Dimensionality Reduction for Insect Bites Pattern Recognition

  • Abdul Rehman KhanEmail author
  • Nitin Rakesh
  • Rakesh Matam
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 141)


Dimensionality reduction has been widely developed for machine learning and if we consider features extracted from images, approach with which the data needs to be processed should be unambiguous. In this paper we will be discussing some of the dimensionality reduction techniques on dataset, which could be used for training any classification model to recognize which class the image belongs and provide mathematical acumen behind them.


  1. 1.
    Guyon, I., Gunn, S., Ben-Hur, A., Dror, G.: Result analysis of the nips 2003 feature selection challenge. In: Advances in Neural Information Processing Systems, pp. 545–552 (2004)Google Scholar
  2. 2.
    Vaidya, Avinash R.: Neural mechanisms for undoing the curse of dimensionality. J. Neurosci. 35(35), 12083–12084 (2015)CrossRefGoogle Scholar
  3. 3.
    Metsalu, T., Vilo, J.: ClustVis: a web tool for visualizing clustering of multivariate data using principal component analysis and heatmap. Nucl. Acids Res. 43(W1), W566–W570 (2015)CrossRefGoogle Scholar
  4. 4.
    Sharma, Alok, Paliwal, Kuldip K.: Linear discriminant analysis for the small sample size problem: an overview. Int. J. Mach. Learn. Cybern. 6(3), 443–454 (2015)CrossRefGoogle Scholar
  5. 5.
    Zhang, D., et al.: A comparative study on PCA and LDA based EMG pattern recognition for anthropomorphic robotic hand. In: 2014 IEEE International Conference on Robotics and Automation (ICRA). IEEE (2014)Google Scholar
  6. 6.
    Hiremath, P.S., Hiremath, M.: 3D Face Recognition based on Radon Transform, PCA, LDA using KNN and SVM. Int. J. Image, Graph. Signal Process. 6(7), 36 (2014)CrossRefGoogle Scholar
  7. 7.
    Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500), 2319–2323 (2000)CrossRefGoogle Scholar
  8. 8.
    Surez, M.H., Hernndez, A.I.M., Galdn, B.R., Rodrguez, L.H., Cabrera, C.E.M., Mesa, D.R., Romero, C.D.: Application of multidimensional scaling technique to differentiate sweet potato (Ipomoea batatas (L.) Lam) cultivars according to their chemical composition. J. Food Compos. Anal. 46, 43–49 (2016)Google Scholar
  9. 9.
    Talmon, R., Cohen, I., Gannot, S., Coifman, R.R.: Diffusion maps for signal processing: a deeper look at manifold-learning techniques based on kernels and graphs. IEEE Signal Process. Mag. 30(4), 75–86 (2013)CrossRefGoogle Scholar
  10. 10.
    Van der Maaten, L.J.P., Postma, E.O., van den Herik, H.J.: Matlab Toolbox for Dimensionality Reduction. Maastricht University, MICC (2007)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Abdul Rehman Khan
    • 1
    Email author
  • Nitin Rakesh
    • 2
  • Rakesh Matam
    • 3
  1. 1.MINT EvolutionNoidaIndia
  2. 2.Department of CSEAmity UniversityNoidaIndia
  3. 3.Department of CSEIndian Institute of Information TechnologyGuwahatiIndia

Personalised recommendations