Infectious Lung Diseases and Endogenous Oxidative Stress

  • Kasturi Sarkar
  • Parames C. SilEmail author


Lower respiratory tract infections, according to the World Health Organization, account for nearly one third of all deaths from infectious diseases. They account for approximately 4 million deaths annually including children and adults and provide a greater disease burden than HIV and malaria. Among the common respiratory diseases, tuberculosis, influenza, and pneumonia are very common and can be life threatening if not treated properly. The causative agent of tuberculosis is the slow-growing bacilli Mycobacterium tuberculosis, while the causative agent of influenza is a segmented genome RNA virus. Pneumonia can be caused by a number of different microorganisms like bacteria, virus, and mycoplasma. In case of the entry of a pathogen in our body, the immune system gets activated, and the phagocytic cells try to eliminate it by generating reactive oxygen and nitrogen species (ROS and RNS) inside the phagosome. These reactive species or respiratory bursts are sufficient to eliminate most of the pathogens, except a few. M. tuberculosis is one such microorganism that has evolved mechanisms to escape this respiratory burst-mediated killing and thus survive and grow inside the macrophages. Infection with M. tuberculosis leads to the destruction of macrophages and release of cytokines, which lead to prolonged immune activation and oxidative stress. In some cases, the bacilli remain dormant inside macrophages for a long time. Flu viruses infect the epithelial cells present in respiratory tract, and the infection site is dependent on the hemagglutinin protein present on their capsid. Destruction of epithelial cells promotes secretion of mucus and activation of immune system leading to the oxidative damage. Community-acquired pneumonia is more serious and difficult to treat. In all these infections, ROS/RNS are developed as a defense mechanism against the pathogen. Persistence of the pathogen for a long time would lead to the uncontrolled production of ROS/RNS which will lead to oxidative stress and tissue damage to the host. Administration of antioxidants along with conventional treatments can be useful in the elimination of the reactive oxygen and nitrogen species.


Tuberculosis Influenza Pneumonia Macrophage Neutrophil Reactive oxygen species Reactive nitrogen species Respiratory burst Oxidative stress Antioxidants 


  1. Aberdein JD, Cole J, Bewley MA, Marriott HM, Dockrell DH (2013) Alveolar macrophages in pulmonary host defence – the unrecognized role of apoptosis as a mechanism of intracellular bacterial killing. Clin Exp Immunol 174(2):193–202PubMedPubMedCentralGoogle Scholar
  2. Akaike T, Okamoto S, Sawa T, Yoshitake J, Tamura F, Ichimori K, Miyazaki K, Sasamoto K, Maeda H (2003) 8-Nitroguanosine formation in viral pneumonia and its implication for pathogenesis. PNAS 100(2):685–690PubMedCrossRefGoogle Scholar
  3. Bach H, Papavinasasundaram GK, Wong D, Hmama Z, Av-Gay Y (2008) Mycobacterium tuberculosis virulence is mediated by PtpA dephosphorylation of human vacuolar protein sorting 33B. Cell Host Microbe 3:316–322PubMedCrossRefGoogle Scholar
  4. Belding ME, Klebanoff SJ, Ray CG (1970) Peroxidase-mediated virucidal systems. Science 167(3915):195–196PubMedCrossRefGoogle Scholar
  5. Blomgran R, Ernst JD (2011) Lung neutrophils facilitate activation of naïve antigen specific CD4+ T cells during Mycobacterium tuberculosis infection. J Immunol 186(12):7110–7119PubMedPubMedCentralCrossRefGoogle Scholar
  6. Boltz DA, Aldridge JR Jr, Webster RG, Govorkova EA (2010) Drugs in development for influenza. Drugs 70(11):1349–1362PubMedPubMedCentralCrossRefGoogle Scholar
