Advertisement

Oxidative Stress-Induced Autophagy Impairment and Pathogenesis of Chronic Obstructive Lung Diseases

  • Manish Bodas
  • Neeraj VijEmail author
Chapter

Abstract

Chronic lung diseases are one of the foremost ailments in the modern society, and a burgeoning increase in their occurrence is a significant challenge for the medical professionals as well as basic and clinical researchers. Based on the pathophysiology of the disease, chronic lung diseases can be classified into chronic “obstructive” or “restrictive” lung diseases. Irrespective of the lung disease condition, the two most common and interrelated mechanisms that initiate and/or worsen disease pathogenesis and progression are inflammation and oxidative stress. Hence, in this chapter, we first describe the central role of oxidative stress in the pathogenesis of chronic obstructive lung diseases and subsequently focus on the interrelationships of oxidative stress with aging, CFTR dysfunction, and the key homeostatic processes, proteostasis and/or autophagy. Moreover, we also present a perspective on targeting oxidative stress for augmentation of proteostasis and/or autophagy to control the pathogenesis of chronic obstructive lung diseases as well as to promote healthy lung aging.

References

  1. Agrawal A, Prakash YS (2014) Obesity, metabolic syndrome, and airway disease: a bioenergetic problem? [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review]. Immunol Allergy Clin North Am 34(4):785–796.  https://doi.org/10.1016/j.iac.2014.07.004. PubMed PMID: 25282291; PubMed Central PMCID: PMC4482229. engCrossRefPubMedPubMedCentralGoogle Scholar
  2. Ahmad A, Shameem M, Husain Q (2012) Relation of oxidant-antioxidant imbalance with disease progression in patients with asthma. Ann Thorac Med 7(4):226–232.  https://doi.org/10.4103/1817-1737.102182. PubMed PMID: 23189100; PubMed Central PMCID: PMCPMC3506103. engCrossRefPubMedPubMedCentralGoogle Scholar
  3. Ahmad A, Shameem M, Husain Q (2013) Altered oxidant-antioxidant levels in the disease prognosis of chronic obstructive pulmonary disease. Int J Tuberc Lung Dis 17(8):1104–1109.  https://doi.org/10.5588/ijtld.12.0512. PubMed PMID: 23827037; engCrossRefPubMedGoogle Scholar
  4. Ahmad T, Sundar IK, Lerner CA et al (2015) Impaired mitophagy leads to cigarette smoke stress-induced cellular senescence: implications for chronic obstructive pulmonary disease. FASEB J 29(7):2912–2929.  https://doi.org/10.1096/fj.14-268276. PubMed PMID: 25792665; PubMed Central PMCID: PMCPMC4478793CrossRefPubMedPubMedCentralGoogle Scholar
  5. Anderson EJ, Katunga LA, Willis MS (2012) Mitochondria as a source and target of lipid peroxidation products in healthy and diseased heart. Clin Exp Pharmacol Physiol 39(2):179–193.  https://doi.org/10.1111/j.1440-1681.2011.05641.x. PubMed PMID: 22066679; PubMed Central PMCID: PMCPMC3827773. engCrossRefPubMedGoogle Scholar
  6. Antus B (2016) Oxidative stress markers in sputum. Oxid Med Cell Longev 2016:2930434.  https://doi.org/10.1155/2016/2930434. PubMed PMID: 26885248; PubMed Central PMCID: PMCPMC4738959. engCrossRefPubMedPubMedCentralGoogle Scholar
  7. Aoshiba K, Koinuma M, Yokohori N et al (2003) Immunohistochemical evaluation of oxidative stress in murine lungs after cigarette smoke exposure. Inhal Toxicol 15(10):1029–1038.  https://doi.org/10.1080/08958370390226431. PubMed PMID: 12928978; engCrossRefPubMedGoogle Scholar
  8. Aravamudan B, Kiel A, Freeman M et al (2014) Cigarette smoke-induced mitochondrial fragmentation and dysfunction in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 306(9):L840–L854.  https://doi.org/10.1152/ajplung.00155.2013. PubMed PMID: 24610934; PubMed Central PMCID: PMCPMC4116419CrossRefPubMedPubMedCentralGoogle Scholar
  9. Aravamudan B, Thompson M, Sieck GC et al (2017) Functional effects of cigarette smoke-induced changes in airway smooth muscle mitochondrial morphology. J Cell Physiol 232(5):1053–1068.  https://doi.org/10.1002/jcp.25508. PubMed PMID: 27474898; PubMed Central PMCID: PMCPMC5247322. engCrossRefPubMedGoogle Scholar
  10. Arja C, Surapaneni KM, Raya P et al (2013) Oxidative stress and antioxidant enzyme activity in South Indian male smokers with chronic obstructive pulmonary disease. Respirology 18(7):1069–1075.  https://doi.org/10.1111/resp.12118. PubMed PMID: 23683270; engCrossRefPubMedGoogle Scholar
  11. Arunachalam G, Sundar IK, Hwang JW et al (2010) Emphysema is associated with increased inflammation in lungs of atherosclerosis-prone mice by cigarette smoke: implications in comorbidities of COPD. J Inflamm (Lond) 7:34.  https://doi.org/10.1186/1476-9255-7-34. PubMed PMID: 20663150; PubMed Central PMCID: PMCPMC2918603. engCrossRefGoogle Scholar
  12. Assad NA, Kapoor V, Sood A (2016) Biomass smoke exposure and chronic lung disease. Curr Opin Pulm Med 22(2):150–157.  https://doi.org/10.1097/MCP.0000000000000246. PubMed PMID: 26814722CrossRefPubMedGoogle Scholar
  13. Bacsi A, Pan L, Ba X et al (2016) Pathophysiology of bronchoconstriction: role of oxidatively damaged DNA repair. Curr Opin Allergy Clin Immunol 16(1):59–67.  https://doi.org/10.1097/ACI.0000000000000232. PubMed PMID: 26694039; PubMed Central PMCID: PMCPMC4940044. engCrossRefPubMedPubMedCentralGoogle Scholar
  14. Baffi CW, Wood L, Winnica D et al (2016) Metabolic syndrome and the lung. Chest 149(6):1525–1534.  https://doi.org/10.1016/j.chest.2015.12.034. PubMed PMID: 26836925; PubMed Central PMCID: PMCPMC4944780CrossRefPubMedPubMedCentralGoogle Scholar
  15. Balch WE, Sznajder JI, Budinger S et al (2014) Malfolded protein structure and proteostasis in lung diseases. Am J Respir Crit Care Med 189(1):96–103.  https://doi.org/10.1164/rccm.201306-1164WS. PubMed PMID: 24033344; PubMed Central PMCID: PMCPMC3919126. engCrossRefPubMedPubMedCentralGoogle Scholar
  16. Ballweg K, Mutze K, Konigshoff M et al (2014) Cigarette smoke extract affects mitochondrial function in alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 307(11):L895–L907.  https://doi.org/10.1152/ajplung.00180.2014. PubMed PMID: 25326581CrossRefPubMedGoogle Scholar
  17. Barnett SD, Buxton ILO (2017) The role of S-nitrosoglutathione reductase (GSNOR) in human disease and therapy. Crit Rev Biochem Mol Biol 52(3):340–354.  https://doi.org/10.1080/10409238.2017.1304353. PubMed PMID: 28393572; PubMed Central PMCID: PMCPMC5597050. engCrossRefPubMedPubMedCentralGoogle Scholar
  18. Barreiro E, Fermoselle C, Mateu-Jimenez M et al (2013) Oxidative stress and inflammation in the normal airways and blood of patients with lung cancer and COPD. Free Radic Biol Med 65:859–871.  https://doi.org/10.1016/j.freeradbiomed.2013.08.006. PubMed PMID: 23954470; engCrossRefPubMedGoogle Scholar
  19. Bartoli ML, Novelli F, Costa F et al (2011) Malondialdehyde in exhaled breath condensate as a marker of oxidative stress in different pulmonary diseases. Mediators Inflamm 2011:891752.  https://doi.org/10.1155/2011/891752. PubMed PMID: 21772668; PubMed Central PMCID: PMCPMC3136125. engCrossRefPubMedPubMedCentralGoogle Scholar
  20. Becker KA, Tummler B, Gulbins E et al (2010a) Accumulation of ceramide in the trachea and intestine of cystic fibrosis mice causes inflammation and cell death. Biochem Biophys Res Commun 403(3–4):368–374.  https://doi.org/10.1016/j.bbrc.2010.11.038. PubMed PMID: 21078296CrossRefPubMedGoogle Scholar
  21. Becker KA, Riethmuller J, Luth A et al (2010b) Acid sphingomyelinase inhibitors normalize pulmonary ceramide and inflammation in cystic fibrosis. Am J Respir Cell Mol Biol 42(6):716–724.  https://doi.org/10.1165/rcmb.2009-0174OC. PubMed PMID: 19635928CrossRefPubMedGoogle Scholar
  22. Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 271(5 Pt 1):C1424–C1437.  https://doi.org/10.1152/ajpcell.1996.271.5.C1424. PubMed PMID: 8944624; engCrossRefPubMedGoogle Scholar
