Object Motion Detection Methods for Real-Time Video Surveillance: A Survey with Empirical Evaluation

  • Surender SinghEmail author
  • Ajay Prasad
  • Kingshuk Srivastava
  • Suman Bhattacharya
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 141)


Automated moving object detection and analysis assumes a great significance in video surveillance. This article presents a comprehensive survey on the techniques of object-in-motion detection for video surveillance. In this paper, eight methods of object detection in video streams are implemented and evaluated empirically on five quality parameters for identifying the efficiency and effectiveness of these methods. For objective assessments of these methods, a standard dataset “CDnet2012” is used which consists of six different rigorous scenarios. In conclusion, an attempt has been made to identify the best method for different scenarios, employable in real-time video surveillance.


Object detection Motion detection Video surveillance Precision-recall curves Background subtraction Background modeling Foreground detection 


  1. 1.
    Green, M.W., Travis, J., Downs, R.: The appropriate and effective use of security technologies in U.S. Schools. U.S. Department of Justice, 810 Seventh Street N.W. Washington, DC 20531 (2014)Google Scholar
  2. 2.
    Bouwmans, T.: Traditional and recent approaches in background modeling for foreground detection: an overview. Comput. Sci. Rev. (2014)Google Scholar
  3. 3.
    Parekh, H.S., Thakore, D.G., Jaliya, U.K.: A survey on object detection and tracking methods. Int. J. Innov. Res. Comput. Commun. Eng. 2(2)Google Scholar
  4. 4.
    Lin, D., Cao, D., Zeng, H.: Improving motion state change object detection by using block background context. UCKI 2014 (2014)Google Scholar
  5. 5.
    Lee, B., Hedley, M.: Background estimation for video surveillance. In: Image and Vision Computing, IVCNZ 2002, pp. 315−320. NZ (2002)Google Scholar
  6. 6.
    Colombari, A., Fusiello, A.: Patch-based background initialization in the heavily cluttered video. IEEE Trans. Image Process. 19(4), 926–933 (2010)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Mingwu, R., Han, S.: A practical method for moving target detection under complex background. Comput. Eng. 33–34 (2005)Google Scholar
  8. 8.
    Jiang, S., Zhao, Y.: Background extraction algorithm based on partition weighed histogram. In: IEEE International Conference on Network Infrastructure and Digital Content, IC-NIDC 2012, pp. 433−437 (2012)Google Scholar
  9. 9.
    Cheng, F., Huang, S., Ruan, S.: Advanced motion detection for intelligent video surveillance systems. In: ACM Symposium on Applied Computing. Lausanne, Switzerland (2010)Google Scholar
  10. 10.
    Yan, J., Yu, Y., Zhu, X., Lei, Z., Li, S.Z.: Object detection by labeling superpixels. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA (2015)Google Scholar
  11. 11.
    Li, X., Ng, M., Yuan, X.: Median filtering-based methods for static background extraction from surveillance video. Numerical Linear Algebra with Applications, Wiley Online Library (2015)Google Scholar
  12. 12.
    Ching, S., Cheung, S., Chandrika, K.: Robust techniques for background subtraction in urban traffic video. In: Proceedings SPIE 5308, Visual Communications and Image Processing, pp. 881 (2004).
  13. 13.
    Wren, C.R., Azarbayejani, A., Darrell, T., Pentland, A.P.: Pfinder Real-time tracking of the human body. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 780–785 (1997)CrossRefGoogle Scholar
  14. 14.
    Stauffer, C., Grimson, W.E.: Learning patterns of activity using real-time tracking. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 747–757 (2000)CrossRefGoogle Scholar
  15. 15.
    Soh, Y., Hae, Y., Mehmood, A., Hadi Ashraf, R., Kim, I.: Performance evaluation of various functions for Kernel density estimation. Open J. Appl. Sci. 3(18), 58–64 (2013)CrossRefGoogle Scholar
  16. 16.
    Elgammal, A., Duraiswami, R., Harwood, D., Davis, L.: Background and foreground modeling using non-parametric Kernel density estimation for visual surveillance. IEEE Proc. Comput. Vis. 90(7) (2002).
  17. 17.
    Junejo, I., Bhutta, A., Foroosh, H.: Single class support vector machine (SVM) for scene modeling. J. Signal Image Video Proc. (2011)Google Scholar
  18. 18.