  7. Camp JV, Jonsson CB (2017) A role for neutrophils in viral respiratory disease. Front Immunol 8:550. eCollection 2017CrossRefPubMedPubMedCentralGoogle Scholar
  8. Caron E, Hall A (1998) Identification of two distinct mechanisms of phagocytosis controlled by different Rho GTPases. Science 282:1717–1721PubMedCrossRefGoogle Scholar
  9. Castillo RL, Carrasco RA, Álvarez PI, Ruiz M, Luchsinger V, Zunino E, Martínez MA, Avendaño LF (2013) Relationship between severity of adult community-acquired pneumonia and impairment of the antioxidant defense system. Biol Res 46(2):207–213PubMedCrossRefGoogle Scholar
  10. Chen Y, Luo G, Yuan J, Yuanyuan W, Xiaoqiong Y, Xiaoyun W, Guoping L, Zhiguang L, Nanshan Z (2014) Vitamin C mitigates oxidative stress and tumor necrosis factor-alpha in severe community-acquired pneumonia and LPS-induced macrophages. Mediat Inflamm. Article ID 426740, 11 pageGoogle Scholar
  11. Choi K, Kim J, Kim GW, Choi C (2009) Oxidative stress-induced necrotic cell death via mitochondria-dependent burst of reactive oxygen species. Curr Neurovasc Res 6(4):213–222PubMedCrossRefGoogle Scholar
  12. Cline TD, Beck D, Bianchini E (2017) Influenza virus replication in macrophages: balancing protection and pathogenesis. J Gen Virol 98(10):2401–2412PubMedPubMedCentralCrossRefGoogle Scholar
  13. Dawson-Caswell M, Muncie HL Jr (2011) Respiratory syncytial virus infection in children. Am Fam Physician 83(2):141–146PubMedGoogle Scholar
  14. Desikan P (2013) Sputum smear microscopy in tuberculosis: is it still relevant? Ind J Med Res 137(3):442–444Google Scholar
  15. Di A, Kiya T, Gong H, Gao X, Malik AB (2017) Role of the phagosomal redox-sensitive TRP channel TRPM2 in regulating bactericidal activity of macrophages. J Cell Sci 130(4):735–744PubMedPubMedCentralCrossRefGoogle Scholar
  16. Dockrell DH, Marriott HM, Prince LR et al (2003) Alveolar macrophage apoptosis contributes to pneumococcal clearance in a resolving model of pulmonary infection. J Immunol 171:5380–5388PubMedCrossRefGoogle Scholar
  17. Donovan FM (2018) Chief Editor: Thomas E Herchline. Community-acquired pneumonia empiric therapy. Drugs & diseases infectious diseases. Updated: Jul 25Google Scholar
  18. Dorigo-Zetsma JW, Dankert J, Zaat SA (2000) Genotyping of Mycoplasma pneumoniae clinical isolates reveals eight P1 subtypes within two genomic groups. J Clin Microbiol 38:965–970PubMedPubMedCentralGoogle Scholar
  19. Duan M, Hibbs ML, Chen W (2017) The contributions of lung macrophage and monocyte heterogeneity to influenza pathogenesis. Immunol Cell Biol 95(3):225PubMedCrossRefGoogle Scholar
  20. Eddy O (2005) Community-acquired pneumonia: from common pathogens to emerging resistance. Emerg Med Pract 7(12):1–22Google Scholar
  21. Ernst J (1998) Macrophage receptors for mycobacterium tuberculosis. Infect Immun 66(4):1277–1281PubMedPubMedCentralGoogle Scholar
  22. Fabri M et al (2011) Vitamin D is required for IFN-γ–mediated antimicrobial activity of human macrophages. Sci Transl Med 3(104):104ra102PubMedPubMedCentralCrossRefGoogle Scholar
  23. Fang FC (2011) Antimicrobial actions of reactive oxygen species. MBio 2(5):e00141–e00111. Scholar
  24. Fatima N (2009) Newer diagnostic techniques for tuberculosis. Respir Med CME 2(4):151–154CrossRefGoogle Scholar
  25. Fitzpatrick ME, Sethi S, Daley C, Ray P, Beck JB, Gingo MR (2014) Infections in “Noninfectious” lung diseases. Ann Am Thorac Soc 11(4):S221–S226PubMedPubMedCentralCrossRefGoogle Scholar
  26. Fiume G, Vecchio E, De Laurentiis A, Trimboli F, Palmieri C, Pisano A et al (2012) Human immunodeficiency virus-1 Tat activates NF-κB via physical interaction with IκB-αand p65. Nucleic Acids Res 40(8):3548–3562PubMedCrossRefGoogle Scholar