  23. Berenson CS, Kruzel RL, Eberhardt E et al (2013) Phagocytic dysfunction of human alveolar macrophages and severity of chronic obstructive pulmonary disease. J Infect Dis 208(12):2036–2045.  https://doi.org/10.1093/infdis/jit400. PubMed PMID: 23908477; PubMed Central PMCID: PMCPMC3836465CrossRefPubMedPubMedCentralGoogle Scholar
  24. Besouw M, Masereeuw R, van den Heuvel L et al (2013) Cysteamine: an old drug with new potential. Drug Discov Today 18(15–16):785–792.  https://doi.org/10.1016/j.drudis.2013.02.003. PubMed PMID: 23416144CrossRefPubMedGoogle Scholar
  25. Bhatraju NK, Agrawal A (2017) Mitochondrial dysfunction linking obesity and asthma. Ann Am Thorac Soc 14(Supplement_5):S368–S373.  https://doi.org/10.1513/AnnalsATS.201701-042AW. PubMed PMID: 29161084; engCrossRefPubMedGoogle Scholar
  26. Bodas M, Vij N (2010) The NF-kappaB signaling in cystic fibrosis lung disease: pathophysiology and therapeutic potential [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. Discov Med 9(47):346–356. PubMed PMID: 20423679; PubMed Central PMCID: PMC3114405. engPubMedPubMedCentralGoogle Scholar
  27. Bodas M, Vij N (2017) Augmenting autophagy for prognosis based intervention of COPD-pathophysiology. Respir Res 18(1):83.  https://doi.org/10.1186/s12931-017-0560-7. PubMed PMID: 28472967; PubMed Central PMCID: PMCPMC5418861CrossRefPubMedPubMedCentralGoogle Scholar
  28. Bodas M, Min T, Mazur S et al (2011a) Critical modifier role of membrane-cystic fibrosis transmembrane conductance regulator-dependent ceramide signaling in lung injury and emphysema. J Immunol 186(1):602–613.  https://doi.org/10.4049/jimmunol.1002850. PubMed PMID: 21135173; PubMed Central PMCID: PMC3119853. engCrossRefPubMedGoogle Scholar
  29. Bodas M, Min T, Vij N (2011b) Critical role of CFTR-dependent lipid rafts in cigarette smoke-induced lung epithelial injury. Am J Physiol Lung Cell Mol Physiol 300(6):L811–L820.  https://doi.org/10.1152/ajplung.00408.2010. PubMed PMID: 21378025; PubMed Central PMCID: PMCPMC3119127. engCrossRefPubMedPubMedCentralGoogle Scholar
  30. Bodas M, Tran I, Vij N (2012) Therapeutic strategies to correct proteostasis-imbalance in chronic obstructive lung diseases [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review]. Curr Mol Med 12(7):807–814. PubMed PMID: 22697347; engCrossRefGoogle Scholar
  31. Bodas M, Min T, Vij N (2015) Lactosylceramide-accumulation in lipid-rafts mediate aberrant-autophagy, inflammation and apoptosis in cigarette smoke induced emphysema. Apoptosis.  https://doi.org/10.1007/s10495-015-1098-0. PubMed PMID: 25638276; EngCrossRefGoogle Scholar
  32. Bodas M, Van Westphal C, Carpenter-Thompson R et al (2016a) Nicotine exposure induces bronchial epithelial cell apoptosis and senescence via ROS mediated autophagy-impairment. Free Radic Biol Med 97:441–453.  https://doi.org/10.1016/j.freeradbiomed.2016.06.017. PubMed PMID: 27394171CrossRefGoogle Scholar
  33. Bodas M, Patel N, Silverberg D et al (2016b) Master autophagy regulator Transcription factor-EB (TFEB) regulates cigarette smoke induced autophagy-impairment and COPD-emphysema pathogenesis. Antioxid Redox Signal 11.  https://doi.org/10.1089/ars.2016.6842. PubMed PMID: 27835930CrossRefGoogle Scholar
  34. Bodas M, Silverberg D, Walworth K et al (2016c) Augmentation of S-nitrosoglutathione (GSNO) controls cigarette-smoke induced inflammatory-oxidative stress and COPD-emphysema pathogenesis by restoring CFTR function. Antioxid Redox Signal.  https://doi.org/10.1089/ars.2016.6895. PubMed PMID: 28006950CrossRefGoogle Scholar
  35. Bodas M, Pehote G, Silverberg D et al (2018a) Autophagy augmentation alleviates cigarette smoke-induced CFTR-dysfunction, ceramide-accumulation and COPD-emphysema pathogenesis. Free Radic Biol Med 131:81–97.  https://doi.org/10.1016/j.freeradbiomed.2018.11.023. PubMed PMID: 30500419; engCrossRefPubMedGoogle Scholar
  36. Bodas M, Mazur S, Min T et al (2018b) Inhibition of histone-deacetylase activity rescues inflammatory cystic fibrosis lung disease by modulating innate and adaptive immune responses. Respir Res 19(1):2.  https://doi.org/10.1186/s12931-017-0705-8. PubMed PMID: 29301535; PubMed Central PMCID: PMCPMC5755330. engCrossRefPubMedPubMedCentralGoogle Scholar
  37. Boukhenouna S, Wilson MA, Bahmed K et al (2018) Reactive oxygen species in chronic obstructive pulmonary disease. Oxid Med Cell Longev 2018:5730395.  https://doi.org/10.1155/2018/5730395. PubMed PMID: 29599897; PubMed Central PMCID: PMCPMC5828402. engCrossRefPubMedPubMedCentralGoogle Scholar
  38. Boutten A, Goven D, Boczkowski J et al (2010) Oxidative stress targets in pulmonary emphysema: focus on the Nrf2 pathway. Expert Opin Ther Targets 14(3):329–346.  https://doi.org/10.1517/14728221003629750. PubMed PMID: 20148719CrossRefPubMedPubMedCentralGoogle Scholar
  39. Brockman SM, Bodas M, Silverberg D et al (2017) Dendrimer-based selective autophagy-induction rescues ΔF508-CFTR and inhibits Pseudomonas aeruginosa infection in cystic fibrosis. PLoS One. 12(9):e0184793.  https://doi.org/10.1371/journal.pone.0184793. PubMed PMID: 28902888; PubMed Central PMCID: PMCPMC5597233. engCrossRefPubMedPubMedCentralGoogle Scholar
  40. Brodlie M, McKean MC, Johnson GE et al (2010) Ceramide is increased in the lower airway epithelium of people with advanced cystic fibrosis lung disease. Am J Respir Crit Care Med 182(3):369–375. PubMed PMID: 20395562CrossRefGoogle Scholar
  41. Brown RK, McBurney A, Lunec J et al (1995) Oxidative damage to DNA in patients with cystic fibrosis. Free Radic Biol Med 18(4):801–806. PubMed PMID: 7750803; engCrossRefGoogle Scholar
  42. Bruscia EM, Bonfield TL (2016) Innate and adaptive immunity in cystic fibrosis. Clin Chest Med 37(1):17–29.  https://doi.org/10.1016/j.ccm.2015.11.010. PubMed PMID: 26857765; engCrossRefPubMedGoogle Scholar
  43. Bullone M, Lavoie JP (2017) The contribution of oxidative stress and inflamm-aging in human and equine asthma. Int J Mol Sci 18(12).  https://doi.org/10.3390/ijms18122612. PubMed PMID: 29206130; PubMed Central PMCID: PMCPMC5751215. engCrossRefGoogle Scholar
  44. Cai Z, Yan LJ (2013) Protein oxidative modifications: beneficial roles in disease and health. J Biochem Pharmacol Res 1(1):15–26. PubMed PMID: 23662248; PubMed Central PMCID: PMCPMC3646577. engPubMedPubMedCentralGoogle Scholar
  45. Cantin AM, Hanrahan JW, Bilodeau G et al (2006a) Cystic fibrosis transmembrane conductance regulator function is suppressed in cigarette smokers. Am J Respir Crit Care Med 173(10):1139–1144. PubMed PMID: 16497995CrossRefGoogle Scholar
  46. Cantin AM, Bilodeau G, Ouellet C et al (2006b) Oxidant stress suppresses CFTR expression. Am J Physiol Cell Physiol 290(1):C262–C270.  https://doi.org/10.1152/ajpcell.00070.2005. PubMed PMID: 16162662; engCrossRefPubMedGoogle Scholar
  47. Cantin AM, Hartl D, Konstan MW et al (2015) Inflammation in cystic fibrosis lung disease: pathogenesis and therapy. J Cyst Fibros 14(4):419–430.  https://doi.org/10.1016/j.jcf.2015.03.003. PubMed PMID: 25814049CrossRefPubMedGoogle Scholar
  48. Capistrano SJ, van Reyk D, Chen H et al (2017) Evidence of biomass smoke exposure as a causative factor for the development of COPD. Toxics 5(4).  https://doi.org/10.3390/toxics5040036. PubMed PMID: 29194400; PubMed Central PMCID: PMCPMC5750564. engCrossRefGoogle Scholar
  49. Caramori G, Adcock IM, Casolari P et al (2011) Unbalanced oxidant-induced DNA damage and repair in COPD: a link towards lung cancer. Thorax 66(6):521–527.  https://doi.org/10.1136/thx.2010.156448. PubMed PMID: 21460372; engCrossRefPubMedGoogle Scholar
  50. Chan TK, Tan WSD, Peh HY et al (2017) Aeroallergens induce reactive oxygen species production and DNA damage and dampen antioxidant responses in bronchial epithelial cells. J Immunol 199(1):39–47.  https://doi.org/10.4049/jimmunol.1600657. PubMed PMID: 28526682; engCrossRefPubMedGoogle Scholar