    Zhang, J., Tian, Y., Yang, Y., Zhu, C.: Robust foreground segmentation using subspace-based background model. In: Asia-Pacific Conference on Information Processing, APCIP 2009, vol. 2, pp. 214–217 (2009)Google Scholar
  19. 19.
    Li, Q., He, D., Wang, B.: Effective moving objects detection based on clustering background model for video surveillance. Congr. Image Signal Proc. CISP 2008(3), 656–660 (2008)CrossRefGoogle Scholar
  20. 20.
    Kumar, N.A., Sureshkumar, C.: Background subtraction based on threshold detection using modified K-means algorithm. In: International Conference on Pattern Recognition, Informatics and Mobile Engineering, Salem, pp. 378−382 (2013)Google Scholar
  21. 21.
    Xiao, M.: An improved background reconstruction algorithm based on basic sequential clustering. Inf. Technol. J. 7, 522–527 (2008)CrossRefGoogle Scholar
  22. 22.
    Kim, K., Chalidabhongse, T.H., Harwood, D., Davis, L.: Background modeling and subtraction by codebook construction. In: IEEE International Conference on Image Processing, ICIP 2004 (2004)Google Scholar
  23. 23.
    Badal, T., Nain, N., Ahmed, M., Sharma, V.: An improved multi-layer codebook model to eliminate ghost region. In: Fifth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG), pp. 1–4. Patna (2015).
  24. 24.
    Lin, H.H., Liu, T.L., Chuang, J.H.: A probabilistic SVM approach for background scene initialization. In: IEEE International Conference Image Processing, pp. 893−896 (2002)Google Scholar
  25. 25.
    Maddalena, L., Petrosino, A.: A self-organizing approach to background subtraction for visual surveillance applications. IEEE Trans. Image Process. 17(7), 1168–1177 (2008)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Baf, F.E., Bouwmans, T., Vachon, B.: Fuzzy integral for moving object detection. In: International Conference on Fuzzy Systems, FUZZ-IEEE, pp. 1729−1736 (2008)Google Scholar
  27. 27.
    Bouwmans, T.: Background subtraction for visual surveillance: a fuzzy approach. Handbook on Soft Computing for Video Surveillance. CRC Press, pp. 103−134 (2012)Google Scholar
  28. 28.
    Scott, J., Pusateri, A.M., Cornish, D.: Kalman filter based video background estimation. In: Applied Imagery Pattern Recognition Workshop (AIPRW), pp. 1−7.
  29. 29.
    Wang, B., Dudek, P.: A fast self-tuning background subtraction algorithm. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops, Columbus, OH, pp. 401−404.
  30. 30.
    Lu, X., Manduchi, R.: Fast image motion segmentation for surveillance applications. Image Vis. Comput. 29(2–3), 104–116 (2011)CrossRefGoogle Scholar
  31. 31.
    Chauhan, A.K., Krishan, P.: Moving object tracking using Gaussian mixture model and optical flow. In: International Journal of Advanced Research in Computer Science and Software Engineering (2013)Google Scholar
  32. 32.
    Shahbaz, A., Hariyono, J., Jo, K.: Evaluation of background subtraction algorithms for video surveillance. FCV 2015 (2015)Google Scholar
  33. 33.
    Sobral, A., Vacavant, A.: A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos. In: Computer Vision and Image Understanding, CVIU 2014 (2014)Google Scholar
  34. 34.
    Pulli, K., Baksheev, A., Kornyakov, K., Eruhimov, V.: Real-time computer vision with OpenCV. Mag. Queue Process. 10(4), 40 (2012). Scholar
  35. 35.
    CodeBlocks (2017, March 12). Retrieved from
  36. 36.
    Sankari, M., Meena, C.: Estimation of dynamic background and object detection in noisy visual surveillance. In: International Journal of Advanced Computer Science and Applications, vol. 2(6) (2011)Google Scholar
  37. 37.
    Benezeth, Y., Jodoin, P.M., Emile, B., Laurent, H., Rosenberger, C.: Review and evaluation of commonly-implemented background subtraction algorithms. In: International Conference on Pattern Recognition (ICPR 2008), pp. 1−4 (2008)Google Scholar
  38. 38.
    Goyette, N., Jodoin, P.M., Porikli, F., Konrad, J., Ishwar, P.: a new change detection benchmark dataset. In: IEEE Workshop on Change Detection (CDW-2012), pp. 16−21 (2012)Google Scholar
  39. 39.
    Kalirajan, K., Sudha, M.: Moving object detection for video surveillance. Hindawi Publ. Corp. Sci. World J. 1−10 (2015).

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Surender Singh
    • 1
    Email author
  • Ajay Prasad
    • 1
  • Kingshuk Srivastava
    • 1
  • Suman Bhattacharya
    • 2
  1. 1.SoCSE, UPESDehradunIndia
  2. 2.IPR Management ServicesTCSBhubneswarIndia

Personalised recommendations