  27. Fujisawa H (2008) Neutrophils play an essential role in cooperation with antibody in both protection against and recovery from pulmonary infection with the influenza virus in mice. J Virol 82(6):2772–2783PubMedPubMedCentralCrossRefGoogle Scholar
  28. Gatfield J, Pieters J (2000) Essential role for cholesterol in entry of mycobacteria into macrophages. Science 288(5471):1647–1650PubMedCrossRefGoogle Scholar
  29. Gengenbacher M, Kaufmann SHE (2012) Mycobacterium tuberculosis: success through dormancy. FEMS Microbiol Rev 36(3):514–532PubMedPubMedCentralCrossRefGoogle Scholar
  30. George KS (2012) Diagnosis of influenza virus. Methods Mol Biol 865:53–69. Scholar
  31. Groemping Y, Rittinger K (2005) Activation and assembly of the NADPH oxidase: a structural perspective. Biochem J 386(Pt 3):401–416PubMedPubMedCentralCrossRefGoogle Scholar
  32. Gudmundsson GH, Agerberth B (1999) Neutrophil antibacterial peptides, multifunctional effector molecules in the mammalian immune system. J Immunol Methods 232(1–2):45–54PubMedCrossRefGoogle Scholar
  33. Guidelines for treatment of tuberculosis Fourth edition. Authors: World Health Organization. Publication date: 2010, ISBN: 9789241547833 WHO reference number: WHO/HTM/TB/2009.420Google Scholar
  34. Gutsmann T (2016) Interaction between antimicrobial peptides and mycobacteria. Biochim Biophys Acta Biomembr 1858(5):1034–1043CrossRefGoogle Scholar
  35. Halliwell B, Aruoma OI (1991) DNA damage by oxygen-derived species its mechanism and measurement in mammalian systems. FEBS Lett 281(1–2):9–19PubMedCrossRefPubMedCentralGoogle Scholar
  36. Hauck FR, Neese BH, Panchal AS (2009) Identification and management of latent tuberculosis infection. Am Fam Physician 79(10):879–886PubMedPubMedCentralGoogle Scholar
  37. Janiszewska-Drobinska B, Kowalski J, Blaszczyk J, Kedziora J, Kaczmarek P, Cie wierz J (2001) Estimation of plasma malonyl dialdehyde concentration in patients with pulmonary tuberculosis. Pol Merkur Lekarski 11(64):310–313PubMedGoogle Scholar
  38. Jayachandran R, Sundaramurthy V, Combaluzier B, Mueller P, Korf H, Huygen K, Miyazaki T, Albrecht I, Massner J, Pieters J (2007) Survival of mycobacteria in macrophages is mediated by Coronin 1-dependent Activation of Calcineurin. Cell 130(1):37–50PubMedCrossRefGoogle Scholar
  39. Jones J. Bronchopulmonary segmental anatomy| radiology reference article| radiopaedia.orgGoogle Scholar
  40. Kido H, Sakai K, Kishino Y, Tashiro M (1993) Pulmonary surfactant is a potential endogenous inhibitor of proteolytic activation of Sendai virus and influenza A virus. FEBS Lett 322(2):115–119PubMedCrossRefGoogle Scholar
  41. Kowalski J, Janiszewska-Drobinska B, Pawlicki L, Ceglinski T, Irzmanski R (2004) Plasma antioxidative activity in patients with pulmonary tuberculosis. Pol Merkur Lekarski 16(92):119–122PubMedGoogle Scholar
  42. Lamsal M, Gautam N, Bhatta N, Toora BD, Bhattacharya SK, Baral N (2007) Evaluation of lipid peroxidation product, nitrite and antioxidant levels in newly diagnosed and two months followup patients with pulmonary tuberculosis. Southeast Asian J Trop Med Public Health 38(4):695–703PubMedGoogle Scholar
  43. Lee JY (2015) Diagnosis and treatment of Extrapulmonary tuberculosis. Tuberc Respir Dis (Seoul) 78(2):47–55CrossRefGoogle Scholar
  44. Lee Y-H, Huang J-H (2017) Mucosa-associated lymphoid tissue lymphoma translocation protein 1 positively modulates matrix Metalloproteinase-9 production in alveolar macrophages upon toll-like receptor 7 signaling and influenza virus infection. Front Immunol 8:1177PubMedPubMedCentralCrossRefGoogle Scholar
  45. MacMicking J, Xie QW, Nathan C (1997) Nitric oxide and macrophage function. Annu Rev Immunol 15:323–350PubMedCrossRefGoogle Scholar
