and hyper-responsiveness by c-Jun NH2 terminal kinase inhibitor SP600125. J Pharmacol Exp Ther 322:351–359PubMedCrossRefGoogle Scholar
  110. Winterbourn CC (2008) Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol 4:278–286CrossRefGoogle Scholar
  111. Wu JP, Chang LW, Yao HT et al (2009) Involvement of oxidative stress and activation of aryl hydrocarbon receptor in elevation of CYP1A1 expression and activity in lung cells and tissues by arsenic: an in vitro and in vivo study. Toxicol Sci 107:385–393PubMedCrossRefGoogle Scholar
  112. Xie J, Fan R, Meng Z (2007) Protein oxidation and DNA-protein crosslink induced by sulfur dioxide in lungs, livers, and hearts from mice. Inhal Toxicol 19:759–765PubMedCrossRefGoogle Scholar
  113. Yargicoglu P, Sahin E, Gumuslu S (2007) The effect of sulfur dioxide inhalation on active avoidance learning, antioxidant status and lipid peroxidation during aging. Neurotoxicol Teratol 29:211–218PubMedCrossRefGoogle Scholar
  114. Yin XJ, Dong CC, Ma JY et al (2004) Suppression of cell-mediated immune responses to listeria infection by repeated exposure to diesel exhaust particles in brown Norway rats. Toxicol Sci 77:263–271PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Satabdi Banerjee
    • 1
  • Suman K. Nandy
    • 2
  • Sajal Chakraborti
    • 3
  1. 1.Department of Environmental ManagementWilliam Carey UniversityShillongIndia
  2. 2.Bioinformatics Infrastructure Facility (BIF), North-Eastern Hill University (NEHU)TuraIndia
  3. 3.Department of Biochemistry & BiophysicsUniversity of KalyaniKalyaniIndia

Personalised recommendations