  51. Charrier C, Rodger C, Robertson J et al (2014) Cysteamine (Lynovex(R)), a novel mucoactive antimicrobial & antibiofilm agent for the treatment of cystic fibrosis. Orphanet J Rare Dis 9:189.  https://doi.org/10.1186/s13023-014-0189-2. PubMed PMID: 25433388; PubMed Central PMCID: PMCPMC4260250CrossRefPubMedPubMedCentralGoogle Scholar
  52. Chen ZH, Lam HC, Jin Y et al (2010) Autophagy protein microtubule-associated protein 1 light chain-3B (LC3B) activates extrinsic apoptosis during cigarette smoke-induced emphysema. Proc Natl Acad Sci U S A 107(44):18880–18885. PubMed PMID: 20956295CrossRefGoogle Scholar
  53. Chen AC, Burr L, McGuckin MA (2018) Oxidative and endoplasmic reticulum stress in respiratory disease. Clin Transl Immunology 7(6):e1019.  https://doi.org/10.1002/cti2.1019. PubMed PMID: 29928501; PubMed Central PMCID: PMCPMC5999202. engCrossRefPubMedPubMedCentralGoogle Scholar
  54. Cho YS, Moon HB (2010) The role of oxidative stress in the pathogenesis of asthma. Allergy Asthma Immunol Res 2(3):183–187.  https://doi.org/10.4168/aair.2010.2.3.183. PubMed PMID: 20592917; PubMed Central PMCID: PMCPMC2892050. engCrossRefPubMedPubMedCentralGoogle Scholar
  55. Ciencewicki J, Trivedi S, Kleeberger SR (2008) Oxidants and the pathogenesis of lung diseases. J Allergy Clin Immunol 122(3):456–468; quiz 469–70.  https://doi.org/10.1016/j.jaci.2008.08.004. PubMed PMID: 18774381; PubMed Central PMCID: PMCPMC2693323. engCrossRefGoogle Scholar
  56. Ciofu O, Lykkesfeldt J (2014) Antioxidant supplementation for lung disease in cystic fibrosis. Cochrane Database Syst Rev (8):CD007020.  https://doi.org/10.1002/14651858.CD007020.pub3. PubMed PMID: 25102015; eng
  57. Clunes LA, Davies CM, Coakley RD et al (2012) Cigarette smoke exposure induces CFTR internalization and insolubility, leading to airway surface liquid dehydration. FASEB J 26(2):533–545.  https://doi.org/10.1096/fj.11-192377. PubMed PMID: 21990373; PubMed Central PMCID: PMCPMC3290447CrossRefPubMedPubMedCentralGoogle Scholar
  58. Comhair SA, Erzurum SC (2002) Antioxidant responses to oxidant-mediated lung diseases. Am J Physiol Lung Cell Mol Physiol 283(2):L246–L255.  https://doi.org/10.1152/ajplung.00491.2001. PubMed PMID: 12114185; engCrossRefPubMedGoogle Scholar
  59. Cordoba-Lanus E, Cazorla-Rivero S, Espinoza-Jimenez A et al (2017) Telomere shortening and accelerated aging in COPD: findings from the BODE cohort. Respir Res 18(1):59.  https://doi.org/10.1186/s12931-017-0547-4. PubMed PMID: 28407775; PubMed Central PMCID: PMCPMC5390353CrossRefPubMedGoogle Scholar
  60. Crystal RG (2014) Airway basal cells. The “smoking gun” of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 190(12):1355–1362.  https://doi.org/10.1164/rccm.201408-1492PP. PubMed PMID: 25354273; PubMed Central PMCID: PMCPMC4299651. engCrossRefPubMedPubMedCentralGoogle Scholar
  61. Day BJ, van Heeckeren AM, Min E et al (2004) Role for cystic fibrosis transmembrane conductance regulator protein in a glutathione response to bronchopulmonary pseudomonas infection. Infect Immun 72(4):2045–2051. PubMed PMID: 15039325; PubMed Central PMCID: PMCPMC375208. engCrossRefGoogle Scholar
  62. De Lisle RC, Roach E, Jansson K (2007) Effects of laxative and N-acetylcysteine on mucus accumulation, bacterial load, transit, and inflammation in the cystic fibrosis mouse small intestine. Am J Physiol Gastrointest Liver Physiol 293(3):G577–G584.  https://doi.org/10.1152/ajpgi.00195.2007. PubMed PMID: 17615175; engCrossRefPubMedGoogle Scholar
  63. De Matteis S, Heederik D, Burdorf A et al (2017) Current and new challenges in occupational lung diseases. Eur Respir Rev 26(146).  https://doi.org/10.1183/16000617.0080-2017. PubMed PMID: 29141963; PubMed Central PMCID: PMCPMC6033059. engCrossRefGoogle Scholar
  64. De Stefano D, Villella VR, Esposito S et al (2014) Restoration of CFTR function in patients with cystic fibrosis carrying the F508del-CFTR mutation. Autophagy 10(11):2053–2074.  https://doi.org/10.4161/15548627.2014.973737. PubMed PMID: 25350163; PubMed Central PMCID: PMCPMC4502695CrossRefPubMedPubMedCentralGoogle Scholar
  65. Deng J, Wang X, Qian F et al (2012) Protective role of reactive oxygen species in endotoxin-induced lung inflammation through modulation of IL-10 expression. J Immunol 188(11):5734–5740.  https://doi.org/10.4049/jimmunol.1101323. PubMed PMID: 22547702; PubMed Central PMCID: PMCPMC3358534. engCrossRefPubMedPubMedCentralGoogle Scholar
  66. Deslee G, Woods JC, Moore C et al (2009) Oxidative damage to nucleic acids in severe emphysema. Chest 135(4):965–974.  https://doi.org/10.1378/chest.08-2257. PubMed PMID: 19118262; PubMed Central PMCID: PMCPMC3864580. engCrossRefPubMedGoogle Scholar
  67. Diaz J, Farzan S (2014) Clinical implications of the obese-asthma phenotypes [Research Support, Non-U.S. Gov’t Review]. Immunol Allergy Clin North Am 34(4):739–751.  https://doi.org/10.1016/j.iac.2014.07.008. PubMed PMID: 25282287; engCrossRefPubMedGoogle Scholar
  68. Domej W, Oettl K, Renner W (2014) Oxidative stress and free radicals in COPD--implications and relevance for treatment. Int J Chron Obstruct Pulmon Dis. 9:1207–1224.  https://doi.org/10.2147/COPD.S51226. PubMed PMID: 25378921; PubMed Central PMCID: PMCPMC4207545CrossRefPubMedPubMedCentralGoogle Scholar
  69. Donaldson SH, Solomon GM, Zeitlin PL et al (2017) Pharmacokinetics and safety of cavosonstat (N91115) in healthy and cystic fibrosis adults homozygous for F508DEL-CFTR. J Cyst Fibros 16(3):371–379.  https://doi.org/10.1016/j.jcf.2017.01.009. PubMed PMID: 28209466; engCrossRefPubMedGoogle Scholar
  70. Dransfield MT, Wilhelm AM, Flanagan B et al (2013) Acquired cystic fibrosis transmembrane conductance regulator dysfunction in the lower airways in COPD. Chest 144(2):498–506.  https://doi.org/10.1378/chest.13-0274. PubMed PMID: 23538783; PubMed Central PMCID: PMCPMC3734887CrossRefPubMedPubMedCentralGoogle Scholar
  71. Dumitru CA, Zhang Y, Li X et al (2007) Ceramide: a novel player in reactive oxygen species-induced signaling? Antioxid Redox Signal 9(9):1535–1540.  https://doi.org/10.1089/ars.2007.1692. PubMed PMID: 17678446; engCrossRefPubMedGoogle Scholar
  72. Elias JA, Lee CG (2005) Lipid let loose in pulmonary emphysema. Nat Med 11(5):471–472. PubMed PMID: 15875047CrossRefGoogle Scholar
  73. Erzurum SC (2016) New Insights in Oxidant Biology in Asthma. Ann Am Thorac Soc. 13(Suppl 1):S35–S39.  https://doi.org/10.1513/AnnalsATS.201506-385MG. PubMed PMID: 27027950; PubMed Central PMCID: PMCPMC5015728. engCrossRefPubMedPubMedCentralGoogle Scholar
  74. Esposito S, Tosco A, Villella VR et al (2016) Manipulating proteostasis to repair the F508del-CFTR defect in cystic fibrosis. Mol Cell Pediatr 3(1):13.  https://doi.org/10.1186/s40348-016-0040-z. PubMed PMID: 26976279; PubMed Central PMCID: PMCPMC4791443CrossRefPubMedPubMedCentralGoogle Scholar
  75. Ferrari E, Monzani R, Villella VR et al (2017) Cysteamine re-establishes the clearance of Pseudomonas aeruginosa by macrophages bearing the cystic fibrosis-relevant F508del-CFTR mutation. Cell Death Dis 8(1):e2544.  https://doi.org/10.1038/cddis.2016.476. PubMed PMID: 28079883CrossRefPubMedPubMedCentralGoogle Scholar
  76. Figge MT, Osiewacz HD, Reichert AS (2013) Quality control of mitochondria during aging: is there a good and a bad side of mitochondrial dynamics? Bioessays 35(4):314–322.  https://doi.org/10.1002/bies.201200125. PubMed PMID: 23359437; engCrossRefPubMedGoogle Scholar
  77. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408(6809):239–247.  https://doi.org/10.1038/35041687. PubMed PMID: 11089981; engCrossRefPubMedPubMedCentralGoogle Scholar
  78. Fischer BM, Voynow JA, Ghio AJ (2015) COPD: balancing oxidants and antioxidants. Int J Chron Obstruct Pulmon Dis 10:261–276.  https://doi.org/10.2147/COPD.S42414. PubMed PMID: 25673984; PubMed Central PMCID: PMCPMC4321570. engCrossRefPubMedPubMedCentralGoogle Scholar