  46. Majewska E, Kasielski M, Luczynski R et al (2004) Elevated exhalation of hydrogen peroxide and thiobarbituric acid reactive substances in patients with community acquired pneumonia. Respir Med 98:669–676. Scholar
  47. Marriott HM, Jackson LE, Wilkinson TS, Simpson AJ, Mitchell TJ, Buttle DJ, Cross SS, Ince PG, Hellewell PG, Whyte MK, Dockrell DH (2008) Reactive oxygen species regulate neutrophil recruitment and survival in pneumococcal pneumonia. Am J Respir Crit Care Med 177(8):887–895PubMedPubMedCentralCrossRefGoogle Scholar
  48. Medina JL, Brooks EG, Chaparro A, Dube PH (2017) Mycoplasma pneumoniae CARDS toxin elicits a functional IgE response in Balb/c mice. PLoS One. Scholar
  49. Merchant AT, Curhan G, Bendich A, Singh VN, Willett WC, Fawzi WW (2004) Vitamin intake is not associated with community-acquired pneumonia in U.S. men. J Nutr 134(2):439–444PubMedCrossRefGoogle Scholar
  50. Metersky ML, Masterton RG, Lode H, File TD Jr, Babinchak T (2012) Epidemiology, microbiology, and treatment considerations for bacterial pneumonia complicating influenza. Int J Infect Dis 16:e321–e331PubMedCrossRefGoogle Scholar
  51. Mihret A (2012) The role of dendritic cells in Mycobacterium tuberculosis infection. Virulence 3(7):654–659PubMedPubMedCentralCrossRefGoogle Scholar
  52. Molotov-Luchanskiy V, Muravyova L, Bakirova R, Klyuyev D, Demidchik L, Kolesnikova Y (2015) Biomarkers for oxidative stress in patients with community-acquired pneumonia. Eur Respir J 46(59)Google Scholar
  53. Muravlyova L, Molotov–Luchankiy V, Bakirova R, Klyuyev D, Demidchik L, Lee V (2016) Characteristic of the oxidative stress in blood of patients in dependence of community-acquired pneumonia severity. Open Access Maced J Med Sci 4(1):122–127. Scholar
  54. Nair GB, Niederman MS (2011) Community-acquired pneumonia: an unfinished battle. Med Clin North Am 95(6):1143–1161PubMedCrossRefGoogle Scholar
  55. Nambi S, Long JE, Mishra BB, Baker R, Murphy KC, Olive AJ, Nguyen HP, Shaffer SA, Sassetti CM (2015) The oxidative stress network of Mycobacterium tuberculosis reveals coordination between radical detoxification systems. Cell Host Microbe 17(6):829–837PubMedPubMedCentralCrossRefGoogle Scholar
  56. Nayak S, Acharjya B (2012) Mantoux test and its interpretation. Indian Dermatol Online J 3(1):2–6PubMedPubMedCentralCrossRefGoogle Scholar
  57. Nicol MQ, Dutia BM (2014) The role of macrophages in influenza A virus infection. Futur Virol 9(9):847–862CrossRefGoogle Scholar
  58. Oda T, Akaike T, Hamamoto T, Suzuki F, Hirano T, Maeda H (1989) Oxygen radicals in influenza-induced pathogenesis and treatment with pyran polymer-conjugated SOD. Science 244(4):974–976PubMedCrossRefGoogle Scholar
  59. Palanisamy GS, Kirk NM, Ackart DF, Shanley CA, Orme IM (2011) Evidence for oxidative stress and defective antioxidant response in Guinea pigs with tuberculosis. PLoS One 6(10):e26254PubMedPubMedCentralCrossRefGoogle Scholar
  60. Pavlyshyn H, Sarapuk I, Slyva V, Haliyash N (2014) PO-1029 diagnostic value of apoptotic activity and oxidative stress in community-acquired pneumonia in infants. Arch Dis Child 99(Suppl 2):A587–A587CrossRefGoogle Scholar
  61. Pawar BD, Suryakar AN, Khandelwal AS (2011) Effect of micronutrients supplementation on oxidative stress and antioxidant status in pulmonary tuberculosis. Biomed Res 22(4):455–459Google Scholar
  62. Peschke T, Bender A, Nain M, Gemsa D (1993) Role of macrophage cytokines in influenza A virus infections. Immunobiology 189(3–4):340–355PubMedCrossRefGoogle Scholar
  63. Peterhans E (1997) Oxidants and antioxidants in viral diseases: disease mechanisms and metabolic regulation. J Nutr 127(5):962S–965S. Scholar
