Advertisement

Computing and Visualizing Taxi Cab Dynamics as Proxies for Autonomous Mobility on Demand Systems

The Case of the Chicago Taxi Cab System
  • Dimitris PapanikolaouEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1028)

Abstract

Despite the expansion of shared mobility-on-demand (MoD) systems as sustainable modes of urban transport, a growing debate among planners and urban scientists regarding what constitutes cost and how to compute it, divides opinions on the benefits that autonomous MoD systems may bring. We present a comprehensive definition of cost of traveling by MoD systems as the cost of the vehicle hours (VH), the vehicle-hours-traveled (VHT), the vehicle-hours-dispatched (VHD), and the vehicle-hours-parked (VHP) required to serve a pattern of trips. Next, we discuss an approach to estimate empty (dispatch) trips and idle periods from a user trip dataset. Finally, we model, compute, and visualize the relationship between the dynamics of VHP, VHT, and VHD using Chicago’s taxi cab system as a case. Our results show that the total fleet of taxis in Chicago can decrease by 51% if all trips, currently served by conventional taxis, were served by autonomous ones.

Keywords

Mobility on Demand systems Taxi cab systems Data-driven dynamic modeling Autonomous Vehicles System dynamics 

Notes

Acknowledgments

The research presented in this paper has been partially funded by UNCC’s Faculty Research Grant (funding cycle 2018-2019). The Chicago taxi trip dataset is publicly available and can be downloaded via the Socrata Open Data API through the following link: https://dev.socrata.com/foundry/data.cityofchicago.org/wrvz-psew. Figure 2 credits: Atefeh Mahdavi Goloujeh.