  79. Frank M, Duvezin-Caubet S, Koob S et al (2012) Mitophagy is triggered by mild oxidative stress in a mitochondrial fission dependent manner. Biochim Biophys Acta 1823(12):2297–2310.  https://doi.org/10.1016/j.bbamcr.2012.08.007. PubMed PMID: 22917578; engCrossRefPubMedGoogle Scholar
  80. Fraser E, Hoyles RK (2016) Therapeutic advances in idiopathic pulmonary fibrosis. Clin Med (Lond) 16(1):42–51.  https://doi.org/10.7861/clinmedicine.16-1-42. PubMed PMID: 26833513; engCrossRefGoogle Scholar
  81. Frost L, Suryadevara P, Cannell SJ et al (2016) Synthesis of diacylated γ-glutamyl-cysteamine prodrugs, and in vitro evaluation of their cytotoxicity and intracellular delivery of cysteamine. Eur J Med Chem 109:206–215.  https://doi.org/10.1016/j.ejmech.2015.12.027. PubMed PMID: 26774926; engCrossRefPubMedGoogle Scholar
  82. Fujii S, Hara H, Araya J et al (2012) Insufficient autophagy promotes bronchial epithelial cell senescence in chronic obstructive pulmonary disease. Oncoimmunology 1(5):630–641.  https://doi.org/10.4161/onci.20297. PubMed PMID: 22934255; PubMed Central PMCID: PMCPMC3429567CrossRefPubMedPubMedCentralGoogle Scholar
  83. Fukuchi Y (2009) The aging lung and chronic obstructive pulmonary disease: similarity and difference. Proc Am Thorac Soc 6(7):570–572.  https://doi.org/10.1513/pats.200909-099RM. PubMed PMID: 19934351; engCrossRefPubMedGoogle Scholar
  84. Galli F, Battistoni A, Gambari R et al (2012) Oxidative stress and antioxidant therapy in cystic fibrosis. Biochim Biophys Acta 1822(5):690–713.  https://doi.org/10.1016/j.bbadis.2011.12.012. PubMed PMID: 22226887CrossRefPubMedGoogle Scholar
  85. Gladyshev VN (2014) The free radical theory of aging is dead. Long live the damage theory! Antioxid Redox Signal 20(4):727–731.  https://doi.org/10.1089/ars.2013.5228. PubMed PMID: 24159899; PubMed Central PMCID: PMCPMC3901353. engCrossRefPubMedPubMedCentralGoogle Scholar
  86. Gomes LC, Scorrano L (2013) Mitochondrial morphology in mitophagy and macroautophagy. Biochim Biophys Acta 1833(1):205–212.  https://doi.org/10.1016/j.bbamcr.2012.02.012. PubMed PMID: 22406072; engCrossRefPubMedGoogle Scholar
  87. Gould NS, Min E, Martin RJ et al (2012) CFTR is the primary known apical glutathione transporter involved in cigarette smoke-induced adaptive responses in the lung. Free Radic Biol Med 52(7):1201–1206.  https://doi.org/10.1016/j.freeradbiomed.2012.01.001. PubMed PMID: 22266045; PubMed Central PMCID: PMCPMC3920665. engCrossRefPubMedPubMedCentralGoogle Scholar
  88. Grassme H, Riethmuller J, Gulbins E (2013) Ceramide in cystic fibrosis. Handb Exp Pharmacol 216:265–274.  https://doi.org/10.1007/978-3-7091-1511-4_13. PubMed PMID: 23563661CrossRefGoogle Scholar
  89. Grassme H, Henry B, Ziobro R et al (2017) beta1-integrin accumulates in cystic fibrosis luminal airway epithelial membranes and decreases sphingosine, promoting bacterial infections. Cell Host Microbe 21(6):707–718 e8.  https://doi.org/10.1016/j.chom.2017.05.001. PubMed PMID: 28552668; PubMed Central PMCID: PMCPMC5475347CrossRefPubMedPubMedCentralGoogle Scholar
  90. Green LS, Chun LE, Patton AK et al (2012) Mechanism of inhibition for N6022, a first-in-class drug targeting S-nitrosoglutathione reductase. Biochemistry 51(10):2157–2168.  https://doi.org/10.1021/bi201785u.. PubMed PMID: 22335564CrossRefPubMedGoogle Scholar
  91. Hanania NA, King MJ, Braman SS et al (2011) Asthma in the elderly: current understanding and future research needs – a report of a National Institute on Aging (NIA) workshop. J Allergy Clin Immunol 128(3 Suppl):S4–S24.  https://doi.org/10.1016/j.jaci.2011.06.048. PubMed PMID: 21872730; PubMed Central PMCID: PMCPMC3164961. engCrossRefPubMedPubMedCentralGoogle Scholar
  92. Hara H, Araya J, Ito S et al (2013) Mitochondrial fragmentation in cigarette smoke-induced bronchial epithelial cell senescence. Am J Physiol Lung Cell Mol Physiol 305(10):L737–L746.  https://doi.org/10.1152/ajplung.00146.2013. PubMed PMID: 24056969; engCrossRefPubMedGoogle Scholar
  93. Hauck AK, Bernlohr DA (2016) Oxidative stress and lipotoxicity. J Lipid Res 57(11):1976–1986.  https://doi.org/10.1194/jlr.R066597. PubMed PMID: 27009116; PubMed Central PMCID: PMCPMC5087875. engCrossRefPubMedPubMedCentralGoogle Scholar
  94. He L, He T, Farrar S et al (2017) Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell Physiol Biochem 44(2):532–553.  https://doi.org/10.1159/000485089. PubMed PMID: 29145191; engCrossRefPubMedGoogle Scholar
  95. Hector A, Griese M, Hartl D (2014) Oxidative stress in cystic fibrosis lung disease: an early event, but worth targeting? Eur Respir J 44(1):17–19.  https://doi.org/10.1183/09031936.00038114. PubMed PMID: 24982050; engCrossRefPubMedGoogle Scholar
  96. Holguin F (2013) Oxidative stress in airway diseases. Ann Am Thorac Soc 10(Suppl):S150–S157.  https://doi.org/10.1513/AnnalsATS.201305-116AW. PubMed PMID: 24313766; engCrossRefPubMedPubMedCentralGoogle Scholar
  97. Houssaini A, Breau M, Kebe K et al (2018) mTOR pathway activation drives lung cell senescence and emphysema. JCI Insight 3(3).  https://doi.org/10.1172/jci.insight.93203. PubMed PMID: 29415880; PubMed Central PMCID: PMCPMC5821218. eng
  98. Igishi T, Hitsuda Y, Kato K et al (2003) Elevated urinary 8-hydroxydeoxyguanosine, a biomarker of oxidative stress, and lack of association with antioxidant vitamins in chronic obstructive pulmonary disease. Respirology 8(4):455–460. PubMed PMID: 14629648; engCrossRefGoogle Scholar
  99. Ito K, Barnes PJ (2009) COPD as a disease of accelerated lung aging. Chest 135(1):173–180.  https://doi.org/10.1378/chest.08-1419. PubMed PMID: 19136405CrossRefPubMedGoogle Scholar
  100. Ito S, Araya J, Kurita Y et al (2015) PARK2-mediated mitophagy is involved in regulation of HBEC senescence in COPD pathogenesis. Autophagy 11(3):547–559.  https://doi.org/10.1080/15548627.2015.1017190. PubMed PMID: 25714760; PubMed Central PMCID: PMCPMC4502689CrossRefPubMedPubMedCentralGoogle Scholar
  101. Jomova K, Valko M (2011) Advances in metal-induced oxidative stress and human disease. Toxicology 283(2–3):65–87.  https://doi.org/10.1016/j.tox.2011.03.001. PubMed PMID: 21414382; engCrossRefPubMedGoogle Scholar
  102. Jones KL, Hegab AH, Hillman BC et al (2000) Elevation of nitrotyrosine and nitrate concentrations in cystic fibrosis sputum. Pediatr Pulmonol 30(2):79–85. PubMed PMID: 10922128; engCrossRefGoogle Scholar
  103. Junkins RD, McCormick C, Lin TJ (2014) The emerging potential of autophagy-based therapies in the treatment of cystic fibrosis lung infections. Autophagy 10(3):538–547.  https://doi.org/10.4161/auto.27750. PubMed PMID: 24434788; PubMed Central PMCID: PMCPMC4077897. engCrossRefPubMedPubMedCentralGoogle Scholar
  104. Kelsen SG (2016) The unfolded protein response in chronic obstructive pulmonary disease. Ann Am Thorac Soc 13(Suppl 2):S138–S145.  https://doi.org/10.1513/AnnalsATS.201506-320KV.. PubMed PMID: 27115948CrossRefPubMedPubMedCentralGoogle Scholar
  105. Kenche H, Baty CJ, Vedagiri K et al (2013) Cigarette smoking affects oxidative protein folding in endoplasmic reticulum by modifying protein disulfide isomerase. FASEB J. 27(3):965–977.  https://doi.org/10.1096/fj.12-216234. PubMed PMID: 23169770; engCrossRefPubMedGoogle Scholar
  106. Kettle AJ, Turner R, Gangell CL et al (2014) Oxidation contributes to low glutathione in the airways of children with cystic fibrosis. Eur Respir J 44(1):122–129.  https://doi.org/10.1183/09031936.00170213. PubMed PMID: 24659542; engCrossRefPubMedGoogle Scholar
  107. Kirkham PA, Barnes PJ (2013) Oxidative stress in COPD. Chest 144(1):266–273.  https://doi.org/10.1378/chest.12-2664. PubMed PMID: 23880677CrossRefPubMedGoogle Scholar
