Advertisement

Shape Clustering Using K-Medoids in Architectural Form Finding

  • Shermeen YousifEmail author
  • Wei Yan
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1028)

Abstract

As the number of design candidates in generative systems is often high, there is a need for an articulation mechanism that assists designers in exploring the generated design set. This research aims to condense the solution set yet enhance heterogeneity in generative design systems. Specifically, this work accomplishes the following: (1) introduces a new design articulation approach, a Shape Clustering using K-Medoids (SC-KM) method that is capable of grouping a dataset of shapes with similitude in one cluster and retrieving a representative for each cluster, and (2) incorporate the developed clustering method in architectural form finding. The articulated (condensed) set of shapes can be presented to designers to assist in their decision making. The research methods include formulating an algorithmic set with the implementation of K-Medoids and other algorithms. The results, visualized and discussed in the paper, show accurate clustering in comparison with the expected reference clustering sets.

Keywords

Generative design systems Clustering Form finding K-Medoids 

References

  1. 1.
    Woodbury, R.: Elements of parametric design (2010)Google Scholar
  2. 2.
    Malkawi, A.M.: Performance simulation: research and tools. In: Performative Architecture: Beyond Instrumentality, pp. 85–96. Spon Press, New York (2005)Google Scholar
  3. 3.
    Wortmann, T., Nannicini, G.: Introduction to architectural design optimization. In: Karakitsiou, A., Migdalas, A., Rassia, S.T., Pardalos, P.M. (eds.) City Networks. SOIA, vol. 128, pp. 259–278. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-65338-9_14CrossRefGoogle Scholar
  4. 4.
    Aish, R., Woodbury, R.: Multi-level interaction in parametric design. In: Butz, A., Fisher, B., Krüger, A., Olivier, P. (eds.) SG 2005. LNCS, vol. 3638, pp. 151–162. Springer, Heidelberg (2005).  https://doi.org/10.1007/11536482_13CrossRefGoogle Scholar
  5. 5.
    Rodrigues, E., Sousa-Rodrigues, D., de Sampayo, M.T., Gaspar, A.R., Gomes, Á., Antunes, C.H.: Clustering of architectural floor plans: a comparison of shape representations. Autom. Constr. 80, 48–65 (2017)CrossRefGoogle Scholar
  6. 6.
    Kalvelagen, E.: Visualization of large multi-criteria result sets with plot.ly. http://amsterdamoptimization.com/viz/plota1.html
  7. 7.
    Radford, A.D., Gero, J.S.: Design by Optimization in Architecture, Building, and Construction. Wiley, Hoboken (1987)Google Scholar
  8. 8.
    Brown, N.C., Mueller, C.T.: Quantifying diversity in parametric design: a comparison of possible metrics. AI EDAM 33, 1–14 (2018)CrossRefGoogle Scholar
  9. 9.
    Yousif, S., Clayton, M., Yan, W.: Towards integrating aesthetic variables in architectural design optimization. Presented at the 106th ACSA Annual Meeting, the Ethical Imperative, the Association of Collegiate Schools of Architecture (ACSA) (2018)Google Scholar
  10. 10.
    Han, J., Pei, J., Kamber, M.: Data Mining: Concepts and Techniques. Elsevier, New York (2011)zbMATHGoogle Scholar
  11. 11.
    Velmurugan, T., Santhanam, T.: Computational complexity between K-means and K-medoids clustering algorithms for normal and uniform distributions of data points. J. Comput. Sci. 6, 363 (2010)CrossRefGoogle Scholar
  12. 12.
    Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. (CSUR) 31, 264–323 (1999)CrossRefGoogle Scholar
  13. 13.
    Ward Jr., J.H.: Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58, 236–244 (1963)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Zhang, D., Lu, G.: Review of shape representation and description techniques. Pattern Recogn. 37, 1–19 (2004)CrossRefGoogle Scholar
  15. 15.
    Cha, M.Y., Gero, J.S.: Shape pattern recognition using a computable pattern representation. In: Gero, J.S., Sudweeks, F. (eds.) Artificial Intelligence in Design 1998, pp. 169–187. Springer, Dordrecht (1998).  https://doi.org/10.1007/978-94-011-5121-4_9CrossRefGoogle Scholar
  16. 16.
    de las Heras, L.-P., Fernández, D., Fornés, A., Valveny, E., Sánchez, G., Lladós, J.: Runlength histogram image signature for perceptual retrieval of architectural floor plans. In: Lamiroy, B., Ogier, J.-M. (eds.) GREC 2013. LNCS, vol. 8746, pp. 135–146. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44854-0_11CrossRefGoogle Scholar
  17. 17.
    Dutta, A., Lladós, J., Bunke, H., Pal, U.: A product graph based method for dual subgraph matching applied to symbol spotting. In: Lamiroy, B., Ogier, J.-M. (eds.) GREC 2013. LNCS, vol. 8746, pp. 11–24. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44854-0_2CrossRefGoogle Scholar
  18. 18.
    Brière-Côté, A., Rivest, L., Maranzana, R.: Comparing 3D CAD models: uses, methods, tools and perspectives. Comput.-Aided Des. Appl. 9, 771–794 (2012)CrossRefGoogle Scholar
  19. 19.
    Mills-Tettey, G.A., Stentz, A., Dias, M.B.: The Dynamic Hungarian Algorithm for the Assignment Problem with Changing Costs. Robotics Institute, Pittsburgh (2007)Google Scholar
  20. 20.
    Wagstaff, K., Cardie, C., Rogers, S., Schrödl, S.: Constrained k-means clustering with background knowledge. Presented at the ICML (2001)Google Scholar
  21. 21.
    Jin, X., Han, J.: K-Medoids clustering. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning and Data Mining, pp. 1–3. Springer, Boston (2016).  https://doi.org/10.1007/978-1-4899-7502-7CrossRefGoogle Scholar
  22. 22.
    Yousif, S., Yan, W.: Clustering forms for enhancing architectural design optimization. Presented at the Learning, Adapting and Prototyping, the 23rd Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA) (2018)Google Scholar
  23. 23.
    Yousif, S., Yan, W., Culp, C.: Incorporating form diversity into architectural design optimization. Presented at the ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) (2017)Google Scholar
  24. 24.
    Funkhouser, T., Kazhdan, M., Min, P., Shilane, P.: Shape-based retrieval and analysis of 3D models. Commun. ACM 48, 58–64 (2005).  https://doi.org/10.1145/1064830.1064859CrossRefGoogle Scholar
  25. 25.
    Bauckhage, C.: Numpy/Scipy Recipes for Data Science: k-Medoids Clustering, February 2015. researchgate.net

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Texas A&M UniversityCollege StationUSA

Personalised recommendations