References

  1. 1.
    Shaheen, S., Cohen, A.: Innovative Mobility Carsharing Outlook. Transportation Sustainability Research Center, University of California, Berkeley (2016)Google Scholar
  2. 2.
    Steininger, K., Vogl, C., Zettl, R.: Car-sharing organizations: the size of the market segment and revealed change in mobility behavior. Transp. Policy 3, 177–185 (1996)CrossRefGoogle Scholar
  3. 3.
    Shaheen, S., Rodier, C.: Travel effects of a suburban commuter carsharing service: CarLink case study. Transp. Res. Rec. J. Transp. Res. Board. 1927, 182–188 (2005)CrossRefGoogle Scholar
  4. 4.
    Spieser, K., Treleaven, K., Zhang, R., Frazzoli, E., Morton, D., Pavone, M.: Toward a Systematic Approach to the Design and Evaluation of Automated Mobility-on-Demand Systems: A Case Study in Singapore. Frazzoli (2014)Google Scholar
  5. 5.
    Fagnant, D.J., Kockelman, K.M.: The travel and environmental implications of shared autonomous vehicles, using agent- based model scenarios. Transp. Res. Part C 40, 1–13 (2014)CrossRefGoogle Scholar
  6. 6.
    Chen, T.D., Kockelman, K.M., Hanna, J.P.: Operations of a shared, autonomous, electric vehicle fleet: implications of vehicle & charging infrastructure decisions. Transp. Res. Part A 94, 243–254 (2016).  https://doi.org/10.1016/j.tra.2016.08.020CrossRefGoogle Scholar
  7. 7.
    Papanikolaou, D.: The Potential of On-demand Urban Mobility: Lessons from System Analysis and Data Visualization (2016)Google Scholar
  8. 8.
    Fagnant, D.J., Kockelman, K.M., Bansal, P.: Operations of shared autonomous vehicle fleet for Austin, Texas. Market. Transp. Res. Rec. J. Transp. Res. Board. 2536, 98–106 (2015).  https://doi.org/10.3141/2536-12CrossRefGoogle Scholar
  9. 9.
    Papanikolaou, D.: Data-driven state space reconstruction of mobility on demand systems for sizing-rebalancing analysis. In: Proceedings of the 2018 Symposium on Simulation for Architecture and Urban Design (SimAUD 2018). Technical University of Delft, Netherlands (2018)Google Scholar
  10. 10.
    George, D., Xia, C.: Fleet-sizing and service availability for a vehicle rental system via closed queueing networks. Eur. J. Oper. Res. 211, 198–207 (2011).  https://doi.org/10.1016/j.ejor.2010.12.015MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Dell’Amico, M., Hadjicostantinou, E., Iori, M., Novellani, S.: The bike sharing rebalancing problem: mathematical formulations and benchmark instances. Omega 45, 7 (2014)CrossRefGoogle Scholar
  12. 12.
    Chemla, D., Meunier, F., Wolfler Calvo, R.: Bike sharing systems: solving the static rebalancing problem. Discrete Optim. 10, 120–146 (2013).  https://doi.org/10.1016/j.disopt.2012.11.005MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kloimüllner, C., Papazek, P., Hu, B., Raidl, G.R.: Balancing bicycle sharing systems: an approach for the dynamic case. In: Blum, C., Ochoa, G. (eds.) EvoCOP 2014. LNCS, vol. 8600, pp. 73–84. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44320-0_7CrossRefGoogle Scholar
  14. 14.
    Pavone, M., Treleaven, K., Frazzoli, E.: Fundamental performance limits and efficient polices for transportation-on-demand systems. In: 49th IEEE Conference on Decision and Control, CDC 2010, pp. 5622–5629 (2010).  https://doi.org/10.1109/cdc.2010.5717552
  15. 15.
    McNally, M.G., Rindt, C.: The Activity-Based Approach (2008)Google Scholar
  16. 16.
    Liu, Y., Wang, F., Xiao, Y., Gao, S.: Urban land uses and traffic ‘source-sink areas’: evidence from GPS- enabled taxi data in Shanghai. Landsc. Urban Plan. 106, 73–87 (2012)CrossRefGoogle Scholar
  17. 17.
    González, M.C., Hidalgo, C.A., Barabási, A.-L.: Understanding individual human mobility patterns. Nature 453, 779 (2008)CrossRefGoogle Scholar
  18. 18.
    Song, C., Koren, T., Wang, P., Barabási, A.-L.: Modelling the scaling properties of human mobility. Nat. Phys. 6, 818 (2010).  https://doi.org/10.1038/nphys1760CrossRefGoogle Scholar
  19. 19.
    Chowell, G., Hyman, J.M., Eubank, S., Castillo-Chavez, C.: Scaling laws for the movement of people between locations in a large city. Phys. Rev. Stat. Nonlinear Soft Matter Phys. 68, 066102 (2003)Google Scholar
  20. 20.
    Liang, X., Zheng, X., Lv, W., Zhu, T., Xu, K.: The scaling of human mobility by taxis is exponential. Phys. Stat. Mech. Appl. 391, 2135–2144 (2012)CrossRefGoogle Scholar
  21. 21.
    Phithakkitnukoon, S., Veloso, M., Bento, C., Biderman, A., Ratti, C.: Taxi-aware map: identifying and predicting vacant taxis in the city. In: de Ruyter, B., et al. (eds.) AmI 2010. LNCS, vol. 6439, pp. 86–95. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-16917-5_9CrossRefGoogle Scholar
  22. 22.
    Kang, C., Ma, X., Tong, D., Liu, Y.: Intra-urban human mobility patterns: an urban morphology perspective. Phys. Stat. Mech. Appl. 391, 1702–1717 (2012)CrossRefGoogle Scholar
  23. 23.
    Scholz, R.W., Lu, Y.: Detection of dynamic activity patterns at a collective level from large-volume trajectory data. Int. J. Geogr. Inf. Sci. 28, 1–18 (2014)CrossRefGoogle Scholar
  24. 24.
    Sun, J.B., Yuan, J., Wang, Y., Si, H.B., Shan, X.M.: Exploring space–time structure of human mobility in urban space. Phys. Stat. Mech. Appl. 390, 929–942 (2011)CrossRefGoogle Scholar
  25. 25.
    Kung, K.S., Greco, K., Sobolevsky, S., Ratti, C.: Exploring universal patterns in human home- work commuting from mobile phone data. PLoS ONE 9, e96180 (2014)CrossRefGoogle Scholar
  26. 26.
    Calabrese, F., Diao, M., Di Lorenzo, G., Ferreira, J., Ratti, C.: Understanding individual mobility patterns from urban sensing data: a mobile phone trace example. Transp. Res. Part C 26, 301–313 (2013).  https://doi.org/10.1016/j.trc.2012.09.009CrossRefGoogle Scholar
  27. 27.
    Liu, X., Gong, L., Gong, Y., Liu, Y.: Revealing travel patterns and city structure with taxi trip data. J. Transp. Geogr. 43, 78–90 (2015).  https://doi.org/10.1016/j.jtrangeo.2015.01.016CrossRefGoogle Scholar
  28. 28.
    Padgham, M.: Human movement is both diffusive and directed. PLoS ONE 7, e37754 (2012)CrossRefGoogle Scholar
  29. 29.
    Kaltenbrunner, A., Meza, R., Grivolla, J., Codina, J., Banchs, R.: Urban cycles and mobility patterns: exploring and predicting trends in a bicycle- based public transport system. Pervasive Mob. Comput. 6, 455–466 (2010).  https://doi.org/10.1016/j.pmcj.2010.07.002CrossRefGoogle Scholar
  30. 30.
    Vogel, P., Greiser, T., Mattfeld, D.C.: Understanding bike-sharing systems using data mining: exploring activity patterns. Procedia - Soc. Behav. Sci. 20, 514–523 (2011)CrossRefGoogle Scholar
  31. 31.
    Andrienko, N., Andrienko, G.: Exploratory Analysis of Spatial and Temporal Data: A Systematic Approach. Springer, Heidelberg (2006).  https://doi.org/10.1007/3-540-31190-4CrossRefzbMATHGoogle Scholar
  32. 32.
    Shalizi, C.R.: Methods and techniques of complex systems science: an overview. In: Thomas, D., Yasha, K. (eds.) Complex Systems Science in Biomedicine, pp. 33–114. Springer, New York (2006).  https://doi.org/10.1007/978-0-387-33532-2_2CrossRefGoogle Scholar
  33. 33.
    Haghani, A., Lee, S.Y., Byun, J.H.: A system dynamics approach to land use/transportation system performance modeling part I: methodology. J. Adv. Transp. 37, 1–41 (2003)CrossRefGoogle Scholar
  34. 34.
    Batty, M.: The New Science of Cities. MIT Press, Cambridge (2013)CrossRefGoogle Scholar
  35. 35.
    Forrester, J.W.: Urban Dynamics. MIT Press, Cambridge (1969)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.University of North Carolina at CharlotteCharlotteUSA

Personalised recommendations