  64. Piddington DL, Fang FC, Laessig T, Cooper AM, Orme IM, Buchmeier NA (2001) Cu, Zn superoxide dismutase of Mycobacterium tuberculosis contributes to survival in activated macrophages that are generating an oxidative burst. Infect Immun 69(8):4980–4987PubMedPubMedCentralCrossRefGoogle Scholar
  65. Podinovskaia M, Lee W, Caldwell S, Russell DG (2013) Infection of macrophages with Mycobacterium tuberculosis induces global modifications to phagosomal function. Cell Microbiol 15(6):843–859PubMedPubMedCentralCrossRefGoogle Scholar
  66. Pribul Philippa K, James H, Belinda W, Hongwei W, Tregoning John S, Jurgen S, Openshaw Peter JM (2008) Alveolar macrophages are a major determinant of early responses to viral lung infection but do not influence subsequent disease development. J Virol 82(9):4441–4448PubMedPubMedCentralCrossRefGoogle Scholar
  67. Rajopadhye SH, Mukherjee SR, Chowdhary AS, Dandekar SP (2017) Oxidative stress markers in tuberculosis and HIV/TB co-infection. J Clin Diagn Res 11(8):BC24–BC28PubMedPubMedCentralGoogle Scholar
  68. Reddy YN, Murthy SV, Krishna DR, Prabhakar MC (2004) Role of free radicals and antioxidants in tuberculosis patients. Indian J Tuberc 51:213–218Google Scholar
  69. Rivas-Santiago B, Schwander SK, Sarabia C (2005) Human {beta}-defensin 2 is expressed and associated with Mycobacterium tuberculosis during infection of human alveolar epithelial cells. Infect Immun 73:4505–4511PubMedPubMedCentralCrossRefGoogle Scholar
  70. Rivas-Santiago B, Contreras JCL, Sada E, Hernández-Pando R (2008) The potential role of lung epithelial cells and β-defensins in experimental latent tuberculosis. Scand J Immunol 67(5):448–452PubMedCrossRefGoogle Scholar
  71. Rook GAW, Hernandez-Pando R (1996) The pathogenesis of tuberculosis. Annu Rev Microbiol 50:259–284PubMedCrossRefGoogle Scholar
  72. Saleh MT, Belisle JT (2000) Secretion of an acid phosphatase (SapM) by Mycobacterium tuberculosis that is similar to eukaryotic acid phosphatases. J Bacteriol 182(23):6850–6853PubMedPubMedCentralCrossRefGoogle Scholar
  73. Samuelson DR, Welsh DA, Shellito JE (2015) Regulation of lung immunity and host defense by the intestinal microbiota. Front Microbiol 6:1085PubMedPubMedCentralCrossRefGoogle Scholar
  74. Scherr N, Honnappa S, Kunz G, Mueller P, Jayachandran R, Winkler F, Pieters J, Steinmetz MO (2007) Structural basis for the specific inhibition of protein kinase G, a virulence factor of Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 104(29):12151–12156PubMedPubMedCentralCrossRefGoogle Scholar
  75. Sia JK, Georgieve M, Rengarajan J (2015) Innate immune defense in human tuberculosis: an overview of the interaction between Mycobacterium tuberculosis and innate immune cells. J Immunol Res 2015., Article ID 747543, 12 pagesCrossRefGoogle Scholar
  76. Siempos II, Vardakas KZ, Kopterides P, Falagas ME (2008) Adjunctive therapies for community-acquired pneumonia: a systematic review. J Antimicrob Chemother 62(4):661–668. Scholar
  77. Silva Manuel T, Correia NM (2012) Neutrophils and macrophages: the main partners of phagocyte cell systems. Front Immunol 3:174PubMedPubMedCentralGoogle Scholar
  78. Smith I (2003) Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin Microbiol Rev 16(3):463–496PubMedPubMedCentralCrossRefGoogle Scholar
  79. Southwick F (2007) Chapter 4: pulmonary infections. In: Infectious diseases: a clinical short course, 2nd edn. McGraw-Hill Medical Publishing Division, Blacklick, pp 104–313–4. isbn:0-07-147722-5Google Scholar
  80. Stokes KL, Currier MG, Sakamoto K, Lee S, Collins PL, Plemper RK, Moore ML (2013) The respiratory syncytial virus fusion protein and neutrophils mediate the airway mucin response to pathogenic respiratory syncytial virus infection. J Virol 87(18):10070–10082PubMedPubMedCentralCrossRefGoogle Scholar