  108. Kirkham P, Rahman I (2006) Oxidative stress in asthma and COPD: antioxidants as a therapeutic strategy. Pharmacol Ther. 111(2):476–494.  https://doi.org/10.1016/j.pharmthera.2005.10.015. PubMed PMID: 16458359; engCrossRefPubMedGoogle Scholar
  109. Kirkham PA, Caramori G, Casolari P et al (2011) Oxidative stress-induced antibodies to carbonyl-modified protein correlate with severity of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 184(7):796–802.  https://doi.org/10.1164/rccm.201010-1605OC. PubMed PMID: 21965015; PubMed Central PMCID: PMCPMC3398415. EngCrossRefPubMedPubMedCentralGoogle Scholar
  110. Kirkwood TB (2005) Understanding the odd science of aging. Cell 120(4):437–447.  https://doi.org/10.1016/j.cell.2005.01.027. PubMed PMID: 15734677; engCrossRefPubMedGoogle Scholar
  111. Kluchová Z, Petrásová D, Joppa P et al (2007) The association between oxidative stress and obstructive lung impairment in patients with COPD. Physiol Res 56(1):51–56. PubMed PMID: 16497100; engPubMedGoogle Scholar
  112. Kopito RR (2000) Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol 10(12):524–530. PubMed PMID: 11121744CrossRefGoogle Scholar
  113. Kosmider B, Messier EM, Chu HW et al (2011) Human alveolar epithelial cell injury induced by cigarette smoke. PLoS One 6(12):e26059.  https://doi.org/10.1371/journal.pone.0026059. PubMed PMID: 22163265; PubMed Central PMCID: PMCPMC3233536. engCrossRefPubMedPubMedCentralGoogle Scholar
  114. Kukrety SP, Parekh JD, Bailey KL (2018) Chronic obstructive pulmonary disease and the hallmarks of aging. Lung India 35(4):321–327.  https://doi.org/10.4103/lungindia.lungindia_266_17. PubMed PMID: 29970772; PubMed Central PMCID: PMCPMC6034372. engCrossRefPubMedPubMedCentralGoogle Scholar
  115. Kuwano K, Araya J, Hara H et al (2016) Cellular senescence and autophagy in the pathogenesis of chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). Respir Investig 54(6):397–406.  https://doi.org/10.1016/j.resinv.2016.03.010. PubMed PMID: 27886850CrossRefPubMedGoogle Scholar
  116. Lao X, Chen S, Dai Y et al (2014) Cellular stress response and pulmonary inflammation. Microbes Infect 16(10):871–876.  https://doi.org/10.1016/j.micinf.2014.08.007. PubMed PMID: 25172396; engCrossRefPubMedGoogle Scholar
  117. Li Q, Baines KJ, Gibson PG et al (2016) Changes in expression of genes regulating airway inflammation following a high-fat mixed meal in asthmatics. Nutrients 8(1).  https://doi.org/10.3390/nu8010030. PubMed PMID: 26751474; PubMed Central PMCID: PMCPMC4728644CrossRefGoogle Scholar
  118. Liguori I, Russo G, Curcio F et al (2018) Oxidative stress, aging, and diseases. Clin Interv Aging 13:757–772.  https://doi.org/10.2147/CIA.S158513. PubMed PMID: 29731617; PubMed Central PMCID: PMCPMC5927356. engCrossRefPubMedPubMedCentralGoogle Scholar
  119. Lü JM, Lin PH, Yao Q et al (2010) Chemical and molecular mechanisms of antioxidants: experimental approaches and model systems. J Cell Mol Med 14(4):840–860.  https://doi.org/10.1111/j.1582-4934.2009.00897.x. PubMed PMID: 19754673; PubMed Central PMCID: PMCPMC2927345. engCrossRefPubMedGoogle Scholar
  120. Luciani A, Villella VR, Esposito S et al (2010) Defective CFTR induces aggresome formation and lung inflammation in cystic fibrosis through ROS-mediated autophagy inhibition. Nat Cell Biol 12(9):863–875. PubMed PMID: 20711182CrossRefGoogle Scholar
  121. Luciani A, Villella VR, Esposito S et al (2011) Cystic fibrosis: a disorder with defective autophagy. Autophagy 7(1):104–106. PubMed PMID: 21048426; engCrossRefGoogle Scholar
  122. Luisetti M, Pignatti PF (1995) The search for susceptibility genes of COPD. Monaldi Arch Chest Dis 50(1):28–32. PubMed PMID: 7538005; engPubMedGoogle Scholar
  123. MacNee W (2001) Oxidants/antioxidants and chronic obstructive pulmonary disease: pathogenesis to therapy. Novartis Found Symp 234:169–185; discussion 185-8. PubMed PMID: 11199095; engPubMedGoogle Scholar
  124. MacNee W (2005) Pulmonary and systemic oxidant/antioxidant imbalance in chronic obstructive pulmonary disease. Proc Am Thorac Soc 2(1):50–60.  https://doi.org/10.1513/pats.200411-056SF. PubMed PMID: 16113469; engCrossRefPubMedGoogle Scholar
  125. Martinez-Lopez N, Athonvarangkul D, Singh R (2015) Autophagy and aging. Adv Exp Med Biol 847:73–87.  https://doi.org/10.1007/978-1-4939-2404-2_3. PubMed PMID: 25916586; PubMed Central PMCID: PMCPMC4644734. engCrossRefPubMedPubMedCentralGoogle Scholar
  126. Matés JM, Segura JA, Alonso FJ et al (2008) Intracellular redox status and oxidative stress: implications for cell proliferation, apoptosis, and carcinogenesis. Arch Toxicol 82(5):273–299.  https://doi.org/10.1007/s00204-008-0304-z. PubMed PMID: 18443763; engCrossRefPubMedGoogle Scholar
  127. McGuinness AJ, Sapey E (2017) Oxidative stress in COPD: sources, markers, and potential mechanisms. J Clin Med 6(2).  https://doi.org/10.3390/jcm6020021. PubMed PMID: 28212273; PubMed Central PMCID: PMCPMC5332925. engCrossRefGoogle Scholar
  128. Meiners S, Eickelberg O, Königshoff M (2015) Hallmarks of the ageing lung. Eur Respir J 45(3):807–827.  https://doi.org/10.1183/09031936.00186914. PubMed PMID: 25657021; engCrossRefPubMedGoogle Scholar
  129. Mercado N, Ito K, Barnes PJ (2015) Accelerated ageing of the lung in COPD: new concepts. Thorax 70(5):482–489.  https://doi.org/10.1136/thoraxjnl-2014-206084. PubMed PMID: 25739910CrossRefPubMedGoogle Scholar
  130. Min T, Bodas M, Mazur S et al (2011) Critical role of proteostasis-imbalance in pathogenesis of COPD and severe emphysema. J Mol Med (Berl) 89(6):577–593.  https://doi.org/10.1007/s00109-011-0732-8. PubMed PMID: 21318260; PubMed Central PMCID: PMCPMC3128462. engCrossRefGoogle Scholar
  131. Mizumura K, Cloonan SM, Nakahira K et al (2014) Mitophagy-dependent necroptosis contributes to the pathogenesis of COPD. J Clin Invest 124(9):3987–4003.  https://doi.org/10.1172/JCI74985. PubMed PMID: 25083992; PubMed Central PMCID: PMCPMC4151233CrossRefPubMedPubMedCentralGoogle Scholar
  132. Mizushima N, Levine B, Cuervo AM et al (2008) Autophagy fights disease through cellular self-digestion. Nature 451(7182):1069–1075.  https://doi.org/10.1038/nature06639. PubMed PMID: 18305538; PubMed Central PMCID: PMCPMC2670399. engCrossRefPubMedPubMedCentralGoogle Scholar
  133. Mockett RJ, Sohal BH, Sohal RS (2010) Expression of multiple copies of mitochondrially targeted catalase or genomic Mn superoxide dismutase transgenes does not extend the life span of Drosophila melanogaster. Free Radic Biol Med 49(12):2028–2031.  https://doi.org/10.1016/j.freeradbiomed.2010.09.029. PubMed PMID: 20923705; PubMed Central PMCID: PMCPMC3006069. engCrossRefPubMedPubMedCentralGoogle Scholar
  134. Monick MM, Powers LS, Walters K et al (2010) Identification of an autophagy defect in smokers’ alveolar macrophages. J Immunol 185(9):5425–5435.  https://doi.org/10.4049/jimmunol.1001603. PubMed PMID: 20921532; PubMed Central PMCID: PMCPMC3057181CrossRefPubMedPubMedCentralGoogle Scholar
  135. Moretto N, Volpi G, Pastore F et al (2012) Acrolein effects in pulmonary cells: relevance to chronic obstructive pulmonary disease. Ann N Y Acad Sci 1259:39–46.  https://doi.org/10.1111/j.1749-6632.2012.06531.x. PubMed PMID: 22758635; engCrossRefPubMedGoogle Scholar
  136. Moskovitz J, Bar-Noy S, Williams WM et al (2001) Methionine sulfoxide reductase (MsrA) is a regulator of antioxidant defense and lifespan in mammals. Proc Natl Acad Sci U S A 98(23):12920–12925.  https://doi.org/10.1073/pnas.231472998. PubMed PMID: 11606777; PubMed Central PMCID: PMCPMC60800. engCrossRefPubMedPubMedCentralGoogle Scholar
  137. Napolitano G, Esposito A, Choi H et al (2018) mTOR-dependent phosphorylation controls TFEB nuclear export. Nat Commun 9(1):3312.  https://doi.org/10.1038/s41467-018-05862-6 CrossRefPubMedPubMedCentralGoogle Scholar
  138. Neofytou E, Tzortzaki EG, Chatziantoniou A et al (2012) DNA damage due to oxidative stress in Chronic Obstructive Pulmonary Disease (COPD). Int J Mol Sci 13(12):16853–16864.  https://doi.org/10.3390/ijms131216853. PubMed PMID: 23222732; PubMed Central PMCID: PMCPMC3546726CrossRefPubMedPubMedCentralGoogle Scholar
  139. Ni I, Ji C, Vij N (2015) Second-hand cigarette smoke impairs bacterial phagocytosis in macrophages by modulating CFTR dependent lipid-rafts. PLoS One 10(3):e0121200.  https://doi.org/10.1371/journal.pone.0121200. PubMed PMID: 25794013; PubMed Central PMCID: PMCPMC4368805. engCrossRefPubMedPubMedCentralGoogle Scholar
  140. Nichols DP, Chmiel JF (2015) Inflammation and its genesis in cystic fibrosis. Pediatr Pulmonol 50(Suppl 40):S39–S56.  https://doi.org/10.1002/ppul.23242. PubMed PMID: 26335954; EngCrossRefPubMedGoogle Scholar
  141. Olveira C, Padilla A, Dorado A et al (2017) Inflammation and oxidation biomarkers in patients with cystic fibrosis: the influence of azithromycin. Eurasian J Med 49(2):118–123.  https://doi.org/10.5152/eurasianjmed.2017.17010. PubMed PMID: 28638254; PubMed Central PMCID: PMCPMC5469837. engCrossRefPubMedPubMedCentralGoogle Scholar
  142. Paliogiannis P, Fois AG, Sotgia S et al (2018) Circulating malondialdehyde concentrations in patients with stable chronic obstructive pulmonary disease: a systematic review and meta-analysis. Biomark Med 12(7):771–781.  https://doi.org/10.2217/bmm-2017-0420. PubMed PMID: 29865860; engCrossRefPubMedGoogle Scholar
  143. Park HS, Kim SR, Lee YC (2009) Impact of oxidative stress on lung diseases. Respirology 14(1):27–38.  https://doi.org/10.1111/j.1440-1843.2008.01447.x. PubMed PMID: 19144046; EngCrossRefGoogle Scholar
  144. Paschalaki KE, Starke RD, Hu Y et al (2013) Dysfunction of endothelial progenitor cells from smokers and chronic obstructive pulmonary disease patients due to increased DNA damage and senescence. Stem Cells 31(12):2813–2826.  https://doi.org/10.1002/stem.1488. PubMed PMID: 23897750; PubMed Central PMCID: PMCPMC4377082. engCrossRefPubMedPubMedCentralGoogle Scholar
  145. Paulin L, Hansel N (2016) Particulate air pollution and impaired lung function. F1000Res;5.  https://doi.org/10.12688/f1000research.7108.1. PubMed PMID: 26962445; PubMed Central PMCID: PMCPMC4765726CrossRefGoogle Scholar
  146. Pehote G, Bodas M, Brucia K et al (2017) Cigarette smoke exposure inhibits bacterial killing via TFEB-mediated autophagy impairment and resulting phagocytosis defect. Mediators Inflamm 2017:3028082.  https://doi.org/10.1155/2017/3028082. PubMed PMID: 29445254; PubMed Central PMCID: PMCPMC5763241. engCrossRefPubMedPubMedCentralGoogle Scholar
  147. Petrache I, Natarajan V, Zhen L et al (2005) Ceramide upregulation causes pulmonary cell apoptosis and emphysema-like disease in mice. Nat Med 11(5):491–498. PubMed PMID: 15852018CrossRefGoogle Scholar
  148. Petrache I, Natarajan V, Zhen L et al (2006) Ceramide causes pulmonary cell apoptosis and emphysema: a role for sphingolipid homeostasis in the maintenance of alveolar cells. Proc Am Thorac Soc 3(6):510.  https://doi.org/10.1513/pats.200603-071MS. PubMed PMID: 16921130CrossRefPubMedGoogle Scholar
  149. Phaniendra A, Jestadi DB, Periyasamy L (2015) Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem 30(1):11–26.  https://doi.org/10.1007/s12291-014-0446-0. PubMed PMID: 25646037; PubMed Central PMCID: PMCPMC4310837. engCrossRefPubMedPubMedCentralGoogle Scholar
  150. Phipps JC, Aronoff DM, Curtis JL et al (2010) Cigarette smoke exposure impairs pulmonary bacterial clearance and alveolar macrophage complement-mediated phagocytosis of Streptococcus pneumoniae. Infect Immun 78(3):1214–1220.  https://doi.org/10.1128/IAI.00963-09. PubMed PMID: 20008540; PubMed Central PMCID: PMCPMC2825918CrossRefPubMedGoogle Scholar
  151. Postma DS, Bush A, van den Berge M (2015) Risk factors and early origins of chronic obstructive pulmonary disease. Lancet. 385(9971):899–909.  https://doi.org/10.1016/S0140-6736(14)60446-3. PubMed PMID: 25123778CrossRefPubMedGoogle Scholar
  152. Rab A, Rowe SM, Raju SV et al (2013) Cigarette smoke and CFTR: implications in the pathogenesis of COPD. Am J Physiol Lung Cell Mol Physiol 305(8):L530–L541.  https://doi.org/10.1152/ajplung.00039.2013. PubMed PMID: 23934925; PubMed Central PMCID: PMCPMC3798775CrossRefPubMedPubMedCentralGoogle Scholar
  153. Rahman I, Adcock IM (2006) Oxidative stress and redox regulation of lung inflammation in COPD. Eur Respir J 28(1):219–242.  https://doi.org/10.1183/09031936.06.00053805. PubMed PMID: 16816350; EngCrossRefGoogle Scholar
  154. Rahman I, van Schadewijk AA, Crowther AJ et al (2002) 4-Hydroxy-2-nonenal, a specific lipid peroxidation product, is elevated in lungs of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 166(4):490–495.  https://doi.org/10.1164/rccm.2110101. PubMed PMID: 12186826; engCrossRefPubMedGoogle Scholar
  155. Rennolds J, Butler S, Maloney K et al (2010) Cadmium regulates the expression of the CFTR chloride channel in human airway epithelial cells. Toxicol Sci 116(1):349–358.  https://doi.org/10.1093/toxsci/kfq101. PubMed PMID: 20363832; PubMed Central PMCID: PMCPMC2886859. engCrossRefPubMedPubMedCentralGoogle Scholar
  156. Roczniak-Ferguson A, Petit CS, Froehlich F et al (2012) The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci Signal 5(228):ra42.  https://doi.org/10.1126/scisignal.2002790. PubMed PMID: 22692423; PubMed Central PMCID: PMCPMC3437338CrossRefPubMedPubMedCentralGoogle Scholar
  157. Rogers LK, Cismowski MJ (2018) Oxidative stress in the lung – the essential paradox. Curr Opin Toxicol 7:37–43.  https://doi.org/10.1016/j.cotox.2017.09.001. PubMed PMID: 29308441; PubMed Central PMCID: PMCPMC5754020. engCrossRefGoogle Scholar
  158. Romani L, Oikonomou V, Moretti S et al (2017) Thymosin α1 represents a potential potent single-molecule-based therapy for cystic fibrosis. Nat Med 23(5):590–600.  https://doi.org/10.1038/nm.4305. PubMed PMID: 28394330; PubMed Central PMCID: PMCPMC5420451. engCrossRefPubMedPubMedCentralGoogle Scholar
  159. Roscioli E, Hamon R, Lester SE et al (2018) Airway epithelial cells exposed to wildfire smoke extract exhibit dysregulated autophagy and barrier dysfunction consistent with COPD. Respir Res 19(1):234.  https://doi.org/10.1186/s12931-018-0945-2. PubMed PMID: 30486816; PubMed Central PMCID: PMCPMC6263553. engCrossRefPubMedPubMedCentralGoogle Scholar
  160. Roum JH, Buhl R, McElvaney NG et al (1993) Systemic deficiency of glutathione in cystic fibrosis. J Appl Physiol (1985) 75(6):2419–2424.  https://doi.org/10.1152/jappl.1993.75.6.2419. PubMed PMID: 8125859; engCrossRefGoogle Scholar
  161. Rushton L (2007) Occupational causes of chronic obstructive pulmonary disease. Rev Environ Health. 22(3):195–212. PubMed PMID: 18078004CrossRefGoogle Scholar
  162. Ryan DM, Vincent TL, Salit J et al (2014) Smoking dysregulates the human airway basal cell transcriptome at COPD risk locus 19q13.2. PLoS One 9(2):e88051.  https://doi.org/10.1371/journal.pone.0088051. PubMed PMID: 24498427; PubMed Central PMCID: PMCPMC3912203. engCrossRefPubMedPubMedCentralGoogle Scholar
  163. Sahiner UM, Birben E, Erzurum S et al (2011) Oxidative stress in asthma. World Allergy Organ J 4(10):151–158.  https://doi.org/10.1097/WOX.0b013e318232389e. PubMed PMID: 23268432; PubMed Central PMCID: PMCPMC3488912CrossRefPubMedPubMedCentralGoogle Scholar
  164. Salama SA, Arab HH, Omar HA et al (2014) Nicotine mediates hypochlorous acid-induced nuclear protein damage in mammalian cells. Inflammation 37(3):785–792.  https://doi.org/10.1007/s10753-013-9797-6. PubMed PMID: 24357417; PubMed Central PMCID: PMCPMC4035441. engCrossRefPubMedPubMedCentralGoogle Scholar