  81. Sun K, Yajjala VK, Bauer C, Talmon GA, Fischer KJ, Kielian T, Metzge DW (2016a) Nox2-derived oxidative stress results in inefficacy of antibiotics against post-influenza S. aureus pneumonia. J Exp Med 213(9):1851–1864PubMedPubMedCentralCrossRefGoogle Scholar
  82. Sun K, Yajjala VK, Bauer C, Talmon GA, Fischer KJ, Kielian T, Metzger DW (2016b) Nox2-derived oxidative stress results in inefficacy of antibiotics against post-influenza S. aureus pneumonia. J Exp Med 213(9):1851–1864. Epub 2016 Aug 15CrossRefPubMedPubMedCentralGoogle Scholar
  83. Tate Michelle D, Pickett DL, van Rooijen N, Brooks Andrew G, Reading Patrick C (2008) The role of neutrophils in the upper and lower respiratory tract during influenza virus infection of mice. Respir Res 9:57. Scholar
  84. Tate Michelle D, Pickett Danielle L, van RN, Brooks AG, Reading Patrick C (2010) Critical role of airway macrophages in modulating disease severity during influenza virus infection of mice. J Virol 84(15):7569–7580PubMedPubMedCentralCrossRefGoogle Scholar
  85. Taubenberger JK, Morens DM (2008) The pathology of influenza virus infections. Annu Rev Pathol 3:499–522PubMedPubMedCentralCrossRefGoogle Scholar
  86. Trefler S, Rodriguez A, Martin-Loeches I, Sanchez V, Marin J, Llaurado M, Romeu M, Diaz E, Nogues R, Giralt M (2014) Oxidative stress in immunocompetent patients with severe community-acquired pneumonia. A pilot study. Med Intensiva 38(2):73–82PubMedCrossRefGoogle Scholar
  87. Tuberculosis (TB) World Health Organization. 16 February 2018Google Scholar
  88. Tumpey et al (2005) Pathogenicity of influenza viruses with genes from the 1918 pandemic virus: functional roles of alveolar macrophages and neutrophils in limiting virus replication and mortality in mice. J Virol 79(23):14933–14944PubMedPubMedCentralCrossRefGoogle Scholar
  89. Ugurlu E (2016) Increased erythrocyte aggregation and oxidative stress in patients with idiopathic interstitial pneumonia. Clin Res 33(4):308–316Google Scholar
  90. Vergne I, Chua J, Lee HH, Lucas M, Belisle J, Deretic V (2005) Mechanism of phagolysosome biogenesis block by viable Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 102:4033–4038PubMedPubMedCentralCrossRefGoogle Scholar
  91. Verma I, Jindal S, Ganguly NK (2014) Chapter: oxidative stress in tuberculosis. In: Book: studies on respiratory disorders 2197–7224. Humana Press, New York, pp 101–114Google Scholar
  92. Vijayamalini M, Manoharan S (2004) Lipid peroxidation, vitamins C, E and reduced glutathione levels in patients with pulmonary tuberculosis. Cell Biochem Funct 22(1):19–22PubMedCrossRefGoogle Scholar
  93. Wagh V, Rajopadhye S, Mukherjee S, Urhekar A, Modi D (2016) Assessment of oxidative stress in serum of pulmonary tuberculosis patients. Int J Res Med Sci 4(8).
  94. Wiid I, Seaman T, Hoal EG, Benade AJ, Van Helden PD (2004) Total antioxidant levels are low during active TB and rise with Antituberculosis therapy. IUBMB Life 56(2):101–106PubMedCrossRefGoogle Scholar
  95. Xu Y, Liu L (2017) Curcumin alleviates macrophage activation and lung inflammation induced by influenza virus infection through inhibiting the NF-κB signaling pathway. Influenza Other Respir Viruses 11(5):457–463PubMedPubMedCentralCrossRefGoogle Scholar
  96. Xu X, Zhang D, Zhang H, Wolters PJ, Killeen NP, Sullivan BM, Locksley RM, Lowell CA, Caughey GH (2006) Neutrophil histamine contributes to inflammation in mycoplasma pneumonia. J Exp Med 203(13):2907–2917PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of MicrobiologySt. Xavier’s CollegeKolkataIndia
  2. 2.Division of Molecular MedicineBose InstituteKolkataIndia

Personalised recommendations