  165. Saleh D, Ernst P, Lim S et al (1998) Increased formation of the potent oxidant peroxynitrite in the airways of asthmatic patients is associated with induction of nitric oxide synthase: effect of inhaled glucocorticoid. FASEB J 12(11):929–937. PubMed PMID: 9707165; engCrossRefGoogle Scholar
  166. Salmon AB, Richardson A, Pérez VI (2010) Update on the oxidative stress theory of aging: does oxidative stress play a role in aging or healthy aging? Free Radic Biol Med 48(5):642–655.  https://doi.org/10.1016/j.freeradbiomed.2009.12.015. PubMed PMID: 20036736; PubMed Central PMCID: PMCPMC2819595. engCrossRefGoogle Scholar
  167. Sanz A, Stefanatos RK. The mitochondrial free radical theory of aging: a critical view. Curr Aging Sci. 20081(1):10-21. PubMed PMID: 20021368; eng.CrossRefGoogle Scholar
  168. Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24(10):R453–R462.  https://doi.org/10.1016/j.cub.2014.03.034. PubMed PMID: 24845678; PubMed Central PMCID: PMCPMC4055301. engCrossRefPubMedPubMedCentralGoogle Scholar
  169. Schlemmer F, Boyer L, Soumagne T et al (2018) Beclin1 circulating levels and accelerated aging markers in COPD. Cell Death Dis 9(2):156.  https://doi.org/10.1038/s41419-017-0178-1. PubMed PMID: 29402890; PubMed Central PMCID: PMCPMC5833829. engCrossRefPubMedPubMedCentralGoogle Scholar
  170. Schwarzer C, Fischer H, Kim EJ et al (2008) Oxidative stress caused by pyocyanin impairs CFTR Cl(-) transport in human bronchial epithelial cells. Free Radic Biol Med 45(12):1653–1662.  https://doi.org/10.1016/j.freeradbiomed.2008.09.011. PubMed PMID: 18845244; PubMed Central PMCID: PMCPMC2628806. engCrossRefPubMedPubMedCentralGoogle Scholar
  171. Seys LJ, Verhamme FM, Dupont LL et al (2015) Airway Surface Dehydration Aggravates Cigarette Smoke-Induced Hallmarks of COPD in Mice. PLoS One 10(6):e0129897.  https://doi.org/10.1371/journal.pone.0129897. PubMed PMID: 26066648; PubMed Central PMCID: PMCPMC4466573. engCrossRefPubMedPubMedCentralGoogle Scholar
  172. Sharma G, Goodwin J (2006) Effect of aging on respiratory system physiology and immunology. Clin Interv Aging. 1(3):253–260. PubMed PMID: 18046878; PubMed Central PMCID: PMCPMC2695176. engCrossRefGoogle Scholar
  173. Shaykhiev R, Crystal RG (2014) Basal cell origins of smoking-induced airway epithelial disorders. Cell Cycle 13(3):341–342.  https://doi.org/10.4161/cc.27510. PubMed PMID: 24335435; PubMed Central PMCID: PMCPMC3956524. engCrossRefPubMedGoogle Scholar
  174. Shi J, Li H, Yuan C et al (2018) Cigarette smoke-induced acquired dysfunction of cystic fibrosis transmembrane conductance regulator in the pathogenesis of chronic obstructive pulmonary disease. Oxid Med Cell Longev 2018:6567578.  https://doi.org/10.1155/2018/6567578. PubMed PMID: 29849907; PubMed Central PMCID: PMCPMC5937428. engCrossRefPubMedPubMedCentralGoogle Scholar
  175. Shivalingappa PC, Hole R, Westphal CV et al (2015) Airway exposure to E-cigarette vapors impairs autophagy and induces aggresome formation. Antioxid Redox Signal.  https://doi.org/10.1089/ars.2015.6367. PubMed PMID: 26377848; PubMed Central PMCID: PMCPMC4744882. EngCrossRefGoogle Scholar
  176. Singh VP, Aggarwal R, Singh S et al (2015) Metabolic syndrome is associated with increased oxo-nitrative stress and asthma-like changes in lungs. PLoS One 10(6):e0129850.  https://doi.org/10.1371/journal.pone.0129850. PubMed PMID: 26098111; PubMed Central PMCID: PMC4476757. engCrossRefPubMedPubMedCentralGoogle Scholar
  177. Siu GM, Draper HH (1982) Metabolism of malonaldehyde in vivo and in vitro. Lipids 17(5):349–355. PubMed PMID: 6808279; engCrossRefGoogle Scholar
  178. Slebos DJ, Ryter SW, van der Toorn M et al (2007) Mitochondrial localization and function of heme oxygenase-1 in cigarette smoke-induced cell death. Am J Respir Cell Mol Biol 36(4):409–417.  https://doi.org/10.1165/rcmb.2006-0214OC. PubMed PMID: 17079780; PubMed Central PMCID: PMCPMC1899328. engCrossRefPubMedGoogle Scholar
  179. Sloane PA, Shastry S, Wilhelm A et al (2012) A pharmacologic approach to acquired cystic fibrosis transmembrane conductance regulator dysfunction in smoking related lung disease. PLoS One 7(6):e39809.  https://doi.org/10.1371/journal.pone.0039809. PubMed PMID: 22768130; PubMed Central PMCID: PMCPMC3387224. engCrossRefPubMedPubMedCentralGoogle Scholar
  180. Somborac-Bacura A, van der Toorn M, Franciosi L et al (2013) Cigarette smoke induces endoplasmic reticulum stress response and proteasomal dysfunction in human alveolar epithelial cells. Exp Physiol 98(1):316–325.  https://doi.org/10.1113/expphysiol.2012.067249. PubMed PMID: 22848082; engCrossRefPubMedGoogle Scholar
  181. Stincardini C, Renga G, Villella V et al (2018) Cellular proteostasis: a new twist in the action of thymosin α1. Expert Opin Biol Ther 18(sup1):43–48.  https://doi.org/10.1080/14712598.2018.1484103. PubMed PMID: 30063867; engCrossRefPubMedGoogle Scholar
  182. Sutcliffe A, Hollins F, Gomez E et al (2012) Increased nicotinamide adenine dinucleotide phosphate oxidase 4 expression mediates intrinsic airway smooth muscle hypercontractility in asthma. Am J Respir Crit Care Med 185(3):267–274.  https://doi.org/10.1164/rccm.201107-1281OC. PubMed PMID: 22108207; PubMed Central PMCID: PMCPMC3402550. engCrossRefPubMedPubMedCentralGoogle Scholar
  183. Takimoto T, Yoshida M, Hirata H et al (2012) 4-Hydroxy-2-nonenal induces chronic obstructive pulmonary disease-like histopathologic changes in mice. Biochem Biophys Res Commun 420(1):84–90.  https://doi.org/10.1016/j.bbrc.2012.02.119. PubMed PMID: 22405766; engCrossRefPubMedGoogle Scholar
  184. Tan BL, Norhaizan ME, Liew WP et al (2018) Antioxidant and oxidative stress: a mutual interplay in age-related diseases. Front Pharmacol 9:1162.  https://doi.org/10.3389/fphar.2018.01162. PubMed PMID: 30405405; PubMed Central PMCID: PMCPMC6204759. engCrossRefPubMedPubMedCentralGoogle Scholar
  185. Teichgraber V, Ulrich M, Endlich N et al (2008) Ceramide accumulation mediates inflammation, cell death and infection susceptibility in cystic fibrosis. Nat Med 14(4):382–391. PubMed PMID: 18376404CrossRefGoogle Scholar
  186. Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 279(6):L1005–L1028.  https://doi.org/10.1152/ajplung.2000.279.6.L1005. PubMed PMID: 11076791; engCrossRefGoogle Scholar
  187. Tibboel J, Reiss I, de Jongste JC et al (2013) Ceramides: a potential therapeutic target in pulmonary emphysema. Respir Res. 14:96.  https://doi.org/10.1186/1465-9921-14-96. PubMed PMID: 24083966; PubMed Central PMCID: PMCPMC3851206CrossRefPubMedPubMedCentralGoogle Scholar
  188. Tosco A, De Gregorio F, Esposito S et al (2016) A novel treatment of cystic fibrosis acting on-target: cysteamine plus epigallocatechin gallate for the autophagy-dependent rescue of class II-mutated CFTR. Cell Death Differ 23(8):1380–1393.  https://doi.org/10.1038/cdd.2016.22. PubMed PMID: 27035618; PubMed Central PMCID: PMCPMC4947669CrossRefPubMedPubMedCentralGoogle Scholar
  189. Tran I, Ji C, Ni I et al (2015) Role of cigarette smoke-induced aggresome formation in chronic obstructive pulmonary disease-emphysema pathogenesis. Am J Respir Cell Mol Biol 53(2):159–173.  https://doi.org/10.1165/rcmb.2014-0107OC. PubMed PMID: 25490051; engCrossRefPubMedPubMedCentralGoogle Scholar
  190. Tschernig T, Rabung A, Voss M et al (2015) Chronic inhalation of cigarette smoke reduces phagocytosis in peripheral blood leukocytes. BMC Res Notes 8(1):705.  https://doi.org/10.1186/s13104-015-1706-7. PubMed PMID: 26597815; PubMed Central PMCID: PMCPMC4657193CrossRefPubMedPubMedCentralGoogle Scholar
  191. Valavanidis A, Vlachogianni T, Fiotakis K (2009) Tobacco smoke: involvement of reactive oxygen species and stable free radicals in mechanisms of oxidative damage, carcinogenesis and synergistic effects with other respirable particles. Int J Environ Res Public Health 6(2):445–462.  https://doi.org/10.3390/ijerph6020445. PubMed PMID: 19440393; PubMed Central PMCID: PMCPMC2672368. engCrossRefPubMedPubMedCentralGoogle Scholar
  192. Valle CW, Vij N (2012) Can correcting the ΔF508-CFTR proteostasis-defect rescue CF lung disease? Curr Mol Med 12(7):860–871. PubMed PMID: 22697346; engCrossRefGoogle Scholar
  193. van Rijt SH, Keller IE, John G et al (2012) Acute cigarette smoke exposure impairs proteasome function in the lung. Am J Physiol Lung Cell Mol Physiol 303(9):L814–L823.  https://doi.org/10.1152/ajplung.00128.2012. PubMed PMID: 22962013CrossRefPubMedGoogle Scholar
  194. Vandivier RW, Richens TR, Horstmann SA et al (2009) Dysfunctional cystic fibrosis transmembrane conductance regulator inhibits phagocytosis of apoptotic cells with proinflammatory consequences. Am J Physiol Lung Cell Mol Physiol 297(4):L677–L686.  https://doi.org/10.1152/ajplung.00030.2009. PubMed PMID: 19633071; PubMed Central PMCID: PMCPMC2770781CrossRefPubMedPubMedCentralGoogle Scholar
  195. Vij N (2016) Nano-based rescue of dysfunctional autophagy in chronic obstructive lung diseases. Expert Opin Drug Deliv:1–7.  https://doi.org/10.1080/17425247.2016.1223040. PubMed PMID: 27561233CrossRefGoogle Scholar
  196. Vij N, Chandramani-Shivalingappa P, Van Westphal C et al (2018) Cigarette smoke-induced autophagy impairment accelerates lung aging, COPD-emphysema exacerbations and pathogenesis. Am J Physiol Cell Physiol 314(1):C73–C87.  https://doi.org/10.1152/ajpcell.00110.2016. PubMed PMID: 27413169; PubMed Central PMCID: PMCPMC5866380. engCrossRefPubMedGoogle Scholar
  197. Villegas L, Stidham T, Nozik-Grayck E (2014) Oxidative stress and therapeutic development in lung diseases. J Pulm Respir Med 4(4).  https://doi.org/10.4172/2161-105X.1000194. PubMed PMID: 27019769; PubMed Central PMCID: PMCPMC4807858. eng
  198. Villella VR, Esposito S, Maiuri MC et al (2013) Towards a rational combination therapy of cystic fibrosis: how cystamine restores the stability of mutant CFTR. Autophagy 9(9):1431–1434.  https://doi.org/10.4161/auto.25517. PubMed PMID: 23800975CrossRefPubMedGoogle Scholar
  199. Virág L, Szabó E, Gergely P et al (2003) Peroxynitrite-induced cytotoxicity: mechanism and opportunities for intervention. Toxicol Lett 140–141:113–124. PubMed PMID: 12676457; engCrossRefGoogle Scholar
  200. Voynow JA, Kummarapurugu A (2011) Isoprostanes and asthma. Biochim Biophys Acta 1810(11):1091–1095.  https://doi.org/10.1016/j.bbagen.2011.04.016. PubMed PMID: 21596100; PubMed Central PMCID: PMCPMC3192308. engCrossRefPubMedPubMedCentralGoogle Scholar
  201. Vu CB, Bridges RJ, Pena-Rasgado C et al (2017) Fatty acid cysteamine conjugates as novel and potent autophagy activators that enhance the correction of misfolded F508del-Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). J Med Chem 60(1):458–473.  https://doi.org/10.1021/acs.jmedchem.6b01539. PubMed PMID: 27976892CrossRefPubMedPubMedCentralGoogle Scholar
  202. Wang Y, Lin J, Shu J et al (2018a) Oxidative damage and DNA damage in lungs of an ovalbumin-induced asthmatic murine model. J Thorac Dis 10(8):4819–4830.  https://doi.org/10.21037/jtd.2018.07.74. PubMed PMID: 30233855; PubMed Central PMCID: PMCPMC6129938. engCrossRefPubMedPubMedCentralGoogle Scholar
  203. Wang Y, Liu J, Zhou JS et al (2018b) MTOR suppresses cigarette smoke-induced epithelial cell death and airway inflammation in chronic obstructive pulmonary disease. J Immunol 200(8):2571–2580.  https://doi.org/10.4049/jimmunol.1701681. PubMed PMID: 29507104; engCrossRefPubMedGoogle Scholar
  204. WebMed. Obstructive and Restrictive Lung Disease. Available from: https://www.webmd.com/lung/obstructive-and-restrictive-lung-disease#1
  205. Welsh MJ, Denning GM, Ostedgaard LS et al (1993) Dysfunction of CFTR bearing the delta F508 mutation. J Cell Sci Suppl 17:235–239. PubMed PMID: 7511616; engCrossRefGoogle Scholar
  206. Wine JJ (2010) The development of lung disease in cystic fibrosis pigs. Sci Transl Med 2(29):29ps20.  https://doi.org/10.1126/scitranslmed.3001130. PubMed PMID: 20427819; engCrossRefPubMedGoogle Scholar
  207. Yadav UC, Ramana KV (2013) Regulation of NF-κB-induced inflammatory signaling by lipid peroxidation-derived aldehydes. Oxid Med Cell Longev 2013:690545.  https://doi.org/10.1155/2013/690545. PubMed PMID: 23710287; PubMed Central PMCID: PMCPMC3654319. engCrossRefPubMedPubMedCentralGoogle Scholar
  208. Yamada Y, Tomaru U, Ishizu A et al (2015) Decreased proteasomal function accelerates cigarette smoke-induced pulmonary emphysema in mice. Lab Invest 95(6):625–634.  https://doi.org/10.1038/labinvest.2015.43. PubMed PMID: 25915723CrossRefPubMedGoogle Scholar
  209. Yoshida T, Mett I, Bhunia AK et al (2010) Rtp801, a suppressor of mTOR signaling, is an essential mediator of cigarette smoke-induced pulmonary injury and emphysema. Nat Med 16(7):767–773.  https://doi.org/10.1038/nm.2157. PubMed PMID: 20473305; PubMed Central PMCID: PMCPMC3956129. engCrossRefPubMedPubMedCentralGoogle Scholar
  210. Zahiruddin AS, Grant JA, Sur S (2018) Role of epigenetics and DNA-damage in asthma. Curr Opin Allergy Clin Immunol. 18(1):32–37.  https://doi.org/10.1097/ACI.0000000000000415. PubMed PMID: 29189349; engCrossRefPubMedGoogle Scholar
  211. Zaman K, Carraro S, Doherty J et al (2006) S-nitrosylating agents: a novel class of compounds that increase cystic fibrosis transmembrane conductance regulator expression and maturation in epithelial cells. Mol Pharmacol 70(4):1435–1442.  https://doi.org/10.1124/mol.106.023242. PubMed PMID: 16857740CrossRefPubMedGoogle Scholar
  212. Zaman K, Bennett D, Fraser-Butler M et al (2014) S-Nitrosothiols increases cystic fibrosis transmembrane regulator expression and maturation in the cell surface. Biochem Biophys Res Commun 443(4):1257–1262.  https://doi.org/10.1016/j.bbrc.2013.12.130. PubMed PMID: 24393850; PubMed Central PMCID: PMCPMC3974270CrossRefPubMedPubMedCentralGoogle Scholar
  213. Zaman K, Sawczak V, Zaidi A et al (2016) Augmentation of CFTR maturation by S-nitrosoglutathione reductase. Am J Physiol Lung Cell Mol Physiol 310(3):L263–L270.  https://doi.org/10.1152/ajplung.00269.2014. PubMed PMID: 26637637; PubMed Central PMCID: PMCPMC4838141CrossRefPubMedGoogle Scholar
  214. Zein JG, Dweik RA, Comhair SA et al (2015) Asthma is more severe in older adults. PLoS One 10(7):e0133490.  https://doi.org/10.1371/journal.pone.0133490. PubMed PMID: 26200463; PubMed Central PMCID: PMCPMC4511639. engCrossRefPubMedPubMedCentralGoogle Scholar
  215. Zhang S, Stoll G, Pedro JMBS et al (2018) Evaluation of autophagy inducers in epithelial cells carrying the ΔF508 mutation of the cystic fibrosis transmembrane conductance regulator CFTR. Cell Death Dis 9(2):191.  https://doi.org/10.1038/s41419-017-0235-9. PubMed PMID: 29415993; PubMed Central PMCID: PMCPMC5833759. engCrossRefPubMedPubMedCentralGoogle Scholar
  216. Ziady AG, Hansen J (2014) Redox balance in cystic fibrosis. Int J Biochem Cell Biol 52:113–123.  https://doi.org/10.1016/j.biocel.2014.03.006. PubMed PMID: 24657650; PubMed Central PMCID: PMCPMC4035434. engCrossRefPubMedGoogle Scholar
  217. Zinellu E, Zinellu A, Fois AG et al (2016) Circulating biomarkers of oxidative stress in chronic obstructive pulmonary disease: a systematic review. Respir Res 17(1):150.  https://doi.org/10.1186/s12931-016-0471-z. PubMed PMID: 27842552; PubMed Central PMCID: PMCPMC5109807. engCrossRefPubMedPubMedCentralGoogle Scholar
  218. Zuo L, Zhou T, Pannell BK et al (2015) Biological and physiological role of reactive oxygen species – the good, the bad and the ugly. Acta Physiol (Oxf) 214(3):329–348.  https://doi.org/10.1111/apha.12515. PubMed PMID: 25912260; engCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.University of Oaklahoma Health Science CenterOaklahoma CityUSA
  2. 2.The Johns Hopkins University School of MedicineBaltimoreUSA
  3. 3.VIJ Biotech LLCBaltimoreUSA
  4. 4.4Dx LimitedLos AngelesUSA

Personalised recommendations